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The worldwide demand for oil has been rising rapidly for many decades, being the first indicator of economic development. Oil is
extracted from underneath reservoirs found below land or ocean using oil wells. An offshore oil well is an oil well type where a
wellbore is drilled underneath the ocean bed to obtain oil to the surface that demands more stability than other oil wells. The
sensors of oil wells generate massive amounts of multivariate time-series data for surveillance engineers to analyze manually and
have continuous insight into drilling operations. The manual analysis of data is challenging and time-consuming. Additionally, it
can lead to several faulty events that could increase costs and production losses since the engineers tend to focus on the analysis
rather than detecting the faulty events. Recently, machine learning (ML) techniques have significantly solved enormous real-time
data anomaly problems by decreasing the data engineers’ interaction processes. Accordingly, this study aimed to utilize ML
techniques to reduce the time spent manually to establish rules that detect abnormalities in oil wells, leading to rapid and more
precise detection. Four ML algorithms were utilized, including random forest (RF), logistic regression (LR), k-nearest neighbor
(K-NN), and decision tree (DT). The dataset used in this study suffers from the class imbalance issue; therefore, experiments were
conducted using the original and sampled datasets. The empirical results demonstrated promising outcomes, where RF achieved
the highest accuracy, recall, precision, F1-score, and AUC of 99.60%, 99.64%, 99.91%, 99.77%, and 1.00, respectively, using the
sampled data, and 99.84%, 99.91%, 99.91%, 99.91%, and 1.00, respectively, using the original data. Besides, the study employed
Explainable Artificial Intelligence (XAI) to enable surveillance engineers to interpret black box models to understand the causes of
abnormalities. The proposed models can be used to successfully identify anomalous events in the oil wells.

1. Introduction

Oil is one of the most valuable energy sources and is con-
sidered the first indicator of economic development. Glob-
ally, oil demand has rapidly increased as it is used in various
applications, such as heating buildings and generating
electricity. According to OPEC, global oil demand will grow
by 4.15 million barrels per day in 2022 [1]. Oil wells are deep
narrow holes that combine multiple sensors, pneumatic,
hydraulic, and mechanical systems to bring oil to the surface.

An offshore oil well is an oil well type where a borehole is
drilled under the seabed to bring oil to the surface, which
requires more stability than other oil wells [2]. The sensors of
oil wells produce tremendous amounts of multivariate time-
series data. Presently, surveillance engineers manually ana-
lyze the generated data on a calendar basis, in which one
engineer might be responsible for hundreds of wells. The
exhaustive data analysis is causing engineers to put more
effort and time into investigating the data rather than
concentrating on more critical situations [3]. Consequently, a
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long lag between the occurrence of the problem and the
detection allowed bypassing critical faulty, putting oil ex-
ploration and refining at risk for disruptions and heavy losses
that can affect industries worldwide. Accordingly, detecting
adverse events in oil and gas wells can help prevent pro-
duction downtime, environmental accidents, and human
casualties and reduce maintenance costs.

E. Oort et al. [4] developed a way to analyze the massive
amount of data produced by the sensors on the wells more
efficiently and accurately, called Automatic Rig-Activity
Detection (ARAD). ARAD operates by detecting the drilling
processes using the real-time data generated from the rig.
However, ARAD is incapable of perceiving the abnormal
events, as it classifies the anomaly activities as “unknown.”
However, these situations must be categorized as anomalous
to aid engineers in understanding the performance of wells
and examine the sources of these abnormalities for future
prevention to diminish the possibility of severe injuries, loss
of life, economic loss, or environmental pollution. Hence,
employing recent technologies in this field is crucial for
reducing its severe impact.

Machine learning (ML) gained wide attention by pro-
viding various robust tools showing promising results in
multiple applications. Anomaly detection is one of the most
prevalent problems solved by ML techniques. Moreover, the
introduction of industrial 4.0 has completely transformed
the whole process by integrating the Internet of Things
(IoT), automated synchronized distributed data collection
platforms like cloud computing, real-time data analysis, etc.
The colossal amount of data generated using various sensors
in several domains has been successfully analyzed and
utilized for prediction in different fields using ML. Similarly,
the ML techniques have also shown significant outcomes in
the oil and gas industry [5].

Vargas et al. [6] provided a public dataset containing eight
types of undesirable events of the offshore oil well that can be
fed into an ML algorithm to automate the adverse event
detection process. The faulty events include the abrupt in-
crease of basic sediment and water, spurious closure of
downbhole safety value (DHSV), severe slugging, flow insta-
bility, rapid productivity loss, quick restriction in production
choke (PCK), scaling in PCK, and hydrate in the production
line. In this study, the abnormal events were combined with
being considered the positive class, whereas the normal event
was treated as the negative class. The dataset utilized suffers
from class imbalance issues. Accordingly, two experiments
were conducted for the prediction of rare adverse real-world
events in oil wells. The first experiment trained four ML al-
gorithms, including random forest (RF), logistic regression
(LR), k-nearest neighbor (K-NN), and decision tree (DT), with
the original data, whereas the second experiment trained the
aforementioned algorithms using an upsampled data. The
empirical results demonstrated promising outcomes, where
RF achieved the highest accuracy, recall, precision, F1-score,
and AUC of 99.60%, 99.64%, 99.91%, 99.77%, and 1.00, re-
spectively, using the sampled data, and 99.84%, 99.91%,
99.91%, 99.91%, and 1 using original data.

Despite the robustness of ML algorithms in classification
problems, it fails to provide informatics for nontechnical to
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deduce the models’ classification behavior, limiting the
possibility of deploying it in real-time applications. ML
models are considered black box, in which their results are
not explainable by nature. Consequently, Explainable Ar-
tificial Intelligence (XAI) gained wide popularity among
researchers who started adopting it with ML models to
demonstrate interpretability [7]. XAI provides insight into
how a result was delivered to induce trustfulness by an-
swering “wh” questions. Hence, it is believed that it can
prevent life-threatening faults. This study used global sur-
rogate, Shapley Additive Explanation (SHAP), and Local
Interpretable Model-Agnostic Explanations (LIME) to in-
terpret the black box models. The contribution of the study is
as follows:

(i) Introduce a proactive model for detecting anomaly
events in oil wells.

(if) Employ XAI tools to assist surveillance engineers in
understanding the causes of anomaly events. As per
the authors” knowledge, no study has implemented
XALI to identify anomaly events in oil wells.

(iii) Achieve better results than the benchmark studies
that utilized the same dataset with lower complexity
models.

The rest of the study is organized as follows: Section 1
provides a detailed review of related literature. Section 2
describes the materials and methods used, which includes a
description of the dataset, the preprocessing techniques
applied, and a technical description of the utilized ML al-
gorithms. The experiment setup and results are explained in
Section 2, whereas Section 2 represents the XAI. A brief
conclusion with recommendations is provided in Section 3.

2. Review of Related Studies

In the industrial environment, increased demands for better
functional safety, proficiency, supremacy, and energy effi-
ciency necessitated classifying and detecting undesirable and
unwanted oil wells to prevent the losses of expenses and
collisions. Some recent studies on unpleasant events and
locating oil reservoirs using ML have been discussed below
in chronological order.

Al-Fadhli and Zaher [8] aimed to develop an automated
monitoring and controlling system for oil refineries to re-
place the traditional techniques and enhance their perfor-
mance. The model constantly assembles data from oil tanks
and pipelines and performs early detection for any possible
faults. LabVIEW and LabJack were used to implement the
proposed system. The data were collected from sensors
plugged in oil tanks and pipelines. The results proved the
system’s success in providing real-time and precise infor-
mation about the oil tanks and pipelines.

Nwachukwu et al. [9] mentioned that the injector well
location could predict the reservoir response using ML. The
slightest change to the injector well location might signifi-
cantly impact the reservoir response. As a result, they
proposed well-to-well connectivity as a predictor variable to
enhance the accuracy. The dataset was collected from
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numerical reservoir simulations, using different training
sizes to test how it will impact the accuracy. The study
employed the eXtreme Gradient Boosting (XGBoost) al-
gorithm and evaluated its performance using the correlation
coefficient (R?) value with different training data sizes. The
empirical results demonstrated that all the R* scores were
higher than 0.85, indicating that the predictor variable
improved the well-to-well connectivity model performance.

In another study, Vargas et al. [6] used a web application
programming interface (API) simulator, which runs from a
web client or as a hardware-in-the-loop (HIL) simulator from a
control system environment with programmable logic con-
trollers (PLCs). The authors aimed to test the oil well’s data
anywhere in the world without the need to install software, as
the HIL functionality allows a workflow from early production
for commercial pilots. In this study, the lack of a practical and
scalable research environment for automated drilling systems
slows advanced technological requirements and reduces the
industry’s ability to decrease costs and mitigate the carbon
footprint. The authors suggested developing a drilling system
that enhances the workflow to ensure decision-makers’ com-
petence in complex and high dynamic process operations.

Bronstad [10] implemented condition-based monitoring
(CBD) system to detect and classify undesirable events in
offshore oil wells using the 3W database originated by
Petrobas. The proposed system achieved an overall accuracy
of 90% in conducting three experiments, where two of them
were associated with classification, and another was related
to feature extraction.

On the other hand, Ghorbani et al. [11] predicted the oil
flow using the flow affecting variables around orifice meters.
The dataset was collected from the Cheshmeh Khosh oil
field, including 1037 data records. They used adaptive neuro-
tuzzy inference system, least squares support vector machine
(SVM), multilayer perceptron (MLP), and genetic algorithm
(GA). The results suggested that all the algorithms could
predict the flow effectively, where MLP achieved the best
results with a root mean square error (RMSE) of 8.70.

M. Marins et al. [12] proposed a system that utilized ML to
detect and classify faulty events in oil and gas wells and lines as
early as possible to avoid potential risks. The study used the 3W
database developed by Petrobras, consisting of 2000 events.
Moreover, the Bayesian approach and RF classifier were used to
identify the faults and classify them into 9 classes by considering
class 0 as the normal event and the remaining classes from 1 to 8
as different types of faults. In order to evaluate the proposed
system’s performance, the researchers conducted three experi-
ments in various situations. The final result proved the proposed
method successfully detected the faults with 94% accuracy.

In another study, Alsaihati et al. [13] proposed an in-
telligent system for predicting drilling torque profiles con-
tinuously to alert the crew in case of any operational
accidents ahead of time. The authors collected the dataset by
surface real-time transmitter sensors positioned at different
locations within the rig site. Three ML models were trained,
including RF, artificial neural network (ANN), and func-
tional network. Results indicated that RF achieved the best
results with an average absolute percentage (AAPE) of 1.46 and
R* 0f 0.99 using the training set, whereas it achieved an AAPE

of 3.98% and R” of 0.93 using the testing set. Additionally, the
offered system could alert the crew 9 hours and 7 hours before
incidents took place in Well-1 and Well-2, respectively.

Furthermore, Aljubran et al. [14] developed a DL-based
model for early predicting fluid lost circulation incidents
(LCIs) in drilling operations. The dataset utilized in their
study was based on an analysis of historical drilling data
derived from standard drilling rig equipment and apparatus.
Three DL models were utilized, including RF, ANN, and long
short-term memory (LSTM), with standard and window
normalization. The results indicated that the CNN model
with window normalization attained the best results with an
accuracy of 92.55%, precision of 87.34%, recall of 73.40%, and
Fl-score of 79.77%. Additionally, the authors claimed that
the proposed model is developed in such a way that it can be
retrained with new sensor data and can be employed for the
early prediction of other abnormal drilling events.

De Salvo Castro etal. [15] utilized the 3W Petrobras dataset
and employed unsupervised techniques, namely control chart
with three standard deviations and a fuzzy c-means algorithm
to classify faulty events in oil wells. Additionally, the authors
used the RF algorithm to evaluate the performance of the
unsupervised models. The results indicated that the control
chart outperformed fuzzy c-means in terms of sensibility with a
minor difference. Furthermore, the results revealed that RF
achieved a specificity and sensitivity of 100% and 99.91%,
respectively, using the cohort chart, whereas it attained 99.98%
and 94.01% using the fuzzy c-means.

More recently, Gurina et al. [16] proposed an algorithm
to forecast drilling accidents using a large multivariate time-
series mud telemetry dataset from Russia containing 6
drilling accidents. The authors utilized clustering and
wavelet transform to convert the time-series data into a bag-
of-features representation. The results demonstrated that
70% of the 6 drilling accidents could be classified using the
proposed model with a false positive rate of 40%. The au-
thors aim to reduce their false positive rate in the future.

Furthermore, Alharbi et al. [17] aimed to compare the
performance of 6 ML algorithms in identifying anomalies in
wells using two datasets. The ML algorithms included K-NN,
RF, SVM, LR, DT, and rule fit classifier (RFC). The empirical
results claimed that RFC achieved the highest results when
trained using the first dataset with an F1-score of 0.92 and a
complexity of 0.5. On the other hand, RF attained the best
results when trained using the second dataset with an F1-
score of 0.84 and a complexity of 0.4.

In another study, Alsaihati et al. [18] proposed an ML-
based solution using the mechanical surface parameters for
forecasting loss of circulation rate (LCR) during drilling
based on mechanical surface parameters and active pit
volume measurements. The authors collected the data from
seven wells experiencing extreme or partial LCR. Three ML
classifiers were utilized, including SVM, RF, and K-NN.
Results indicated that K-NN attained the highest outcomes
with an R* and RMSE of 0.90 and 0.17, respectively.

Chengetal. [19] proposed a model to predict an oil depot’s
abnormal tank liquid level by analyzing its nonperiodic time-
series data. Two datasets were utilized in this study to train two
convolutional autoencoder algorithms, including recurrent



neural network (RNN) and LSTM encoders. The empirical
results demonstrated promising results with an accuracy of
98% and an F1-score of 82%.

According to the conducted literature, few research
papers focused on classifying undesirable events in oil wells
with considerable robust results using supervised ML al-
gorithms. It is revealed that most of the reviewed studies
utilized the Petrobras 3W dataset provided by Vargas et al.
[6]. M. Marins et al. [12] achieved an overall accuracy of 94%
in detecting faults, whereas Bronstad [13] achieved the
highest accuracy of 90%. Conversely, De Salvo Castro et al.
[15] employed unsupervised techniques to enhance the
model’s performance, where they achieved an overall
specificity and sensitivity of 100% and 99.91%, respectively,
using the cohort chart. Accordingly, this study aimed to
explore the robustness of employing supervised ML algo-
rithms to classify normal and undesirable events using the
Petrobras 3W dataset. Additionally, it intended to eliminate
the ambiguity associated with black box models by
employing XAI techniques.

3. Material and Methods

This section contains the details related to the material and
methods used in this study. The time-series dataset utilized
in this study was collected using oil well sensors. The col-
lected data were cleaned by carrying out several pre-
processing steps. After applying the preprocessing steps, the
Synthetic Minority Oversampling Technique (SMOTE) was
applied to handle the data imbalance issue. Two experiments
were conducted, that is using the original and upsampled
datasets. Both the datasets were divided into training and
testing using holdout (70-30). Four models were trained,
namely RF, K-NN, LR, and DT. Next, the models were
optimized using the GridSearchCV method. The models
were evaluated in terms of accuracy, precision, recall, F1-
score, AUC, and ROC. Finally, XAI was performed for the
best-performing model to generate an explanation of the
results for nontechnicals. Figure 1 indicates the methodol-
ogy of the proposed study.

3.1. Description of the Dataset. This study utilized the 3W
dataset developed by Petrobras [6], containing approxi-
mately 1984 events. The 3W database contains three dif-
ferent types of undesirable events, namely real, simulated,
and hand-drawn, and 9 multivariate time series, namely
normal and abrupt increase of basic sediment and water,
spurious closure of downhole safety value (DHSV), severe
slugging, flow instability, rapid productivity loss, quick re-
striction in production choke (PCK), scaling in PCK, and
hydrate in the production line. Real events are the ones that
happened in Petrobras in actual wells throughout the oil
production. The utilization of simulated and hand-drawn
events is essentially meant to reduce the imbalance of the
dataset initially created by real events. The distribution of the
samples per category is shown in Figure 2.

The dataset also includes time-series data with 8 tags
obtained from 8 sensors, as shown in Table 1.
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3.2. Preprocessing. The 3W database of hand-drawn, sim-
ulated, and real instances contained multiple missing values,
raising the need to apply preprocessing techniques to pre-
serve the reliability of the final results. The target attribute in
the dataset consisted of 9 integer values ranging from 0 to 8,
each intended for a type of undesirable event. The dataset
consists of 597 normal events and 1387 undesired events.
The proposed study attempts to discriminate between the
normal and undesired events without discriminating among
the type of undesired oil well events. Various funct-
ions including “class_file_generator,” “get_instances_with_
undesirable_event,” “load_instance,” “load_downsam-
ple_instances,” and “extract_samples_train” were applied in
order to preprocess the data and remove missing values.
Afterward, some statistical measures such as mean, median,
variance, standard deviation, maximum, minimum, and
root mean square were applied to the attributes. Initially, the
dataset contained 41 attributes. After computing the sta-
tistical measures, duplicate records were removed, and
features with a correlation above 0.8 with other available
features were eliminated. Later, the StandardScaler pre-
processing technique provided by the Sklearn learn library
was performed. After applying the preprocessing techniques,
the Synthetic Minority Oversampling Technique (SMOTE)
with a random_state value of 42 was applied to balance the
classes. The dataset finally contained 14 features and 5180
instances.

3.3. Description of the Classifiers. The study employed four
different supervised ML algorithms to predict the occur-
rence of undesirable events in oil wells. The target class label
was in binary format, indicating the existence of the ab-
normal event. The subsections below provide a theoretical
background of the utilized algorithms.

3.4. Decision Tree. A decision tree (DT) is considered a
supervised ML technique employed in both classification
and regression problems. It is regarded as one of the simplest
ML algorithms that can be easily interpreted and understood
compared to different algorithms [20]. DT follows well-
defined rules presented in a tree-like structure, including the
root interior node, branches, and leaf node. The root node
represents the attribute with the highest information gain,
and the branches denote the attributes’ values, whereas the
leaf node represents the outcome. A DT is constructed by
performing a greedy search to find the feature with the
highest information gain. To calculate the information gain,
the entropy is first computed. The following equation shows
the formula for calculating the entropy of each feature,
where P, represents the positive samples and P, represents
the negative samples in S [21].

Entropy (s) = —(leogsz + PylogzPy). (1)

The following equation shows the formula for calculating
the information gain of each feature, where V (A) represents
all possible values for feature A and S, is a subset of S, and the
feature A has a value v [21].
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S
Information Gain (S, A) = Entropy (S) - Z uEntropy(Sv).
veV (A)

(2)

The hyper-parameters selected for this algorithm for the
original and SMOTE data are represented in Table 2.

3.5. Random Forest Classifier. Random forest (RF) is a
procedural ML algorithm based on collective learning,
which is flexible and easy to use. It combines numerous

TaBLE 1: The name, description, and measuring units of the tags in
the 3W database.

Name Description Unit

P-PDG Pressure at the permanent downhole gauge. Pa

P-TPT Pressure at the temperature and pressure Pa

transducer.

T-TPT The temperature at the temperature and °C
pressure transducer.

gé\l/iON_ Pressure upstream of the production choke Pa

T-JUS- Temperature downstream of production °C

PCK choke.

P-JUS- Pressure downstream of gas lift choke Pa

CKGL ’

T-JUS- . 0

CKGL Temperature downstream of gas lift choke. C

QGL Gas lift flow rate. m?/s

decision trees that result in a forest of trees, resulting in
improved results. The advantages of using RF include
handling a significant number of missing values by two
approaches, either replacing them with the median or the
mean by proximity weight. On the other hand, the disad-
vantage of using RF includes its low computational speed in
generating the predictions due to the decision tree varieties
[22]. The following equation represents the voting formula
used by the RF classifier to generate the final result, where x



TaBLE 2: Optimal hyper-parameters of decision tree.
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TaBLE 3: Optimal hyper-parameters of random forest.

Hyper-parameter Value Hyper-parameter Value
max_features Auto Criterion Entropy
ccp_alpha 0.001 max_depth 8
Criterion Entropy max_features Auto
max_depth 9 n_estimators 30
Splitter Best Random state 3
Random state 3

is the data point, C; is the result of i*" sample and x, and ris
the computed result [23].

V= mode{C, (x),C, (x),...C, (x)}. (3)

The hyper-parameters selected for this algorithm for the
original and SMOTE data are represented in Table 3.

3.6. K-Nearest Neighbor. K-nearest neighbor (K-NN) is one
of the simplest statistical-based nonparametric ML algo-
rithms used in classification and regression problems. K-NN
is considered a lazy algorithm, as it does not train on the
supplied data but stores the training samples and classifies
the new instances based on a chosen distance measure.
Before applying the distance measure, the K value, which is
referred to as the number of nearest neighbors, is specified.
The unknown label is then classified based on the most often
appearing class around the assigned K value [24]. The ad-
vantage of using K-NN includes its simplicity and ease of
use. However, it is limited to its low computational speed
with large datasets since it needs to calculate the distance
between the unknown point and all the known points. The
hyper-parameters selected for this algorithm are represented
in Table 4.

3.7. Logistic Regression Classifier. Logistic regression (LR),
regardless of its name, is a classification model as opposed to a
regression model. LR is a statistical ML technique that em-
ploys a logistic function to foresee the probability of occur-
rence of a binary event. The logistic function is a sigmoid
equation that accepts all real values in the 0 and 1 range [25].
Additionally, it can deal with quite a few variables, either
categorical or numerical. The sigmoid function is as follows:

1
1+e

o(x) = (4)

—x*

Correctly classified normal and undesirable well events

TaBLE 4: Optimal hyper-parameters of k-nearest neighbor.

Data Hyper-parameter Value
. Metric Minkowski
Original data n_neighbors ]
SMOTE data M.etrlc Manhattan
n_neighbors 1

Compared to other supervised classification techniques,
such as ensemble classifiers or kernel SVM, LR is com-
paratively fast. However, it suffers to some extent in its
accuracy, as it is much too simplistic for dealing with
complex relationships between variables. The hyper-pa-
rameters selected for this algorithm for the original and
SMOTE data are represented in Table 5.

3.8. Performance Measure. The final models were evaluated
using five evaluation metrics, namely accuracy, precision,
recall, F1-score, area under the curve (AUC), and receiver
operating characteristic (ROC). Initially, confusion matrices
evaluate the models in terms of true positive (TP), false
positive (FP), true negative (TN), and false negative (FN),
where:

(i) TP presents the number of correctly classified
records as the presence of any undesirable event.

(ii) FP presents the number of incorrectly classified
records as the presence of any undesirable event.

(iii) TN presents the number of correctly classified
records as normal.

(iv) FN presents the number of incorrectly classified
records as normal.

Accuracy represents the number of correctly classified
undesired and normal events to the number of oil well events
in the dataset. It is expressed as follows:

(5)

Accuracy =

Precision is the percentage of the correctly classified
undesired well events to the sum of classified undesired well
events. It is represented as follows:

Correctly classified undesirable well events

Precision = X
Total number of classified undesirable well events

(6)

Total number of well events in the dataset

Recall is the percentage of correctly classified undesired
well events to the number of undesired oil well events in the
dataset. It is represented as follows:

Correctly classified undesirable well events
Recall =

Total number of undesirable well events in the dataset’

(7)
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TaBLE 5: Optimal hyper-parameters of logistic regression.

Hyper-parameter Value
Penalty 12

C 60
Solver Liblinear
Random state 3

Similarly, F1-score represents the weighted average of
the precision and the recall and is represented mathemat-
ically as follows:

2 x (Precision x Recall)

F1 — Score = — . (8)
Precision + Recall

3.9. Experimental Setup and Results. The proposed models
for predicting the presence of undesirable events in oil wells
were implemented using Python programming language
(ver. 3.10.0). Several libraries were used, including Sklearn,
Numpy, Pandas, and Matplotlib. Sklearn library was mainly
used to split the data with a random_state of 52 into a
stratified ratio of 70 : 30 to train and test four ML algorithms,
including decision tree, random forest, k-nearest neighbor,
and logistic regression. Additionally, GridSearchCV was
utilized to obtain the optimal hyper-parameters for each
model using the original and upsampled training data with
stratified 10-folds cross-validation and random_state value of
15. The final models were evaluated using five evaluation
metrics, namely accuracy, precision, recall, F1-score, and area
under the curve (AUC), and also using confusion matrices.

This section represents the results attained using the
trained models. A comparison between the results obtained
while training the models with the original and upsampled
datasets is discussed in Table 6 in terms of five performance
measures, namely accuracy, precision, recall, F1-score, and
AUC.

The table indicates a comparative performance between
the models trained using the original and SMOTE datasets.
Opverall, the precision rates were better in the SMOTE data
than in the original dataset, whereas the recall rates were
better using the original dataset. It is revealed that the LR and
RF classifiers performed better when trained using the
original data. Conversely, DT and K-NN attained higher
accuracy scores when trained using the SMOTE dataset.

To be more specific, the table suggests that RF out-
performed all classifiers using the SMOTE dataset in terms
of accuracy, recall, F1-score, and AUC, achieving an ac-
curacy, recall, and Fl1-score of 99.60%, 99.64%, and 99.77%,
respectively, followed by K-NN, which attained accuracy,
recall, and Fl-score of 99.36% and 99.37%, and 99.64%,
respectively. LR achieved the lowest accuracy among the
other classifiers at 95.74% using the SMOTE data. Despite
the unsatisfactory performance of LR in terms of accuracy, it
attained the highest precision of 100%. Additionally, DT
achieved the same precision rate of 100%. However, with the
original data, RF achieved the highest outcome with all the
measures, attaining accuracy, precision, recall, F1-score, and
AUC 0of 99.84%, 99.91%, 99.91%, 99.91%, and 1, respectively.

Similar AUC was achieved for both the original and SMOTE
data for all the measures for RF.

To visualize the attained results more precisely, the
confusion matrices for all the four classifiers using the
SMOTE data are represented in Figure 3, and the confusion
matrices for the models trained using the original dataset are
shown in Figure 4. Overall, the best results were achieved
using the original dataset.

The confusion matrices reveal that the difference in FPs
between the developed models is insignificant, whereas the
difference in FNs is considerable. Moreover, the matrices
conclude that the best algorithm for predicting undesirable
events is the RF model since it attained the lowest FNs of 1,
followed by the DT model, which missed the classification of
5 instances as undesirable events using the original data. On
the other hand, using the SMOTE data, it is observed that RF
is the best model with 4 FNs, followed by K-NN with 7 FNs.
Besides, RF and LR are the best models in terms of predicting
the normal events correctly, as they have the lowest FP rates
using the original data, whereas LR and DT are the best using
the SMOTE data. Since it is more crucial to predict unde-
sirable events correctly than normal events for their serious
negative impact, it is more important to consider low FN
values. Accordingly, it is concluded that RF achieved the best
results among all other classifiers using the SMOTE and
original dataset.

To further evaluate the effectiveness of the models and
support the conclusion of considering RF the best among all,
the area under the receiver operating characteristics
(AUROC) or ROC curves were constructed to assess the
discrimination ability of the classifiers with varying thresh-
olds using original and SMOTE data. Figure 5 represents the
ROC curve of all algorithms using the SMOTE data, whereas
Figure 6 illustrates the ROC curve of all algorithms using the
original data.

Figure 5 shows that all the models provide perfect
classification, where RF achieved the highest AUC of 1.000,
followed by K-NN attaining an AUC of 0.993. Although DT
achieved higher accuracy than LR, it is revealed that LR
achieved a higher AUC of 0.992 than DT, which achieved an
AUC of 0.976. Besides, Figure 6 points out that DT per-
formed significantly better when trained using the original
data than the SMOTE data, where it achieved an AUC of
0.991. However, the discrimination ability of LR and K-NN
was lower using the original data, where they attained an
AUC of 0.990 and 0.982, respectively. It is also proved that
RF attained the best results with an AUC of 1.000.

The extreme weather fluctuations in offshore oil wells
zones may result in severe disruption in the installed com-
ponents, increasing the possibility of failure. Additionally, the
case of water and natural gas forming a crystalline compound
can halt the production for several days. To date, the oil and
gas industry lacks accurate measurement instruments to
automatically detect the occurrence of undesirable events,
resulting in severe injuries, loss of life, economic loss, or
environmental pollution [6]. Compared to the benchmark
studies, our proposed model achieved higher accuracy than
M. Marins et al. [12], who attained an overall accuracy of 94%
in detecting faults, and Bronstad [13], who reached the
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TaBLE 6: The final results obtained with the optimal hyper-parameters.

Dataset Classifier

Accuracy (%) Precision (%) Recall (%) Fl-score (%) AUC
LR 97.99 97.92 99.82 98.86 0.99
Oricinal dataset RF 99.84 99.91 99.91 99.91 1
& DT 99.39 99.55 99.73 99.64 0.99
K-NN 99.20 99.46 99.64 99.55 0.99
LR 95.74 100 95.23 97.56 0.992
RF 99.60 99.91 99.64 99.77 1
SMOTE dataset DT 98.96 100 98.83 99.41 0.998
K-NN 99.36 99.10 99.37 99.64 0.993
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FiGure 3: Confusion matrix with the SMOTE data: (a) LR, (b) RF, (c) DT, and (d) K-NN.

highest accuracy of 90%. However, the proposed model
achieved an accuracy lower than De Salvo Castro et al. [15],
who employed unsupervised techniques to enhance the
model’s performance, achieving an overall specificity and
sensitivity of 100% and 99.91%, respectively, using the cohort
chart. Although De Salvo Castro et al. [15] reached higher
accuracy, unsupervised algorithms are known to be more
complex than supervised learning models. Moreover, they
are considered to be less reliable and trustworthy. In this
study, the proposed RF model achieved promising results

that can significantly reduce the possibilities of the eight
previously mentioned abnormal events in oil wells. There-
fore, deploying the proposed model can play a vital role in
detecting and reducing the likelihood of an undesirable
occurrence in oil wells.

3.10. Explainable Artificial Intelligence. Machine learning
(ML) is considered the next Internet, in which intensive
work has been done to introduce its applications in several
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FiGure 4: Confusion matrix with the original data: (a) LR, (b) RF, (c) DT, and (d) K-NN.

domains. However, ML algorithms remain a mystery, as
they do not reveal information about their internal
workings. Therefore, it is crucial to introduce trans-
parency to those models to enable users to understand
the reasons and decisions made. There has been a
widespread argument that intelligent systems must ex-
plain their results. As a result, XAI became a trending
topic utilized with ML and deep learning (DL) models. It
provides techniques that give insight into how a result
was delivered for users to trust, whether local or global.
This study employs three XAI techniques, including
global surrogate model using DT, Shapley Additive
Explanation (SHAP), and Local Interpretable-Agnostic
Explanation (LIME).

Global surrogate model is a model-agnostic method,
applicable to all algorithms, trained to approximate a black
box model’s predictions. The technique interprets black box
models without taking the models’ interior logic into ac-
count. In this study, a DT classifier was trained using the
predictions produced by the proposed RF model and the
original attributes to provide interpretability. Figure 7 il-
lustrates the global surrogate model using DT for the

proposed RF model, in which it is concluded that the most
influential attribute for the RF classifier to predict the target
class is the “T-TPT_standard_deviation.”

Below are the rules generated from the global surrogate
using DT for RF.

(i) if (T-TPT__sDev>0.0) and (T-JUS-CKP__
sDev>0.0) and (T-JUS-CKP__ sDe >0.0).
then response: 0.0 | based on 3,261 samples.

(ii) if (T-TPT__ sDev<0.0) and (T-JUS-CKP__
max<0.576) and (T-JUS-CKP__ sDev<0.0) and (P-
MON-CKP__ sDev<0.0).
then response: 1609.0 | based on 1,629 samples.

(iii) if (T-TPT__ sDev<0.0) and (T-JUS-CKP__
max>0.576) and (T-TPT__ sDev>0.0).
then response: 0.0 | based on 298 samples.

(iv) if (T-TPT__ sDev<0.0) and (T-JUS-CKP__

max<0.576) and (T-JUS-CKP__ sDev>0.0) and (P-
PDG__ sDev>0.0).

then response: 225.0 | based on 252 samples.
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ROC Curve Analysis with SMOTE
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FiGUre 5: ROC curve of models with the SMOTE data.
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FIGURE 6: ROC curve of models with the original data.
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T-TPT__standard_deviation <= 0.0
gini = 0.447
samples = 100.0%
value = [0.338, 0.662]
class = 1

P-MON-CKP_standard_deviation <= 0.0 T-TPT_ Variance <= 0.0
gini = 0.492 gini = 0.43
samples = 0.7% samples = 1.2%
value = [0.436, 0.564] value = [0.313, 0.687]

class = 1

gini=05

samples = 0.5%

value = [0.5, 0.5]
class =0

#
=

FIGURE 7: Global surrogate model using DT for RF.

T-JUS-CKP__standard_deviation
P-MON-CKP__standard_deviation
T-TPT__standard_deviation
P-TPT__standard_deviation
T-JUS-CKP__variance
P-PDG__standard_deviation
T-JUS-CKP__root_mean_square
T-JUS-CKP__maximum
P-TPT__variance
T-JUS-CKP__mean
T-TPT__variance
T-JUS-CKP__median
P-PDG__variance
T-TPT__root_mean_square
T-JUS-CKP__minimum
P-MON-CKP__mean
P-TPT__maximum
P-MON-CKP__median
P-MON-CKP__maximum
P-MON-CKP__minimum

0.00 0.02 0.04 0.06 0.08 0.10 0.12
mean (|SHAP value|) (average impact on model ouput magnitude)

m Class 0
m Class 1

FIGURE 8: Global explanation using SHAP.
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Local explanation for class 1

0.00 < T-JUS-CKP__standard_deviation <= 0.03
0.00 < T-JUS-CKP__variance <= 0.00
P-PDG__standard_deviation <= 0.00

0.00 < T-TPT__standard_deviation <= 0.01 -
P-MON-CKP__standard_deviation > 0.00 -
0.00 < P-TPT__standard_deviation <= 0.01
P-JUS-CKGL__median > 0.00
P-MON-CKP__root_mean_square > 0.76 -
0.00 < P-TPT__variance <= 0.00 |
P-JUS-CKGL__mean > 0.00

T
-0.01 0.00 0.01 0.02 0.03

FIGURE 9: Local explanation using LIME.

(v) if (T-TPT__sDev<0.0) and (T-JUS-CKP__
max<0.576) and (T-JUS-CKP__ sDev>0.0) and (P-
PDG__ sDev<0.0).
then response: 8.0 | based on 77 samples.

(vi) if (T-TPT__sDev>0.0) and (T-JUS-CKP__
sDev>0.0) and (T-JUS-CKP__sDev<0.0) and (T-
TPT__var>0.0).
then response: 0.0 | based on 42 samples.

(vii) if (T-TPT__sDev<0.0) and (T-JUS-CKP__
max<0.576) and (T-JUS-CKP__sDev<0.0) and (P-
MON-CKP__sDev>0.0).
then response: 15.0 | based on 30 samples.

(viii) if (T-TPT__sDev>0.0) and (T-JUS-CKP__
sDev>0.0) and (T-JUS-CKP__sDev<0.0) and (T-
TPT__var<0.0).
then response: 21.0 | based on 25 samples.

(ix) if (T-TPT__sDev<0.0) and (T-JUS-CKP__
max>0.576) and (T-TPT__sDev<0.0) and (P-
MON-CKP__sDev<0.0).
then response: 0.0 | based on 22 samples.

(x) if (T-TPT__sDev>0.0) and (T-JUS-CKP__
sDev<0.0) and (T-TPT__var<0.0).
then response: 20.0 | based on 20 samples.

(xi) if (T-TPT__sDev<0.0) and (T-JUS-CKP__
max>0.576) and (T-TPT__sDev<0.0) and (P-
MON-CKP__sDev>0.0).

then response: 17.0 | based on 17 samples.

(xii) if (T-TPT__sDev>0.0) and (T-JUS-CKP__
sDev<0.0) and (T-TPT__var>0.0).

then response: 0.0 | based on 1 sample.

Shapley Additive Explanation (SHAP) is one of the XAI
techniques extended from the optimal Shapley value game
theory. It calculates the contribution of each feature affecting
the outcomes for each instance. Consequently, it informs
users of the impact of each feature on the outcome. Figure 8
illustrates the Shapley values for classifying the oil well events.

It is indicated that the most influential features are the “T-
JUS-CKP_standard_deviation,” “P-MON-CKP_standard._-
deviation,” and “T-TPT_standard_deviation” as they have the
highest Shapley values. On the other hand, the least significant
features for predicting the target class are the “T-
TPT Maximum,” “P-MON-CKP_median,” “P-MON-
CKP_maximum,” and “P-MON-CKP_minimum.” Addi-
tionally, it is observed that all features contribute equally to
both classes.

Local Interpretable Model-Agnostic Explanations
(LIME) interprets a model locally to observe its behavior
using a single record selected randomly from the test set. In
this study, a sample from the positive target class was se-
lected and interpreted in Figure 9. The green color denotes
the attributes contributing to undesirable oil well events,
while red symbolizes the features contributing to the normal
event. It is noted that 6 features contribute to the positive
class, whereas the other 4 contribute to the negative class.
Moreover, the “T-JUS-CKP_standard_deviation” feature is
the most noteworthy feature for predicting the undesirable
well event class, whereas the P-PDF_standard_deviation is
the most significant feature for predicting the normal event.

4. Conclusion

Severe complications were reported in recent years in off-
shore oil well zones, resulting in several destruction and
production losses. Machine learning (ML) techniques have
produced promising results in several domains, especially
anomaly detection. Accordingly, the main objective was to
develop an ML model to predict the rare undesirable events
in oil wells using a realistic and public dataset. Four ML
classifiers, namely logistic regression (LR), decision tree
(DT), random forest (RF), and k-nearest neighbor (K-NN),
were utilized. Furthermore, two experiments were con-
ducted to build the ML models, where the models were
trained using the original dataset in the first experiment and
upsampled data in the second experiment. The results
proved the proposed ML models’ effectiveness in classifying
undesirable and normal oil well events. Random forest



Applied Computational Intelligence and Soft Computing

attained the best results with accuracy, recall, precision, F1-
score, and AUC of 99.84%, 99.91%, 99.91%, 99.91%, and 1
using original data, while for the upsampled data, it attained
99.60%, 99.64%, 99.91%, 99.77%, and 1.00, respectively.
Accordingly, it is concluded that similar results were
achieved with original and SMOTE data using RF. Besides,
Explainable Artificial Intelligence (XAI) was employed to
explain the outcomes produced by the proposed models for
users to understand the reasons behind anomaly events. It is
observed from the global surrogate model using DT that the
most influential attribute for the RF model is “T-
TPT_standard_deviation.” On the other hand, it is indicated
from the Shapley Additive Explanation (SHAP) and Local
Interpretable Model-Agnostic Explanations (LIME) models
that “T-JUS-CKP_standard_deviation” is the most signifi-
cant feature for classifying the oil well events. Despite the
considerable results achieved in this study, the proposed
solution is limited to the undesirable events available in the
utilized dataset. Moreover, the proposed model is incapable
of specifying the type of undesirable event that is likely to
happen. Accordingly, this study opens the doors for re-
searchers to extend the experiment by conducting further
investigations to develop reliable models that can classify the
eight types of undesirable events. Feature analysis could be
applied to identify the key features contributing to each
undesirable event to enable engineers to take proactive
actions and focus on other critical tasks. Additionally, ex-
periments need to be performed on more than one dataset
and also a dataset with a huge size.

Data Availability

The study was performed using 3W oil well dataset and can
be accessed from the web link, https://www.kaggle.com/
datasets/afrniomelo/3w-dataset.
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