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Data clustering algorithms experience challenges in identifying data points that are either noise or outlier. Hence, this paper
proposes an enhanced connectivity measure based on the outlier detection approach for multi-objective data clustering problems.
+e proposed algorithm aims to improve the quality of the solution by utilising the local outlier factor method (LOF) with the
connectivity validity measure.+is modification is applied to select the neighbour data point’s mechanism that can be modified to
eliminate such outliers. +e performance of the proposed approach is assessed by applying the multi-objective algorithms to eight
real-life and seven synthetic two-dimensional datasets. +e external validity is evaluated using the F-measure, while the per-
formance assessment matrices are employed to assess the quality of Pareto-optimal sets like the coverage and overall non-
dominant vector generation. Our experimental results proved that the proposed outlier detection method has enhanced the
performance of the multi-objective data clustering algorithms.

1. Introduction

Data clustering intends to arrange collections of data points
using similarity functions that can be employed next to
understand the data. A diversity of applications utilised the
data clustering algorithms to recognise the embedded
structures within the data, and to analyse a precise collection
of clusters to be additionally investigated and to recognise
each cluster feature [1, 2]. Consequently, the quality of the
clusters can be handled by utilising the internal validity/
similarity measures, such as connectedness, compactness,
and isolation. +e data clustering validity measures serve as
an important part in the development of the clustering al-
gorithms, which are built based on distancemeasures such as
the k-means partitioning algorithm. In general, the parti-
tioning algorithms aim to identify spherically shaped clus-
ters, but it is inefficient to recognise arbitrarily shaped

clusters like non-convex or interlaced clusters that are
studied in several applications. Moreover, the partitioning
algorithms experience challenges in recognising data points
that are either outlier or noise [3]. Unlike other validity
measures, cluster connectivity works indifferently with the
shape of clusters [4], which decides the degree to which
neighbours of a data point have been located in the cor-
responding cluster. However, the robustness of the con-
nectivity measure depends on the associated L-nearest
neighbour [5, 6].+ese neighbours concerned in quantifying
the connectivity measure can contain outliers, which can
extremely influence the accuracy of the connectedness based
on non-reliable data points that can be a form of outliers [7].
+erefore, choosing a proper neighbour data point’s
mechanism can be adjusted to eliminate such outliers, to
enhance the performance of the connectivity measure. Data
clustering and outlier detection share a corresponding

Hindawi
Applied Computational Intelligence and So Computing
Volume 2022, Article ID 1036293, 10 pages
https://doi.org/10.1155/2022/1036293

mailto:h.mustafa@aau.edu.jo
https://orcid.org/0000-0003-2015-7497
https://orcid.org/0000-0002-5157-7921
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1036293


relationship, in which a data point is recognised as a cluster
member or an outlier. Data clustering algorithms commonly
incorporate a mechanism for managing the outliers that
eliminate these data points from the clusters. +e applica-
bility across the different problem fields is one significant
problem for the outlier analysis [7–10]. Also, the effec-
tiveness of an outlier analysis algorithm is quantified with
the performance of the resolution of different thresholds for
the outlier score.

+e local distance methods have been applied in several
outlier detection methods [7, 11]. +e primary assumption
of these methods is that the normal data points reside within
dense neighbourhoods. In contrast to normal data, the
outliers reside remotely out from the nearest neighbours.
One of the most common local distance outliers detection
algorithms is the local outlier factor (LOF) algorithm, which
is used in several applications [7]. LOF is recognised as one
of the widely applied local outliers detection algorithms and
was introduced by [12], in which the local density of a point
is associated with the surrounding neighbourhood points
[7, 13]. Although the LOF geometric anticipation is
employed in low-dimensional data, the LOF algorithm can
be implemented in different dissimilarity functions [14]. +e
LOF algorithm has shown outperformance against different
competitor algorithms in several disciplines such as fault
detection [15] or network intrusion detection [16]. +e LOF
variants can be generalised and implemented in various
applications, such as detecting outliers in big data [17],
machine learning [18], and data streams [19]. Additionally,
the LOF algorithm can be employed for different cluster
shapes with different dissimilarity functions, while other
local distance methods such as connectivity-based outlier
factor (COF) deals with outliers differing from spherical
density-based shapes such as lines, while the influenced
outlierness (INFLO) method handles the clusters that reside
near to each other, and the local outlier probability (LoOP)
method utilises the measurement of data points in the
corresponding dataset with other datasets. To solve the
concerns explained above, this paper intended to address the
multi-objective data clustering problems using an outlier
detection approach. +e contribution significance of the
paper is twofold.

(1) We introduced a modified connectivity validity
measure based on the outlier detection approach
(coded as Conn_LOF) for multi-objective data
clustering problems.

(2) We developed an algorithm that intends to enhance
the quality of the solution generated by the multi-
objective metaheuristic approach by utilising the
LOF with the connectivity validity measure.

+is paper is organised as follows: +e related works of
multi-objective metaheuristic clustering are briefly reviewed
in Section 2. Section 3 discusses the theoretical background
and concepts such as the data clustering problem, outlier
detection methods, and the LOF method. In section 4, the
description of the modified Conn_LOF approach is pre-
sented. Section 5 presents the experimental design of the

modified Conn_LOF approach algorithm, and in Section 6
the experimental results of the introduced method are
explained. Finally, Section 7 presents the paper’s conclusions
and future works.

2. Related Works

Several multi-objective metaheuristics approaches have
been introduced to solve data clustering problems
[20–26]. +e multi-objective data clustering approach was
initially offered by [27], where they proposed a multi-
objective data clustering algorithm that was based on one
or more cluster quality measures. +eir algorithm used the
Pareto envelope-based selection algorithm (PESA-II), a
multi-objective algorithm, to optimise the deviation and
connectivity cluster quality measures. +eir research was
extended in [28], where they investigated the performance
of four different pairs of criteria (cluster quality measures)
in multi-objective clustering. Reference [29] introduced a
new dynamic multi-objective evolutionary algorithm
(MOEA) for data clustering, which applies a chromosome
with variable length scheme to search for optimal cluster
number and cluster centre. Reference [30] proposed a
multi-objective optimisation algorithm for solving the
categorical data clustering problem (MOGA). Reference
[31] offered a multi-objective evolutionary ensemble al-
gorithm for addressing texture image segmentation
(MECEA). Reference [32] introduced an enhanced multi-
objective evolutionary approach for data clustering
(EMCOC), which aims to determine the overlapping
complex shape dataset problem. Reference [33] offered a
multi-objective genetic fuzzy clustering (MOVGA) for the
segmentation of multispectral magnetic resonance im-
aging (MRI). Reference [34] proposed a multi-objective
clustering algorithm (MOCA) for data clustering.

Recently, [35] proposed a multi-objective algorithm
based on the artificial bee colony optimisation algorithm and
the non-dominated sorting (NSABC) to solve the data
clustering problems. Reference [21] offered a particle swarm
optimisation using the multi-objective approach (MOPSO)
to increase the diversity of the solutions. Later, [36] pre-
sented an improved binary gravitational search algorithm
using the multi-objective approach for feature selection
(IMBGSAFS). +e Pareto-based approach is used in the
algorithm to obtain better solutions diversity, by optimising
the silhouette index and feature cardinality validity mea-
sures. Reference [37] introduced the multi-objective clus-
tering algorithm based on a reduced-length representation.
Reference [23] proposed a kernel-based, attribute-weighted
multi-objective optimisation data clustering algorithm, in
which they used the compactness and the separation cluster
quality measures to find an optimal clustering solution.

Table 1 demonstrates that most of the offered multi-
objective clustering approaches were based on the NSGA-II
multi-objective algorithm, which was widely used to achieve
high-quality solutions. Several multi-objective clustering
algorithms employ more than one validity measure to be
optimised simultaneously, which minimises two validity
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measures such as cluster connectivity (Conn) and overall
cluster deviation (Dev).

According to the related studies of data clustering al-
gorithms, which are based on the multi-objective meta-
heuristic algorithms, further enhancements are required to
tackle the rapid growth of data complexity with the con-
sideration of preserving the accuracy of the clustering al-
gorithm [7]. Although the majority of the clustering
algorithms attempt to detect outliers during the clustering
analysis stage [7], few algorithms offer validity measures that
can tackle the detection of these outliers [38]. +e con-
nectivity measure of the cluster, which is commonly used in
most multi-objective clustering algorithms, can measure the
level of the connectedness of the neighbour data objects that
are located in the same cluster [6, 35] and may measure the
amount of connectedness based on non-reliable data objects
that can be a form of outliers [7].+erefore, the selection of a
suitable neighbour data objects mechanism can be modified
to exclude such outliers, and consequently improve the
performance of the connectivity measure.

3. Background

+is section introduces the concepts of the data clustering
problems, the outlier detection methods, and the LOF
method.

3.1. Data Clustering Problems. Data clustering is an essential
task of data mining that intends to group N data objects X�

{x1, x2, . . ., xN} into a set of clusters C� {C1, C2, . . ., CK},
where all data objects in the same clusters are similarly based
on a specified similarity measure. +e clustering methods
must ensure the following hard constraints [39]:

(i) Each cluster should not be empty and hold at least
one data object:

Cj ≠ ϕ, ∀j ∈ 1, 2, . . . , K{ }. (1)

(ii) Various clusters should not share data objects:

Cj ∩Ci � ϕ, ∀j≠ i and j, i ∈ 1, 2, . . . , K{ }. (2)

(iii) Every data object should be included in a cluster:

∪
k

j�1
Cj � X. (3)

+e mathematical representation of a multi-objective
data clustering problem with M-objectives is given in
equation (4) [40]:

Optimizef(X, C) � f1(X, C), f2(X, C), . . . fM(X, C)( 􏼁,

subject to
gi(X, C)≤ 0, i � 1, 2, . . . , p,

hj(X, C) � 0, j � 1, 2, . . . , q.

⎧⎨

⎩

(4)

+e f(X, C) is the objective function that measures the
partitions’ quality produced by the clustering algorithm,
where the objective function can be minimised or maxi-
mised depending on the similarity/dissimilarity measure
employed. gi(X, C) denotes the p inequality constraints, and
hj(X, C) denotes the q equality constraints.

3.2. Connectivity of the Cluster. Connectivity of the cluster
[27, 35] is an objective function used to measure the amount
of neighbour data points that are placed in each cluster that
should be minimised. +e mathematical formulation of the
cluster connectivity is shown in equations (5) and (6):

connectivity(C) � 􏽘
N

i�1
􏽘

M

j�1
nni(j), (5)

nni(j) �

1
j
, if object i is not in the same cluster of object j,

0, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(6)

Table 1: Summary of the popular multi-objective metaheuristic
algorithms for data clustering with their related details.

Algorithm Objective functions Algorithm Reference
VIENNA Dev(C) & Conn(C) PESA-II [27]
MOEA Dev(C) & Conn(C) NSGA-II [29]
MOCK Dev(C) & Conn(C) PESA-II [5]
VRJGGA Entropy & separation NSGA-II [32]
MOGA-
medoid Dev(C) & silhouette NSGA-II [30]

MECEA Dev(C) & Conn(C) PESA-II [31]
EMCOC Entropy & separation NSGA-II [32]
MOVGA Jm & separation NSGA-II [33]
MOCA Avg. Dev(C) & Conn(C) NSGA-II [34]
TSMPSO SSE & Conn(C) NSGA-II [21]
NSABC SSE & Conn(C) NSGA-II [35]
IMBGSAFS Silhouette & cardinality NSGA-II [36]

MOKCW Compactness &
separation NSGA-II [23]
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where N is the number of data points, and parameter M
represents the number of neighbour data points, which will
be considered to measure the connectivity.

3.3. Outlier Detection Methods. +e outlier detection
methods are applied to overcome the influence of the outlier
in creating descriptive or predictive models, and also to be
adopted in the pre-processing stage in several applications of
data mining. +e common outlier detection techniques are
classified into distance-based, density-based, distribution-
based, clustering-based, and probabilistic-based methods.
Besides, the outlier detection approaches are divided into
local or global methods, in which global methods give each
data point an anomaly score depending on the entire dataset
points. On the contrary, the local distance methods assign an
anomaly score to each data point depending on the sur-
rounding neighbourhoods. Many variants of the local dis-
tance methods are introduced to produce simple anomaly
score presentation and identify hidden outliers by the global
methods. +e variants of the local distance methods include
the following methods:

(1) Local Outlier Factor (LOF) [12]: It is recognised as
the most broadly adopted local methods that asso-
ciates the local density of data objects with the av-
erage distance of the k-nearest-neighbour objects.
+e anomaly score of the LOF algorithm is defined as
the ratio of the data points’ local density to the
neighbourhood points’ average local density.

(2) Connectivity-based Outlier Factor (COF) [41]: It
detects outliers of other density-based shapes like
lines.

(3) Influenced Outlierness (INFLO) [42]: It was intro-
duced to produce further reliable results involving
the different clusters’ densities that exist near each
other.

(4) Local Outlier Probability (LoOP) [43]: It consists of
statistical methods that define the anomaly score as a
probability. +ese probabilities employ the analysis
of data points in the dataset with other datasets.

+e local distance methods have been utilised in
several outlier detection methods [7, 44–46]. +e primary
assumption of these methods is that the points of normal
data exist inside dense neighbourhoods. Unlike normal
data, the outliers remain remotely out from the nearest
neighbours. +e nearest neighbour methods need a dis-
tance metric to identify the distance separating the two
data points [7]. One of the popular local distance outliers
detection algorithms is the LOF algorithm, which is ap-
plied in several applications [7].

3.4. LocalOutlier Factor (LOF). LOF is one of the commonly
used local outliers detection algorithms that was introduced
by [12], in which the local density of a point is related to the
surrounding neighbourhood points [7, 13]. +e outlier
factor is local which considers only each neighbourhood
point.+e local reachability distance of a point p is described
as the inverse of the average reachability distance based on
the minPts_nearest neighbours of p. +us, minPts is a
primary parameter needed by the LOF algorithm which
indicates the number of nearest neighbours employed in
discovering the local neighbourhood of each point. +e local
reachability distance (lrd) is defined by equation (7), and the
reachability distance is defined by equation (8) [12]:

Irdminpts(p) �
1

􏽐o∈Nminpts(p)
reach distMinpts(p, o)􏼒 􏼓/Nminpts(p)􏼚 􏼛

,
(7)

reach distMinpts(p, o) � max minPts distance(o), dist(p, o)􏼈 􏼉, (8)

where minPts denotes a positive integer, D denotes the
dataset points, and {o, p} ∈D. +e distMinpts(p, o) is defined as
the distance between p and point o. Given the min-
Pts_distance of p, the minPts_distance neighbourhood of p
contains every point whose distance from p is not greater
than the minPts_distance. +e outlier factor of point p
represents the level of point p to be considered an outlier,
which is defined in equation (9) [12]:

LOFminpts(p) �
􏽐o∈Nminpts(p)

Irdminpts(o)/Irdminpts(p)􏼐 􏼑

Nminpts(p)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
. (9)

+e utilisation of distance ratios ensures that the local
distance performance is properly assessed. +erefore, the
LOFminpts for the points in density regions is close to 1
(LOF≃ 1). Otherwise, the LOFminpts of the outlier points will

be much higher (LOF≫ 1) because they are measured
depending on the ratios to the average neighbour reach-
ability distances. Essentially, the maximum value of LOF-
minpts over a variety of minpts amount is employed as the
outlier score to identify the optimal neighbourhood size.

3.5.<e Proposed Outlier Detection Approach. +e proposed
outlier detection approach of the connectivity measure
(named Conn_LOF) is discussed in this section. +e flow-
chart of the introduced outlier detection approach for the
connectivity measure is shown in Figure 1, which includes
the following stages:

(i) Stage 1. +e pre-processing phase includes the
gathering and cleaning of the needed datasets and
then converting them into related nearest
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neighbours matrix and other matrices, which are
utilised throughout the generation of solutions.

(ii) Stage 2.+e computation of L-distance: includes the
computation of L-distances of each data point with
the L-nearest neighbourhood data points based on
the Euclidean distance [7].

(iii) Stage 3. +e computation of reachability of L-dis-
tance neighbourhoods: consists of the computation
of the local reachability distances along with the
reachability of all L-distance neighbourhoods using
equation (7).

(iv) Stage 4. +e LOF algorithm computation: consists
of labelling the outlier sequence of the entire
L-distance neighbourhoods based on the outlier
factor based on the chosen threshold value λ of LOF.

(v) Stage 5. +e computation of the connectivity
measure includes the computation of the connec-
tivity validity measure using equation (5). +e
procedure of computing the connectivity measure
excludes the outlier-labelled neighbourhoods’
points.

(vi) Stage 6. +e execution of the multi-objective clus-
tering algorithm: executes the multi-objective
clustering algorithm such as the non-dominated
sorting genetic algorithm (NSGA-II) [47] and the
strength Pareto evolutionary algorithm (SPEA-II)
[48].

+e algorithmic steps of the proposed method are shown
in Algorithm 1, where λ denotes the threshold value used in
the LOF algorithm that is set to 1, where the LOF value of
each neighbourhoods point is approximated and then
compared to the λ threshold value. +e Clabel matrix stores
the labels of the neighbourhoods’ points.

4. Experimental Design

+e performance of the proposed Conn_LOF outlier de-
tection method is examined using eight real-life datasets
with a variety of complexity, obtained from the UCI re-
pository of the machine learning databases [49], and seven
synthetic two-dimensional datasets [5], as shown in Table 2.

Since most of the state-of-the-art multi-objective clus-
tering algorithms are based on NSGA-II (as shown in

Table 1), NSGA-II and SPEA-II algorithms are used to prove
the contribution of this paper. Additionally, other multi-
objective algorithms are not used since the proposed
Conn_LOF method is performed before running the multi-
objective clustering algorithm (as shown in Figure 1) and
will not affect the algorithmic steps of any given algorithm.

To evaluate the performance and the effectiveness of the
proposed Conn_LOF method, the NSGA-II algorithm [47]
is modified by employing two conflicting objectives that
include the intra-cluster distance [50] and the proposed
Conn_LOF method (named as eNSGA-II) and compared
with the NSGA-II algorithm with a pair of conflicting ob-
jectives that include the intra-cluster distance [50] and the
standard connectivity of the cluster [27]. Similarly, SPEA-II
[48] is modified by employing the intra-cluster distance and
the Conn_LOF method (named as eSPEA-II) and then
compared with the standard SPEA-II with a pair of con-
flicting objectives that include the intra-cluster distance [50]
and the standard connectivity of the cluster [27].

+e data clustering solutions are represented using a
label-based representation that includes a one-dimensional
array, where a solution is denoted as a set of N data objects.
Figure 2 demonstrates a solution representation example of
eight data objects and three clusters. +e solutions are
randomly generated. Each data object is randomly attached
to a cluster.

+e algorithm’s external validity is evaluated using the
F-measure [51]. +e running time of the algorithms is not
investigated since the Conn_LOF method runs before the
execution of the multi-objective clustering algorithm (as
shown in Figure 1), which will not affect the running time of
these competing algorithms. +e inference time is the same
for a particular dataset depending on the number of attri-
butes and instances.

Also, performance assessment indices (PI) are utilised to
assess the Pareto-optimal sets’ quality and to compare the
performance between diverse multi-objective algorithms.
Hence, to assess the multi-objective metaheuristic clustering
algorithms, we followed the performance indices that have
been used in recent data clustering researches [36, 52],
including the Overall Non-dominated Vector Generation
(ONVG) [53] and coverage [54]. +e details of these indices
are below:

1. Coverage of Two Sets (C) [54]: Coverage is employed to
compare two solution sets based on domination. Assuming
that S1 and S2 are two Pareto-fronts/sets, then C(S1, S2)
indicates the portion of set S2 that is dominated by the
solutions in set S1. +e mathematical formulation of the
coverage is shown in equation (10).

C S1, S2( 􏼁 �
b2 ∈ S2;∃b1 ∈ S1: b1 ≤ b2􏼈 􏼉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

S2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (10)

where higher values ofC denote that the dominance is better,
which must be within the range [0, 1].

2. Overall Non-dominant Vector Generation (ONVG)
[53] represents the number of solutions in the Pareto-front
set S; the mathematical formulation of the ONVG is shown
in equation (11).

EndStart

Pre-processing phase: Nearest 
neighbours matrix 

L-disance computing for each 
data point 

Reachability L-distance 
neighbourhood points 

Executing the multi-objective 
clustering algorithm 

Connectivity measure 
computing 

LOF algorithm computing

Figure 1: Flowchart of the proposed Conn_LOF algorithm.
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ONVG(S) � |S|. (11)

To evaluate the performance of the multi-objective
methods using the PI indices, a Pareto-front pool is
generated utilising the whole Pareto-fronts of the com-
peting multi-objective algorithms. +e non-dominated
solutions in N runs of every algorithm are joined. Some
PIs require a Pareto-front pool such as the coverage
measure.

+e setting of the parameters for the competing algo-
rithms was independently performed 31 times on each of the
15 datasets; then the average value and the standard devi-
ation of the F-measure are computed. +e population size is
set to 20 and the maximum number of iterations is set to
1000.+e nearest L data points are set to 21. Lastly, Java 1.8 is

used to implement the algorithms and were run on a per-
sonal computer with a CPU of Intel Core i7 (2.6GHz) that
was equipped with 4GB memory.

5. Experimental Results and Discussion

Table 3 shows the results of the coverage (C), whereA,B,C, and
D symbolise eNSGA-II, NSGA-II, eSPEA-II, and SPEA-II,
respectively. +e C(A, B) values compared with C(B, A) values
obtained better coverage for the datasets 2d-20c-no0, CMC,
Ecoli, engytime, Flame, Seeds, Sizes5, Sonar, Soybean-small,
and+yroid, which means that the entire solutions in the pool
of NSGA-II at least have been dominated by a single solution of
the eNSGA-II solutions pool. On the other hand, the C(A, B)
values compared toC(B,A)mostly obtained better coverage for

O1 O2 O3 O4 O5 O6 O7 O8

C1 C3 C2 C2 C1 C3 C3 C1

Figure 2: A candidate solution representation example.

(i) //Inputs:
(ii) C//the nearest neighbours matrix that is generated from the stage (1)
(iii) L//number of nearest neighbours minPts in LOF algorithm
(iv) λ//+e threshold used in the LOF algorithm
(v) Clabel//the labels matrix generated by LOF
(vi) for each Cj in C do
(1) //stage (2)

(vii) Compute the L-distance neighbourhood points of Cj;
(2) //stage (3)

(viii) Compute the reachability distance for neighbourhood
(3) points of Cj;
(xi) //stage (3)
(x) Compute the LOF of neighbourhood points of Cj;
(4) //stage (4)
(ix) for each neighbourhood point, Pi of Cj do
(5) If LOF of Pi≥ λ then
(6) Label Pi as outlier and store it Clabel;
(7) Endif
(8) End for
(9) //stage (5)
(10) Compute connectivity of C by excluding outliers in Clabel;
(11) //stage (6)
(12) Execute the multi-objective clustering algorithm;

ALGORITHM 1: Pseudo-code of the proposed LOF-based algorithm.

Table 2: +e real-life and synthetic datasets used in the experiments of the proposed algorithm.

Real-life datasets Synthetic datasets
CMC 2d-20c-no0
Ecoli Elly-2d10c13s
Ionosphere Engytime
Iris Flame
Seeds Sizes5
Sonar Spherical_5_2
Soybean-small Square1
+yroid
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the datasets Elly-2d10c13s, Ionosphere, Iris, Spherical_5_2, and
Square1. +e C(C, D) values compared with C(D, C) values
obtained better coverage for the datasets 2d-20c-no0, CMC,
Ecoli, Elly-2d10c13s, engytime, Flame, Seeds, Sizes5, and
Spherical_5_2, which means that the entire solutions in the
pool of SPEA-II at least have been dominated by a single
solution of the eSPEA-II solutions pool. In contrast, the C(D,
C) values compared toC(C,D) mostly obtained better coverage
for the datasets Ionosphere, Iris, Sonar, and Soybean-small.

Generally, this shows that the solutions in the modified
algorithms with the Conn_LOF method’s pool dominated
the standard algorithms’ solutions in a considerably high
ratio. In conclusion, the modified algorithms with Con-
n_LOF method attained better performance amongst other
standard algorithms based on the coverage PI.

Table 4 reveals the results of the obtained F-measure on
the Pareto-fronts produced by the competing algorithms.
+e eNSGA-II algorithm achieves higher F-measure results
than the NSGA-II algorithm for most of the datasets except
2d-20c-no0, CMC, Sizes5, and Soybean-small datasets. +e
eSPEA-II provides higher F-measure results than SPEA-II
for most of the datasets excluding CMC, Iris, and Soybean-
small datasets. +e results verify that the average F-measure
of the eNSGA-II and eSPEA-II is enhanced by adopting the

Conn_LOF method compared to the corresponding stan-
dards NSGA-II, and SPEA-II.

Additionally, the impact of adopting the Conn_LOF is
perceived in the ONVGmetric, as shown in Table 5, in which
the eNSGA-II algorithm achieves higher ONVG results than
the NSGA-II algorithm for most of the datasets except 2d-
20c-no0, Ecoli, and Seeds. +e eSPEA-II provides higher
ONVG results than SPEA-II for most of the datasets except
2d-20c-no0, Sizes5, and Soybean-small. +e table also shows
a weak performance of other competing algorithms con-
cerning the ONVG metric. Hence, the modified eNSGA-II
and eSPEA-II achieve better ONVG performance.

Results shown in Table 4 are additionally analysed using
Friedman’s test ranking using the F-measure. As presented
in Table 6, Friedman’s test shows that eNSGA-II achieved
the best F-measure rank. +e NSGA-II achieved the second
rank, and the eSPEA-II algorithm achieved the third rank.
Finally, SPEA-II obtained the worst rank.

In general, eNSGA-II, and eSPEA-II are proven to be a
reliable choice for data clustering in the multi-objective
approach by adopting the Conn_LOF outlier detection
method for providing Pareto-front solutions with efficient
clustering measures for datasets with varying characteristics
and complexity.

Table 4: +e average and standard deviationa of the obtained F-measure obtained by the competing algorithms.

Dataset SPEA-II eSPEA-II NSGA-II eNSGA-II
2d-20c-no0 0.208 (0.01) 0.547 (0.04) 0.57 (0.03) 0.551 (0.04)
CMC 0.598 (0.04) 0.59 (0.037) 0.583 (0.02) 0.583 (0.02)
Ecoli 0.783 (0.03) 0.824 (0.02) 0.853 (0.03) 0.858 (0.04)
Elly-2d10c13s 0.310 (0.01) 0.556 (0.04) 0.580 (0.05) 0.581 (0.04)
Engytime 0.645 (0.02) 0.958 (0.10) 0.957 (0.10) 0.957 (0.08)
Flame 0.864 (0.07) 0.864 (0.05) 0.877 (0.05) 0.877 (0.06)
Iris 0.887 (0.02) 0.826 (0.01) 0.857 (0.01) 0.863 (0.01)
Seeds 0.867 (0.02) 0.880 (0.04) 0.876 (0.02) 0.876 (0.02)
Sizes5 0.869 (0.01) 0.87 (0.026) 0.901 (0.03) 0.865 (0.02)
Soybean-small 0.979 (0.06) 0.94 (0.063) 0.957 (0.06) 0.875 (0.06)
Spherical_5_2 0.848 (0.07) 0.885 (0.07) 0.888 (0.08) 0.888 (0.07)
Square1 0.605 (0.03) 0.978 (0.08) 0.940 (0.06) 0.972 (0.06)
+yroid 0.868 (0.01) 0.868 (0.01) 0.861 (0.01) 0.881 (0.01)
a+e result shows the average F-measure and the results’ standard deviation in brackets.

Table 3: +e coverage metric of the obtained Pareto-fronts by the competing algorithms from the combined pool of sets.

Dataset C (A, B) C (B, A) C (C, D) C (D, C)
2d-20c-no0 0.85 0 1 0
CMC 0.71 0.25 1 0
Ecoli 0.50 0 1 0
Elly-2d10c13s 0 0.29 1 0
Engytime 0.67 0.05 1 0
Flame 0.38 0.20 0.89 0
Ionosphere 0 1 0 1
Iris 0.13 0.73 0 1
Seeds 0.64 0.43 0.41 0.30
Sizes5 0.40 0 0.43 0
Sonar 0.75 0.73 0.54 0.66
Soybean-small 0.55 0.18 0.22 0.41
Spherical_5_2 0 1 1 0
Square1 0 1 1 0
+yroid 0.80 0 0.60 0
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6. Conclusions and Future Work

In this paper, an enhanced connectivity measure based on
the LOF outlier detection method (Conn_LOF) is offered to
enhance the performance of the connectivity measure by
eliminating the outliers. To examine the efficiency of the
proposed Conn_LOF method, it is employed within the
competing algorithms and tested on eight real-life datasets
with a variety of complexity obtained from the UCI re-
pository of the machine learning database. +us, the effi-
ciency of the competing algorithms is tested on seven
synthetic two-dimensional synthetic datasets with different
cluster shapes and characteristics. +e experimental results
show that the performance of the modified eNSGA-II and
eSPEA-II enhanced by adopting the Conn_LOF method
concerning the average, and the standard deviation results of
the F-measure. +us, the multi-objective performance as-
sessment matrices are used to evaluate the quality of the
Pareto-optimal sets that include coverage and overall non-
dominant vector generation. Furthermore, the Conn_LOF
outlier detection method is proven to be effective when
combined with the clustering algorithms to provide better
Pareto-front solutions with efficient clustering measures for
datasets with varying characteristics and complexity.

Data Availability

+e real-life datasets used to support the findings of this study
have been deposited in the UCI Data repository (URLs:
https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method
+Choice; https://archive.ics.uci.edu/ml/datasets/ecoli; https://
archive.ics.uci.edu/ml/datasets/ionosphere; https://archive.ics.

uci.edu/ml/datasets/Iris; https://archive.ics.uci.edu/ml/datase
ts/seeds; https://archive.ics.uci.edu/ml/datasets/connectionist
+bench+(sonar,+mines+vs.+rocks); https://archive.ics.uci.edu
/ml/datasets/soybean+(small); https://archive.ics.uci.edu/ml/
datasets/thyroid+disease). Additional synthetic datasets
(such as 2d-20c-no0, Elly-2d10c13s, Engytime, Flame, Sizes5,
Spherical_5_2, and Square1) were used to support this study
and are available at [doi: 10.1109/TEVC.2006.877146]. +ese
prior datasets are cited at relevant places within the text as
references [5].
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