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Alzheimer’s disease (AD) is a progressive and fatal disease, due to the nonavailability of any permanent cure. Some treatments are
under experimentation that can slow down and possibly pause the progression of the disease only if the disease is diagnosed
earlier. The onset of AD can only be detected at the mild cognitive impairment (MCI) stage in which slight memory loss is
observed but daily routine functions are intact. A small fraction of the patient progresses from MCI to AD. In this research, we
have designed a cascaded deep neural network model to identify those MCI subjects who will progress to AD in the following year.
The analysis and experimentation have been performed using twenty longitudinal neuropsychological measures (NMs) provided
by Alzheimer’s Disease Neuroimaging Initiative (ADNI). After normalization and ranking of longitudinal data, the deep neural
network regression model is trained and tuned to forecast the next in-sequence biomarker value using two previous follow-up
readings for each marker. Then, the three time-domain window samples are fed into another deep neural network classifier model
for the classification of MCI progressor (MCIp) and MCI stables (MCIs). Our model presented regression forecasting MAE of 0.13
and classification accuracy of 86.9% with AUC of 92.1% (Sensitivity: 67.7%, specificity: 92.3%) over 5-fold cross-validation. We
conclude that time-domain measures of NM alone can deliver comparable MCI to AD conversion prediction performance
without leveraging more expensive and invasive counterparts such as MR imaging, PET scans, and CSF measures. Middle and low-

income countries will benefit from such cheap and effective solutions greatly.

1. Introduction

Alzheimer’s disease (AD) is a major cause of dementia. It is
an irreversible neurodegenerative disorder that usually oc-
curs in middle or old age. It is a progressing disease, which
means it gets worse along with time. Dr. Alois Alzheimer
was the first to discover Alzheimer’s disease (AD) in 1906
when he observed the strange brain condition of one of his
patients who died due to an unusual mental disorder [1]. AD
usually occurs after or from the age of 65. In extremely rare
cases, it has also been observed in children and teenagers
depending on their genetics and family history [2]. This
condition initiates with the development of abnormal tau
protein around the brain cells and then leads to gradual
neuron deterioration. Hence, it is a multistage progressing
disease. Along with the progression, a patient experiences

mental deterioration, and resultantly the patient is unable to
perform life’s routine tasks. This disease is progressively
becoming the leading cause of death commonly in low or
middle-income and third-world countries [3] with a high
population. Overall, 35.6 million people are affected
worldwide, however, developing countries especially Paki-
stan, India, and Africa that do not have cutting-edge facilities
to bear the higher cost of caregiving and management of the
disease are now facing economical and psychological diffi-
culties which will be increasing in the future [4]. Worldwide
developing countries have to bear the burden of 60%. Studies
have mentioned that in the coming years the increase in the
AD will be from 2% to 6% in Pakistan alone [5]. Addi-
tionally, from 1.3% to 2.7% in Indonesia, Thailand, and Sri
Lanka, and from 3.6% to 7.5% in India and South Asia.
Prevalent people in Africa are 2.76 million of which the
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majority live in SubSaharan. They are expected to increase
with a rate from 0.9% to 1.6% by 2040 [6].

There are three stages of AD [7]. In its preclinical AD
stage, the disease goes underdiagnosed due to no visible
symptoms. Detection is only possible once the patient enters
in MCI stage where very mild clinical and behavioral
symptoms can be observed. However, it is of much im-
portant to identify which patients will convert to AD called
mild cognitive impairment progressor (MCIp) and which of
them will retain the MCI diagnosis also referred to as mild
cognitive impairment stables (MCls) in the future. For this
task, a plethora of machine learning studies have been
conducted while experimenting on feature sets, feature
preprocessing, sophistication of the classification method, as
well as the use of one timepoint or multiple timepoint data.
We hypothesize that this slow-progressing disease will
benefit from longitudinal feature values.

2. Related Work

A few studies employing longitudinal data for MCIp vs.
MClIs classification are mentioned in Table 1. For early
diagnosis of the disease in the MCI stage, there are many
diagnostic tools e.g., early neuropsychological assessments
(NAs), brain imaging, genetic sampling (GS), and ere-
brospinal fluid (CSF). Using these biomarkers several pieces
of research have been proposed based on a single predictor
model [8] as well as a multi-predictor model [9, 10]. Many of
the research studies used a single diagnostic feature for the
said task while others focused on combining heterogeneous,
multimodal features [11, 12] used magnetic resonance im-
aging (MRI) and positron emission tomography (PET) for
MCI to AD conversion prediction presenting the accuracy of
84.7% and 81% simultaneously. On the contrary, [13] used
MRI features for 84.29% of accuracy alone whereas [14, 15]
performed experiments on both unimodal and multimodal
data using NMs and MRI-derived features and delivered
84% and 77.87% accuracy. Likewise, various other re-
searchers have used other combinations of diagnostic bio-
markers such as [16] which have used PET scans and
cerebrospinal fluid (CSF). Machine (SVM) also accom-
plished the accuracy of 84.13% that was presented by [17].
Furthermore, the research conducted by [18] presented a
novel ensemble-based machine learning algorithm to predict
MCI to AD conversion using socio-demographic, clinical
characteristics, and NMs. It presented a balanced accuracy of
84% along with an AUC of 88% [19] and has suggested the
model using Mini-Mental State Examination (MMSE),
NMs, MRI, PET, CSF, and genetic sampling to classify early
MCI, late MCI, and normal control. This model used the
Radial basis function (RBF) regression and SVM-RBF
classification. A principle component analysis (PCA) based
model anticipated by [14] claimed an accuracy of 84% for
early diagnosis of AD. Within the past few years, neural
networks (NNs) have made their place amongst traditional
machine learning modules as they are more efficient, robust,
and precise in learning, finding, and recognizing patterns
within the data. However, as they are hungry for data so the
more the data are provided, the more improved results are
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derived. As a compliment, NN-based models can also
achieve better accuracy such as [20] which has reported an
accuracy of 83% for the identification of MCIp and MCls.
Another model with promising accuracy of 80% along with
the AUC of 84.6% presented by [21] used the combination of
CSF and NMs biomarkers along with NN. Getting cutting-
edge modeling techniques using deep neural networks
(DNNs) [22] shows more encouraging accuracy results of
94% using MRI, GS, and NMs. An additional corresponding
model is presented by [12] that has shown an accuracy of
81% using the longitudinal data of MRI, PET, CSF, and NMs.
Moreover, an extreme learning-based grading method [11]
that used MRI, PET, CSF, and GS claimed an accuracy of
84.7%. All of the above-mentioned single and multipredictor
models for early AD detection and MClp classification have
shown encouraging accuracy results using various diag-
nostic biomarkers, combined as well as disjointedly. The
diagnostic biomarkers are quite expensive and not reachable
for everyone, especially for low or middle-income societies.
Keeping this in view our research work is especially focused
on low or middle-income societies of developing countries
in which NMs are cheap and easily achievable. Obtaining
NM data are simpler as compared to MRI and PET scans
which require machine purchase, maintenance, and oper-
ational difficulties and costs. We have analyzed only the NM
data and applied a deep learning approach by using DNNs to
predict MCI to AD stage transition. An approach that is
motivated to foresee the disease transition as early as pos-
sible in MCI.

Our model calculates and estimates the future biomarker
value of the 3rd follow-up value in sequence using regression
and later on, the DNN classifier is used to classify the MCI
patients as MCIp or MCls. In the following sections, details
are provided about the proposed methodology, development
of the related architecture model framework, data, training,
and trends the same as the original. Furthermore, follow-up
readings of all biomarkers are subjected to a stage transition.

3. Materials

In this paper, we aimed to design a pipeline that accepts two-
timepoint readings of MCI patients, forecasts the next
timepoint reading, and uses the three readings to predict
whether the subject is MCIp or MClIs. The details of data
acquisition and organization is described below.

3.1. Data. Few organizations are engaged in the research
concerning AD. Amongst these organizations, Alzheimer’s
Disease Neuroimaging Initiative (ADNI) is the most suc-
cessful longitudinal multicenter study organization [24].
ADNI was launched in 2003 under the leadership of Dr.
Michael W. Weiner. The primary goals of ADNI were to
measure the progression of the MCI and AD of the patients
using brain imaging (MRI and PET), cognitive assessments
(NM), blood tests (GS), and CSF. ADNI has recruited the
subjects from about 50 sites across the USA and Canada.
Updated information can be seen on http://www.adni-info.
org. For our study, we have chosen longitudinal
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TaBLE 1: Studies using longitudinal data for early AD diagnosis.
Study Algorithms Demo NM MRI PET CSF GS Audio Accuracy
[11] Extreme learning machine Y Y Y Y 84.7
[12] Multimodal deep learning Y Y Y Y 81
[13] Auto regression Y Y 84.29
[14] PCA and posterior probability Y 84
[15] LR, extrapolation, and SVM Y 77.87
[18] LR, NB, EN, KNN, KNN, GTB, and SVM Y Y 84
[20] Deep sequential NN Y 83
[21] Rad-sig and SVM Y Y Y 80
[22] DNN Y Y Y 63.30
[23] CNN Y Y Y 94
[24] Regression and SVM Y 71.16
[25] WT and SVM Y 84.13
[26] ANN Y Y 66.67
neuropsychological measures (NMs) from the ADNI database TaBLE 2: Subjects demographics.
repository. The data were downloaded on June 8th, 2021. Our
gathered dataset for experimentation and technique valida- MClIp (n=96) MClIs (n=150)
tion consists of MCI subjects are those, were enrolled in Age 62.23 + 8.7 62.68 + 8.0
ADNI-1, ADNI-Go, and ADNI-2. The subjects have at least 1 Year Gender M/F 40/56 41/109
three consecutive annual follow-up readings available. MCI Education 1613 £ 2.5 147 + 2.7
stables (MClIs) are those subjects, who retain MCI stage at all
the available annual follow-ups, while MCI progressor
(MClp) are those, who converted to AD at any annual follow- | Normalized longitudinal Dataset (30%) A

up visit before the last follow-up visit. As a result, our final
dataset consisted of 96 MCIp and 150 MCIs subjects, each
with three consecutive annual follow-up readings. Groupwise
subject demographic for MCI patients converting to AD after
1 year are shown in Table 2. While class imbalance is inherent
in medical problems, the average ages of MCIp and MClIs
groups were almost equal. Male vs. female imbalance was
clearly noted in the MClIs group, while the year of education
for both groups was approximately similar.

4. Methodology

This work aims at using the previous two marker values to
predict the third in-line marker value and then classifying
the marker trajectory into one of the two classes: MCIP vs.
MCIs. For this purpose, we used cascaded deep learning
models as shown in Figure 1. Briefly, after marker ranking
and selection, normalization of data are performed. Het-
erogeneous DNN-based regression algorithms are employed
to forecast future marker values. The three-point values of
the markers are then used to classify an instance as MClp or
MCIs using a separate tuned DNN classifier. The prediction
classification results are then recorded in a 5-fold cross-
validation setup.

4.1. Marker Selection and Normalization. Sperling et al’s
research [7] study demonstrates that cognitive performance
is the most affected factor over time during MCI-to-AD. So
in this work, we are focusing on neuropsychological mea-
sures (NMs) only. Pereira et al. [27] identified the top 30 NM
features based on their effect to identify the disease effect on
the brain during MCI-to-AD conversion. We selected
20 NM features from the top 30 due to the availability of the
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FIGURE 1: System overview.

data. After running the T-test over the 20 NM features, they
have been ranked based on the P-values mentioned in Ta-
ble 3. The remaining 10 markers had a lot of missing values
and could not satisfy the thresh hold set by the T-test.

To obtain a fair longitudinal model, the multiscale data
are scaled to have values between 0 and 1. This removes the
bias in the data as the data have bigger and smaller values.
Each value of the individual feature is divided by the
maximum recorded value of that feature in the time domain,
hence scaling the data between 0 and 1 while preserving
longitudinal trends the same as the original. Furthermore,
follow-up readings of all biomarkers are subjected to a stage
transition.
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TaBLE 3: Neuropsychological measures ranking based on P-values.
Rank Features MCIp: M + SD MCIs: M + SD P-values
1 COPYSCOR 422 + 117 4.68 + 0.61 1.12E - 200
2 CLOCKSCOR 3.69 + 1.52 448 + 0.72 1.54E - 153
3 ADAS_Cog_Q1 554 + 1.54 4.16 £ 1.51 4.96E — 136
4 AVDELTOT 7.54 + 4.24 10.83 = 3.3 1.11E - 115
5 ADAS_Cog_Q4 7.98 + 2.24 524 + 2.65 2.21E - 107
6 TOTALI13 24.30 + 9.35 16.27 + 7.54 7.74E - 107
7 TRAASCOR 49.93 £ 29.19 41.01 £ 22.22 8.45E - 102
8 TOTALI11 16.29 + 6.7 10.17 + 5.12 4.62E - 94
9 AVTOTB 285 +1 3.79 + 1.64 6.32E - 93
10 LIMMTOTAL 592 + 4.35 9.68 + 4.49 7.68E — 85
11 ADAS_Cog_Q8 6.13 + 2.87 412 + 2.81 2.46E - 63
12 TRABSCOR 150.06 = 104.9 110.12 £ 61.21 1.74E - 49
13 LDELTOTAL 3.30 £ 4.64 7.52 £ 5.38 3.58E - 49
14 AVTOT6 218 £ 2.55 52 + 393 1.24E - 48
15 FAQ 13.40 + 6.31 3.26 + 418 1.60E — 32
16 AVDEL30MIN 1.07 £ 2.25 41 + 4.13 7.51E - 29
17 TRABERRCOM 1.34 + 1.68 0.68 + 0.99 1.05E - 09
18 TRAAERRCOM 0.10 = 0.33 0.07 + 0.28 2.05E - 07
19 TRAAERROM 0.33 £ 1.82 0.03 £ 0.33 1.22E - 06
20 TRABERROM 1.82 + 4.71 0.3 £ 1.54 0.805650742

4.2. Future Value Forecasting Using DNN Regressors. In this
paper, a DNN-based model is proposed that utilizes lon-
gitudinal embeddings to classify the class of progression. It
has two submodules (regressor and classifier). Regressor
takes the two known consecutive values of a biomarker
feature from the MCI subject and forecasts the third future
value of that biomarker feature. Two regression models are
trained: one for MCIp and another for MCIs. The
hyperparameter tuning process is performed in an inner
loop using 3-fold cross-validation. Regression estimates
two possible future values,namely, (1) as MCIp and (2) as
MCls.

To choose the most suitable future value from the two
possible values recorded, proximity measures are used. Let i
be the sample having two known consecutive annual values
whose next value, v; is to be forecasted.

i=v],V,,Vs. (1)

The two possible values for v; using MCIp and MCIs
regressors can be f, and f. Average values of third marker
value from the training data of MCIp and MCIs are set as a
benchmark i.e., MCIp(avg) and MCI, (avg). The final se-
lection of v; is carried out by subtracting the respective
forecasted measures from their group averages and selecting
whichever is closest.

ffs=MCI/(avg) - f,,
if: ffs<ffpr vs=ffo

ffp:MCIp(avg)—fp, v = ff
»

else,
(2)

The chosen value is attached to the previously available
two-year data that becomes a three-year time-domain tra-
jectory window. Finally, it is ready to be served to the
classifier for the final class predictions.

4.3. Classification of MCIp vs. MCIs Using DNN Classifier.
Classification is the last phase of the model architecture to
identify the class of the processed subject if it belongs to
MClIp or MClIs. All the patients labeled as 1 by the classifier
belong to the MCIp group, these are the patients who are
expected to be progressing in the AD stage in the coming
year. MClIs, on the other hand, are labeled as 0, and they are
expected to be stable and will not progress to the AD stage in
the coming year. It has also been substantiated that the
classifier’s performance has been optimized by applying
hyperparameter tuning using 3-fold cross-validation. The
best selected activation functions through hyperparameter
tuning along with their equations are mentioned above in
Table 4.

5. Results and Discussions

We evaluate our system in two categories: (1) accuracy of
future value forecasting and (2) accuracy of MCip vs. MCIs
classification. For accuracy of future value forecasting, we use
the mean absolute error (MAE) value which is calculated as
the mean absolute error between the actual predictor reading
from the dataset and the value forecasted by our system.
Whereas for classification performance evaluation, we employ
accuracy, area under the ROC Curve (AUC), sensitivity, and
specificity. We conducted these evaluations at both training
and validation stages. Our data analysis is based on NMs
biomarker’s data taken from ADNI. Moreover, the perfor-
mance measure is recorded by observing the results of ground
truth (GT) values, and the results provided by our experiment
using the “Future Value Forecasting” algorithm. GT is the
provided benchmark data metrics by the ADNI in which they
have classified the real-world data into MClIp vs. MClIs (used
for training). The following sections consult and describe the
observation recorded in the experiment.
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TABLE 4: Best chosen activation functions and optimisers.

Activation function

Resulting equation

If x > 0: return (scale * x), if x <0: return (scale * alpa * (exp(x) — 1

Selu Where alpha = 1.67326324 and scale = 1.05070098
Elu x if x>0 and alpha * (exp(x) — 1) if x<0
ReLU y = ax where x<0
Adam m,, = E[X"]
RMSProp 041y = 0, — 1/ (VE[g?] + € )g,
Sigmoid 1/(1 + exp (-x))
0.4
035
03
0.25
< 02
0.15
0.1
0.05
0 —
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
No. of feature
GT-MCIp
GT-MCIs

Forecasted Data

FIGURE 2: Mean absolute error (MAE) recorded for the best-performing regression model.

5.1. Biomarker Ranking Observations. While ranking the
biomarkers we set 0.5 as the significant threshold value of the
T-test. So we come up with 19 significant features out of 20
selected NM features. According to the p-value, the top of
the ranked features is COPYSCOR with the p-value of
1.12E — 200, and the last ranked feature is TRAAERROM
with the p-value of 1.22E — 06. The feature TRABERROM
with a p-value of 0.8057 is ignored and has not been included
for analysis as it does not satisfy the significance threshold of
0.5. Table 3 could be observed to see the ranking details.

5.2. Regression Performance Analysis for Future Value
Forecasting. The regression module plays the primary role
of precisely predicting the future values which is our primary
objective. Our hypothesis says that the forecasted values are
accurate enough to help predict the class of the subject at a
future time point (one year ahead). The comparative results
have been recorded as mean absolute error (MAE).

Figure 2 shows the regression performance at ground
truth for MCIp (GT-MClIp) data, ground truth MCIs (GT-
MClIs), and finally the forecasted data MAE. The comparison
concludes that the MAE is quite abnormal for GT-MClp,
GT-MClIs, and also for the forecasted data. GT-MCIp comes
up with more of the MAE because the subject quantity is less
than the GT-MCIs. Whereas the model has shown balanced
MAE results amongst GT-MCIp and GT-MClIs. Although,
there are features for which the regression model has shown
even lesser MAE but we have chosen a fully tuned model
with 17 features based on the observation of the classification
results. The observation shows that the model has generated
results with the MAE of 0.16 for GT-MClp, 0.12 for GT-

MClIs, and 0.13 for the forecasted data, chosen through our
closest value selection algorithm with 17 features.

5.3. Classification Performance Analysis. Classification per-
formance can be perceived in Figure 3. The plots provide the
comparative performance between the model accuracy on
GT data, the data available as the ground truth, and the
forecasted data which is gathered by applying the regression.
We can observe that initially, the accuracy is quite low but
adding the significant feature one by one shows the increase
in the accuracy. The trend tends to increase till 17 features
but after that, the accuracy began to come downwards. This
behavior of the model accuracy is due to the addition of less
significant features.

However, the classification performance power of our
system is higher with 17 NM features which is 87%. Whereas
our model has shown an accuracy of 87.4% on GT data
which are not a big difference.

The proposed methodology delivers the maximum AUC
of 90% for GT data. However, the AUC with the forecasted
data selected through our forecasting selection algorithm is
even better that is 92%. Comparative observation between
GT-AUC and AUC on forecasted data can be seen in
Figure 4(a). Finally, the sensitivity and specificity of our
proposed model can be observed in Figure 4(b). The pro-
vided sensitivity and specificity results are plotted com-
parative to GT data and the forecasted data. These plots show
that the classification model has shown a sensitivity of 68%
and specificity of 92%. Here, we have less sensitivity because
we had less data of MCIp. Figure 5 shows the average
difference between the accuracy and accuracy, AUC,
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sensitivity, and specificity between GT data and forecasted
data. These details show that the accuracy presented by the
proposed system using NM is quite better than mentioned in
the recent study [28] which is 84.7% using NMs.

6. Conclusion

The proposed research is especially focused on providing an
effective, economical, and early diagnosis of Alzheimer’s
disease. Our proposed model uses NMs time series data to
detect the disease at its MCI stage when mild physical and
clinical symptoms are about to show up. This is a DNN-
based model that has accomplished the MAE of 0.13 for the
forecasted data. The classifier has predicted the stage of the
patients for next year based on previously available NMs
data of three years with an accuracy of 87% and AUC of 92%.
These compiled up results are recorded with 17 NMs data
features but the model could be expected to show improved
performance by trying out the data features with various
combinations for computation. This developed system can
be used as a mild stone for future investigations and di-
agnostic tools for the hospitals and organizations that intend
to work on the early detection of AD and giving care to
patients accordingly. This detection can help physicians to
plan the early treatment of the patients to slow down or
perhaps block the AD progression. So the patients could
spend a healthier and longer life than the expectation.
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