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Predicting electricity consumption is notably essential to provide a better management decision and company strategy.  is study
presents a hybrid machine learning model by integrating dimensionality reduction and feature selection algorithms with a
backpropagation neural network (BPNN) to predict electricity consumption in ailand. e predictive models are developed and
tested using an actual dataset with related predictor variables from public sources. An open geospatial data gathered from a real
service as well as geographical, climatic, industrial, household information are used to train, evaluate, and validate these models.
Machine learning methods such as principal component analysis (PCA), stepwise regression (SWR), and random forest (RF) are
used to determine the signi�cant predictor variables.  e predictive models are constructed using the BPNN with all available
variables as baseline for comparison and selected variables from dimensionality reduction and feature selection methods. Along
with creating a predictive model, the most related predictors of energy consumption are also selected. From the comparison, the
hybrid model of RF with BPNN consistently outperforms the other models.  us, the proposed hybrid machine learning model
presented from this study can predict electricity consumption for planning and managing the energy demand.

1. Introduction

Due to the pandemic crisis in 2020, total energy demand
during 2020–2030 is likely to be higher than the Interna-
tional Energy Agency (IEA) forecast. Electricity consump-
tion has become one of the critical issues in most countries.
 erefore, the accurate prediction of electricity consumption
has an essential role in achieving e�cient energy utilization.
Assessment of the electricity consumption in advance will
improve operation strategies and management of energy
storage system and planning activities for future power
plants [1, 2]. One of the largest electricity consumers is the
business sector. Generally, socioeconomic and environ-
mental factors contribute to electricity consumption. So-
cioeconomic factors include industrial and household
information, while environmental factors include

geographical and climatic information. Determining the
signi�cant relation of di�erent factors related to electricity
consumption could provide guidelines for electricity au-
thority management to carry out the planning and strategies
in an e�cient manner.

Over the past several decades, many statistical and
computational intelligence methods have been implemented
in the �elds of prediction. Previous studies are mainly
limited to a small dataset of independent variables based on
time-series forecasting, regression analysis, and clustering
methods [3, 4].  e statistical methods have some restric-
tions on the linearity, normality, and independence of
variables [5]. Computational intelligence methods, such as
arti�cial intelligence algorithms, have been primarily
implemented in prediction [6]. Recent research shows that
the super computing power is more e�cient and e�ective in

Hindawi
Applied Computational Intelligence and So Computing
Volume 2022, Article ID 1562942, 11 pages
https://doi.org/10.1155/2022/1562942

mailto:kinsywu@gmail.com
https://orcid.org/0000-0003-2459-0730
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1562942


handling and analyzing huge volumes of data. ,e machine
learning algorithms, a subset of artificial intelligence, exhibit
superior performance in handling large numbers of data [7].

,e majority of research in electricity consumption
modeling uses various machine learning methods, in par-
ticular artificial neural network (ANN), decision tree, and
clustering. Platon et al. [1] performed research on ANN
concerning the hourly prediction of electricity consumption.
Walker et al. [8] predicted the energy consumption of the
building using random forest (RF) and ANN. Pérez-Chacón
et al. [9] proposed a methodology for finding patterns of
electricity consumption using the k-means. Shi et al. [10]
employed echo state network in the prediction of building
energy demand. Furthermore, the literature review on
machine learning algorithms in energy research has been
proposed by Mohandes et al. [11] and Lu et al. [12].

Moreover, the current research of predicting the future
electricity demand related to hybrid models combining dif-
ferent two ormoremachine learning algorithmswas reviewed
and analyzed by Deb et al. [13] and Mamun et al. [14]. ,e
hybrid models show excellent results because individual al-
gorithms have different advantages. Zekić-Sušac et al. [4]
integrated the variable selection with ANN in developing a
predictive model for the energy cost of public buildings in
Croatia. Zekić-Sušac et al. [15] integrated clustering and ANN
to improve the accuracy of modeling energy efficiency.
Muralitharan et al. [16] proposed a convolutional neural
network based optimization approach for predicting the
future energy demand. Pérez-Chacón et al. [17] used a big
data time-series and experimental method with decision tree,
gradient boosting machine (GBM), pattern sequence-based
forecasting, ARIMA, and ANN to forecast the electricity
demand. Zekić-Sušac et al. [18] used variable reduction
procedures with RPart regression tree, RF, and deep neural
networks to construct a predictive model for the energy
demand of public buildings in Croatia. Basurto et al. [19]
employed a hybrid intelligent system based on ANN and
clustering algorithm to predict the solar energy in Spain.
,erefore, it is appropriate to exploit machine learning al-
gorithms in electricity consumption prediction.

,is study has demonstrated the prediction of electricity
consumption. ,e proposed procedure has several phases:
data collection and data preprocessing, dimensionality re-
duction and feature selection, and prediction. In the data
collection and data preprocessing phase, the data is collected
from publicly available sources and processed to handle the
missing values and outliers. In the dimensionality reduction
and feature selection phase, the techniques including
principal component analysis (PCA), stepwise regression
(SWR), and RF are applied. ,e prediction phase is
implemented by using the backpropagation neural networks
(BPNN) algorithm. ,e selected important predictor vari-
ables from PCA, SWR, and RF have been used as the inputs
for the BPNN algorithm to predict the electricity con-
sumption. Besides creating a predictive model, the subset of
relevant variables is also selected and compared. Six metrics
evaluate the effectiveness of the predictive models. ,e
model with the highest accuracy in the test evaluation has
been selected.

,e other sections of this paper are as follows. Section 2
introduces the machine learning algorithms employed in
this study and exploration of the relevant literature. Section
3 outlines the architecture of the proposed predictive
models, experimental dataset, and the evaluation method.
Section 4 describes the experimental outcome and some
statistical results. Finally, Section 5 gives the paper
achievement as well as the conclusions and future works.

2. Literature Review

Machine learning is an algorithm to construct empirical
models from the dataset and is categorized as data-driven
modeling requiring a sufficient quantity of historical data to
predict future demand reliably [8]. Machine learning al-
gorithms extract essential information presented in large
amounts of the recorded data, thereby achieving better
performance and accuracy [7, 20]. Systematic literature
reviews of artificial intelligence and machine learning al-
gorithms are provided by Duan et al. [21], Borges et al. [22],
and Dwivedi et al. [23]. It is accepted that these techniques
bring a significant impact and new research frameworks in
industries such as finance, medicine, manufacturing, and
various government, public sector, and business domains.
For example, the machine learning methodology is
employed in the prediction of crime [24], future price of
agricultural products [25], natural gas consumption [26],
commercial banks performance [27], landslide displacement
[28], and seawater evaporation [29]. As may be seen, pre-
diction algorithms have been extensively investigated in
several sectors.

Constructing the predictive models by employing a lot of
variables is not straightforward in practice. All these vari-
ables might not be completely collected in a real-world
situation and result in a more complex model. ,e prom-
inence of dimensionality reduction and feature selection of
modeling variables have been broadly revealed in [30]. ,e
PCA is the most common feature extraction method to
reduce the dimensionality of large dataset into a small
dataset that retains most of the information [31]. ,e PCA
uses the eigenvalue and eigenvector for projecting the high-
dimensional dataset on to a lower-dimensional space. It
converts a set of correlated variables into a set of principal
components. Only the principal components that can sus-
tain the most original variance will be extracted [32, 33].
Dimensionality reduction with the PCA is applied in many
domains such as electricity consumption [1], finance [31],
engineering [34], and agriculture [35, 36]. ,e disadvantage
of PCA is that the predictor variables become less inter-
pretable and have no corresponding physical meaning and
this makes it more challenging to determine the predictor
variables that are important in the predictive model [35, 37].

Feature selection is a process to select the features that
contain the most useful information while discarding re-
dundant features that contain little to no information. ,e
wrapper feature selection algorithm such as SWR and RF is a
method that depends on the accuracy of the subsequent
feature selection criterion.,e SWR is a statistical method of
fitting regression models and has the advantage of evading

2 Applied Computational Intelligence and Soft Computing



collinearity [38]. It de�nes appropriate variable subsets and
evaluates variables priorities [39]. Selection of predictor
variables is performed automatically by assessing the relative
importance of the variables based on prespeci�ed criteria
such as the F-test, the t-test, the adjusted R2, and the Akaike
information criterion (AIC).

 e RF is a supervisedmachine learning algorithm that is
e�ective and e�cient for both classi�cation and prediction.
It is based on a decision tree algorithm and classi�ed as a
bagging ensemble learning method [24, 40].  e RF
structure is composed of multiple decision trees, and then
each RF tree runs in a parallel manner to each other. During
the variable randomization in each iteration, a variable
importance index and the Gini index can be given [41].  e
�nal value is evaluated by aggregating the results from all
leaves of each tree [35, 42].  e RF is also one of the best
algorithms for estimating the importance of variables and is
applied in various �elds [20, 43–45]. Furthermore, the RF is
an excellent prediction algorithm and has the advantages of
its generalization and a good balance of error [11, 46, 47].
Some analysts employed both SWR and RF to select the
input variables or analyze the importance of variables in
domains such as the electronic industry [5], geographical
poverty [45], reservoir characterisation [48], and soil carbon
[49].  ey stated that RF is better than SWR in identifying
nonlinear relationships between variables.

 e ANN is classi�ed as a supervised learning method
and also deployed in the comparison of prediction perfor-
mance with other machine learning techniques [50–55].
Among the ANN, BPNN is one of the most widely used
technique to optimize the feedforward neural network.  e
backpropagation algorithm is a broadly used technique and
a standard method for training the weights in a multilayer
feedforward neural network through a chain rule method
[56].  e weights of a neural net are appropriately adjusted
based on the loss in the previous iteration.  erefore, this
results in a lower error rate, making the model more reliable
by enhancing a generalization. Researchers have applied
BPNN in many classi�cations and predictions. As an ex-
ample, BPNN is employed in agricultural product sales [57],
crude oil future price [58], and hybrid cement [59] and also
deployed in the comparison of prediction performance with
other machine learning techniques [50–52].

3. Materials and Methods

 e outline of the proposed framework is shown in Figure 1.
 e hybrid predictive model comprises three stages con-
ducting in sequence.  e �rst stage explores the exploratory
data analysis.  e second stage uses the PCA, SWR, and RF
methods to select suitable predictor variables. e third stage
is to establish the predictive model by constructing the
BPNN. e developedmodels are trained with 10-fold cross-
validation and evaluated. All models have been implemented
and tested on intel®Core™ i7-8550U, CPU @1.80GHz,
1.99GHz running, 64 bit Windows 10 operating system with
8GB RAM.  e Scikit-learn machine learning package for
the Python programming language is used to implement the
models with Python version 3.9.4. Many algorithms

con�guration parameters are set to the defaults of Scikit-
learn version 0.23.0, Numpy version 1.20.2, and Pandas
version 1.2.3.

3.1. Data Collection.  e real data samples were collected
from publicly available online sources from the beginning of
2018 to the end of 2019.  e dataset contained 884,736
records of monthly electricity consumption.  e 21 pre-
dictor variables were grouped into �ve categories, namely,
geospatial, geographical, climatic, industrial, and household
factors.  e electricity consumption and geospatial factor
were obtained from the o�cial website of the Provincial
Electricity Authority of  ailand [60].  e geographical,
industrial, and household factors were obtained from the
o�cial website of the National Statistical O�ce of  ailand
[61].  e climatic factor was obtained from the o�cial
website of the  ai Meteorological Department [62].

3.2. Data Preprocessing.  e geospatial factor represented
four categorical variables. Firstly, the electrical substation
was the type of electrical distribution substations covering
the four regions of  ailand (South, North, Northeast, and
Central). Each region has three areas; thus, this variable can
take on 12 di�erent values (0–11). Secondly, the business
type belonged to eight types of business (0–7): small resi-
dential houses, large residential houses, small business,
medium business, large business, speci�c activities, gov-
ernment, and agriculture.  irdly, the time of use was
categorized into three periods: peak day (2: 00 p.m.–7: 00
p.m.), semipeak (5: 00 a.m.–2: 00 p.m., 7: 00 p.m.–12: 00
a.m.), and o�peak (12: 00 a.m.–5: 00 a.m.) as suggested by
Yang et al. [63]. Finally, periods in ailand are grouped into

Start

Data collection and Data preprocessing

Correlation and Multicollinearity analysis

Data partitioning for training and testing using
10-fold cross-validation

PCA

Electricity consumption prediction 

BPNN

Evaluation metrics (RMSE, MAPE, NRMSE, SMAPE, R2, Acc)

Dimensionality reduction and feature selection
RFSWRAll available variables

PCA+BPNN SWR+BPNN RF+BPNN

End

Hybrid model Single model 

Figure 1: e framework of the hybrid machine learning model for
electricity consumption prediction.
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three seasons: summer (February–May), rainy (June–Oc-
tober), and winter (November–January).

Data quality is a key success in model development since
poor data quality can negatively impact model accuracy. To
perform the analysis, it is vital to identify outliers which are
measurement results far from other values. Hence, they are
not a representative of the majority of data. ,e outliers are
the minimum amount of electricity consumption in the
range of 0.00–0.09W from the specific activities, govern-
ment, and agriculture sectors and are subsequently removed
from the dataset. Only 231 records of the available data are
considered as the outliers, and the final modeling dataset
contained 884,505 records. ,e geographical, climatic, in-
dustrial, and household factors are numerical values on a
monthly basis in each province. According to the geospatial
factor, each variable is averaged monthly. ,e 21 predictor
variables and one target variable are shown in Table 1 with
their descriptive statistics.

3.3. Reduction of Modeling Inputs. ,e variable reduction as
inputs is a critical issue in a successful predictive model.
,eoretically, a model should be built with a small number
of relevant inputs to achieve an acceptable level of predictive
accuracy [1].

3.3.1. Principle Component Analysis. All 21 predictor vari-
ables are processed by the PCA for finding the principal
components in the dimensionality reduction. ,e Stand-
ardScaler function in the Scikit-learn Python library is used
to standardize the 21 predictor variables onto a unit scale.
,erefore, all the normalized predictor variables have a
mean of zero and a standard deviation of one.

3.3.2. Stepwise Regression. By dropping the correlated
predictor variables, the 15 predictor variables are retained.
All remaining variables are entered or removed from the
regression equation of the SWR model one by one. When
each predictor variable is entered, a selection is adopted
based on the AIC to remove redundant variables. ,is
process is repeated until no significant predictor variable is
entered into or removed from the regression equation.

3.3.3. Random Forest. ,e RF is used for evaluating the
importance of predictor variables. ,e RF model is imple-
mented using an ensemble of 1000 trees, and the number of
trees was determined by trial and error. A typical split
criterion is the mean square error (MSE) between the target
and predicted output in a node. ,e 8-maximum depth of
the tree was used in model construction.

3.4. BPNNPredictiveModelDevelopment. Before developing
the models, the data are divided into training and testing
subsamples. ,e training subsample is used for constructing
the model, while the testing subsample is used to determine
the model efficiency. ,e sample data presented in Table 2
indicates the number of samples in the training group (70%

of samples) and the testing group (30% of samples). ,is
division ratio is recommended by Zekić-Sušac et al. [4, 18].
In the training stage, the 10-fold cross-validation is also
applied to reduce the overfitting problem and provides more
reliable and unbiased models. ,e training dataset is divided
randomly into 10-fold, and all models are evaluated 10
times. ,e cross-validation technique is implemented be-
cause it will make the model more reliable for new unseen
data [33]. Lastly, the final assessment of predictive accuracy
is evaluated with the remaining unseen 30% of data in the
testing groups.

A feedforward ANN and backpropagation training
method are chosen for developing the predictive model for
electricity consumption. ,e result of this predictive model
is the value of the target variable, which indicates the
forecasted electricity consumption. ,e six BPNN models
are developed using all available variables and selected
variables previously reduced by PCA, SWR, and RF
methods. ,is study tests the architectures of BPNN with
two or three hidden layers, as suggested by Zekić-Sušac et al.
[4, 18]. ,e structure of six BPNN predictive models is
indicated in Table 3. All six BPNN models have only one
node in output layer, that is, the electricity consumption
value obtained from the predictive model. ,e rectified
linear unit function (ReLU) is utilized as the activation
function to define the output of that node. ,e BPNN is
entered with the training subsample, and the learning rating
is 0.001. ,e stopping criterion for the training process is set
where either the epochs reach 1,000 or the training goal is
reached.

3.5. Performance Evaluation Metrics. For assessing the
performance of all predictive models, the following statis-
tical indicators have been computed: coefficient of deter-
mination (R2), root mean square error (RMSE), mean
absolute percentage error (MAPE), and predictive accuracy
(Acc) according toWalker et al. [8], Pérez-Chacón et al. [17],
Qiao et al. [26], Chen et al. [43], and Li et al. [46]. In a model
with lower RMSE and MAPE, higher R2 indicates better
accuracy. ,ese metrics can be formulated as follows:
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,e other evaluation metrics are symmetric mean ab-
solute percentage error (SMAPE) and normalized root
means square error (NRMSE) according to Zekić-Sušac et al.
[4, 18] and Janković et al. [53]. A model with lower NRMSE
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Table 1: Descriptive statistics of variables for the electricity consumption prediction.

Group of
variables Variable description Variable code Descriptive statistics

Geospatial

Electrical substation (0–2� south area,
1–3 3–5� north area, 1–3 6–8�northeast

area, 1–3 9–11� central area 1–3)
Electrical_Substation

Categorical, 0� 8.35%, 1� 8.35, 2� 8.35%,
3�12.52%, 4� 8.35%, 5� 8.35%, 6� 8.40%,
7� 8.35%, 8� 8.22%, 9� 8.35%, 10� 4.07%,

11� 8.35%
Business type (0–1� small, large

residential houses, 2–4� small, medium,
large business, 5� specific activities,
6� government, 7� agriculture)

Usage_Type
Categorical, 0�13.02%, 1� 12.91%,
2�12.05%, 3�12.20%, 4�12.00%,
5�12.00%, 6�12.78%, 7�13.04%

Time of use (0� peakday, 1� semipeak,
2� offpeak) TOU Categorical, 0�12.50%, 1� 66.67%,

2� 20.83%
,ailand season period (0� summer,

1� rainy, 2�winter) Season Categorical, 0� 24.50%, 1� 42.94%,
2� 32.56%

Geographical

Total number of populations Population_N
Numerical, min� 2810387.00,

max� 7871210.00, mean� 4965500.09, st.
dev� 1641653.19

Total surface area Area Numerical, min� 22423.00, max� 72806.35,
mean� 42012.25, st. dev� 16950.41

Ratio of people and area per sq. km Population_Ratio Numerical, min� 445.00, max� 1860.00,
mean� 1003.87, st. dev� 369.42

Climatic

Mean station pressure Mean_Station_Pressure Numerical, min� 975.23, max� 1010.86,
mean� 999.44, st. dev� 9.18

Mean msl pressure Mean_MSL_Pressure Numerical, min� 1004.46, max� 1014.20,
mean� 1008.85, st. dev� 2.50

Mean maximum temperature Mean_Maximum_Temperature Numerical, min� 27.92, max� 36.62,
mean� 32.15, st. dev� 1.71

Mean minimum temperature Mean_Minimum_Temperature Numerical, min� 14.00, max� 25.36,
mean� 22.24, st. dev� 2.56

Mean drybulb temperature Mean_Drybulb_Temperature Numerical, min� 20.46, max� 29.87,
mean� 26.59, st. dev� 1.84

Mean relative humidity Mean_Relative_Humidity Numerical, min� 57.00, max� 85.73,
mean� 75.56, st. dev� 6.36

Total rainfall Total_Rainfall Numerical, min� 11.00, max� 4841.00,
mean� 1264.52, st. dev� 1096.77

Industrial
Total number of industrial labors Industrial_Labor Numerical, min� 1471.00, max� 21368.00,

mean� 7087.11, st. dev� 6573.51

Total number of industrial plants Industrial_Plant Numerical, min� 101.00, max� 727.00,
mean� 263.75, st. dev� 167.60

Household

Total number of agriculturists Agriculturists
Numerical, min� 197885.00,

max� 1412997.00, mean� 628382.35, st.
dev� 375015.78

Average expenditure per household Expenditure
Numerical, min� 63795.00,

max� 168442.00, mean� 112928.45, st.
dev� 28137.06

Average income per household Income
Numerical, min� 81571.00,

max� 206231.00, mean� 143155.35, st.
dev� 34841.15

Total number of households Household Numerical, min� 861.00, max� 1984.00,
mean� 1479.48, st. dev� 318.94

Average liabilities per household Liabilities
Numerical, min� 383606.00,

max� 1536859.00, mean� 1005455.20, st.
dev� 316864.28

Target
variable Electricity consumption Demand_KW Numerical, min� 0.10, max� 8731298.26,

mean� 167920.67, st. dev� 358252.18
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and SMAPE indicates greater accuracy in prediction. ,ese
metrics can be formulated as follows:

SMAPE � 100
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All parameters are explained as follows: yt is the target
(real) output, yc is the calculated output, yt is an average of
the target output, and yc is an average of the calculated
output and N is the total number of measurements.

4. Results and Discussion

4.1. Correlation and Multicollinearity Analysis. ,e Pearson
correlation coefficient (rp) is used to analyze the correlation
between two numerical variables, and Spearman’s rank
correlation coefficient (rs) is utilized to evaluate the corre-
lation in categorical variables. ,e correlation coefficients
indicated the strength, and direction of association between
all electricity consumption variables is shown in Figure 2.

For the multicollinearity analysis, the VIF of all predictor
variables is also computed. ,e presence of multicollinearity
implies that the variable provides redundant information
contained in other variables [3]. ,e available variables in
the modeling stage are determined by considering the
correlation and VIF between the pair variables. ,erefore,
six predictor variables, namely, Electricity_Substation, Sea-
son, Population_N, Mean_Minimum_Temperature, Agri-
culturists, and Expenditure, are removed from the 21
predictor variables. As a result, the 15 remaining predictor
variables are used as the input of SWR.

4.2. Selecting Predictor Variables

4.2.1. Principle Component Analysis. ,e 21 predictor var-
iables are sent as the input of PCA. Since PCA works on
numerical variables, four categorical variables are converted

into numerical variables using the one-hot encoding tech-
nique. ,is study uses two experiments, namely, PCA # 1
and PCA # 2, by using the cumulative contribution rate of
principal components as shown in Figure 3. For PCA # 1 and
PCA # 2, the principal components with the cumulative
contribution rate reach 95% and 99%, respectively. ,ere-
fore, the first 9 and 13 principal components are considered
to be significant for PCA # 1 and PCA # 2 and used as
variables in the predictive modeling stage.

4.2.2. Stepwise Regression. ,e 15 predictor variables from
the correlation and multicollinearity analysis stage are used
as the input for the SWR. Since the Usage_Type and TOU
variables are categorical variables, these variables are set as
dummy variables to trick the SWR algorithm into correctly
analyzing variables. Consequently, the input variables in the
SWR estimation parameter consist of 22 variables. Variables
selected by SWR are summarized in Table 4, with the VIF
metrics calculated per variable. According to the VIF value,
the 11 selected variables are essential in modeling the
electricity consumption. Geospatial variables are highly
correlated with electricity consumption, among which TOU
is the most important variable, followed by Usage_Type.

4.2.3. Random Forest. ,e importance of 21 predictor
variables by the RF model is listed in Table 5. From the
results, the four most important variables according to the
percentage increase in mean squared error (%IncMSE) are
Usage_Type, Area, Mean_Station_Pressure, and Industri-
al_Labor. ,e variables selected by RF have two experi-
ments: RF # 1 with 18 selected predictor variables having
importance over 0.01 and RF # 2 with 11 variables having the
importance over 0.02.

4.3. Prediction Evaluation. ,e results of six machine
learning models are shown in Table 6. ,e predictive per-
formance is evaluated using six metrics, namely, RMSE,
MAPE, NRMSE, SMAPE, R2, and Acc. ,e single model is
developed with all available 21 predictor variables (BPNN).

Table 2: Sampling procedures used for modeling.

Sample No. of cases and % in the
subsample 10-fold cross-validation

Training 619,154 cases (70%) Train: 557,238 cases (90% of learning subsample); cross-validation: 61,915 cases (10% of
learning subsample)

Test 265,352 cases (30%)
Total 884,505 cases (100%)

Table 3: ,e parameter structure of the BPNN predictive models.

Predictive model No. of nodes in input layer No. of hidden layers No. of nodes in hidden layer
BPNN 21 3 12, 8, 2
PCA # 1 +BPNN 9 2 8, 2
PCA # 2 +BPNN 13 2 8, 2
SWR+BPNN 12 2 8, 2
RF # 1 + BPNN 18 3 12, 8, 2
RF # 2 + BPNN 11 2 8, 2
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 e hybrid models are constructed with the principal
components extracted by the PCA method (PCA #
1+ BPNN and PCA # 2 +BPNN) and with the reduced
variables selected by the SWR and RF methods
(SWR+BPNN, RF # 1 + BPNN, and RF # 2 +BPNN).

It can be seen from Table 6 that the most successful is the
RF # 1 +BPNN with 18 selected variables, producing R2 of
0.9932 and Acc of 0.9926.  e RF # 2 +BPNN has a slightly
lower R2 of 0.9630 and Acc of 0.9923, while the BPNN has R2

of 0.9638 and Acc of 0.9931. In summary, the hybrid model
is the most e�ective in electricity consumption prediction, as
Deb et al. [13] and Mamun et al. [14] show.

In the SMAPE assessment, using all available variables
(BPNN) results in a SMAPE of 21.0117%.  e PCA #
1+ BPNN and PCA # 2+ BPNN produce the higher SMAPE
of 28.0458% and 22.0321%, respectively, while the lowest
SMAPE is obtained by the SWR+BPNN (21.0112%). Al-
though the accuracy of the most successful model is not

satisfactory (SMAPE is 21.0112%), comparing to Walker
et al. [8] and Zekic ́-Sušac et al. [18], whose models obtained
an accuracy below 20%, it is greater than the model obtained
by Zekic ́-Sušac et al. [4] (SMAPE is 22.3555%).

In the case of using the dimensionality reduction
method, PCA # 1 +BPNN produced RMSE of 0.0601 and the
PCA # 2 +BPNN produced RMSE of 0.0405. is means that
the RMSE value decreases with the number of principal
components increasing as stated by Zhang [34] and in ac-
cordance with a decrease in the number of principal
components leading to a decrease in predictive accuracy
[34].  e error values show a slight improvement in relation
to BPNN only when the 13 principal components are used
(RMSE� 0.0405 in PCA # 2 +BPNN comparing to
RMSE� 0.0415 in BPNN). At the same time, the perfor-
mance of other hybrid models does not improve in terms of
RMSE.

 e RF selects the signi�cant modeling inputs among 21
available inputs. As a result, 18 signi�cant variables and 11
signi�cant variables are selected and used in the model of RF
# 1 +BPNN and RF # 2 +BPNN, respectively.  e RF #
1 +BPNN model slightly outperforms the RF # 2 +BPNN.
 is means that using more relevant variables mainly
presents superior prediction accuracy [35]. Moreover, using
a smaller number of variables does not make a signi�cant
di�erence of the model prediction performance while
minimizing the computational cost. A comprehensive
comparison shows that most accuracy comes from the RF #
1 +BPNN (0.9926), followed by RF # 2 +BPNN (0.9923) and
BPNN (0.9631).  is result suggests that the hybrid model
using fewer inputs is slightly more accurate.  is also
suggests that irrelevant variables bring meaningless infor-
mation to the input dataset and add unnecessary variability
and noise and hinder the ability to accurately model [1].  e
RF can model nonlinearity relations between variables and
has high accuracy, as investigated by Richardson et al. [49].
 e results of this study indicate that the proposed hybrid
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Electrical_Substation* 1.0000
Usage_Type* -0.0035 1.0000
TOU* 0.0000 0.0000 1.0000
Season* 0.0014 -0.0004 0.0000 1.0000
Population_N -0.1484 0.0003 0.0000 0.0003 1.0000
Area 0.3374 -0.0070 0.0000 0.0002 0.7034 1.0000
Population_Ratio -0.5812 0.0042 0.0000 -0.0001 -0.9699 -0.8798 1.0000
Mean_Station_Pressure -0.2775 0.0037 0.0000 0.1083 -0.5496 -0.8747 0.6456 1.0000
Mean_MSL_Pressure -0.0295 0.0000 0.0000 0.6378 -0.0071 -0.0508 0.0342 0.2170 1.0000
Mean_Maximum_Temperature -0.0728 -0.0012 0.0000 -0.7253 -0.1022 -0.1532 0.1771 0.0861 -0.4678 1.0000
Mean_Minimum_Temperature -0.1320 0.0031 0.0000 -0.6337 -0.2405 -0.4095 0.2235 0.2825 -0.8003 0.5061 1.0000
Mean_Drybulb_Temperature -0.1404 0.0017 0.0000 -0.7400 -0.2172 -0.3671 0.2440 0.2492 -0.7532 0.7953 0.9182 1.0000
Mean_Relative_Humidity 0.0287 0.0030 0.0000 -0.1120 -0.1664 -0.1988 0.1469 0.1535 -0.4743 -0.3150 0.5635 0.2332 1.0000
Total_Rainfall 0.1144 -0.0002 0.0000 -0.2597 0.0030 0.0415 -0.0418 -0.0604 -0.4752 -0.1259 0.5435 0.3045 0.7538 1.0000
Industrial_Labor -0.7145 0.0011 0.0000 0.0007 -0.4490 -0.5946 0.5729 0.4255 0.0111 0.1704 0.1803 0.2222 0.0225 -0.1202 1.0000
Industrial_Plant -0.6521 -0.0003 0.0000 0.0030 -0.3949 -0.4477 0.4262 0.3154 0.0077 0.1413 0.1125 0.1647 -0.0043 -0.1161 0.1295 1.0000
Agriculturists 0.0569 -0.0006 0.0000 -0.0002 0.9619 0.7701 -0.2693 -0.5701 -0.0149 -0.1150 -0.2624 -0.2392 -0.1579 0.0086 -0.6159 -0.5217 1.0000
Expenditure -0.3050 -0.0019 0.0000 -0.0002 0.1174 -0.0551 0.6354 0.2704 0.0158 0.0122 0.0621 0.0403 0.1134 0.1239 0.0842 -0.0547 0.0628 1.0000
Income -0.2249 -0.0025 0.0000 -0.0007 -0.0352 -0.1550 0.6017 0.3654 0.0162 0.0154 0.1160 0.0817 0.1382 0.1282 0.0620 -0.0801 -0.0531 0.9660 1.0000
Household -0.3675 -0.0013 0.0000 -0.0008 0.8952 0.6304 -0.0531 -0.5738 -0.0217 -0.0617 -0.2327 -0.1844 -0.1903 0.0136 -0.1134 -0.0900 0.7796 0.1731 -0.0003 1.0000
Liabilities 0.0224 -0.0059 0.0000 0.0035 0.4899 0.4043 0.2268 -0.1204 -0.0111 0.0008 -0.1000 -0.0778 -0.0495 0.0482 -0.3558 -0.4188 0.5045 0.7586 0.1254 0.4259 1.0000
Demand_KW -0.0014 0.1231 -0.0227 -0.0254 -0.0489 -0.1417 0.1852 0.0731 -0.0252 0.0995 0.0998 0.0945 0.0286 0.0176 0.2111 0.1994 -0.1064 -0.0106 -0.0102 0.0448 -0.0889 1.0000

Figure 2: Correlation matrix between the electricity consumption variables (∗Spearman’s rank correlation (rs)).
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RF+BPNN model performs excellently in terms of pre-
dictive accuracy.

By comparing the hybrid model results using dimen-
sionality reduction and feature selection, the RF # 1 + BPNN
model gives the remarkable and insightful performance. In
this study, the results of two experiments of PCA+BPNN
models do not achieve good performance. ,is is likely due
to the correlation and multicollinearity among predictor
variables. ,e SWR+BPNN seems to have a comparable
performance with a BPNN but is lower than the RF+BPNN.
Smith [38] suggested that the SWR is less effective in the case
of a large number of possible predictor variables. ,e results
indicated that the RF has higher accuracy than the SWR and
is more powerful in identifying the nonlinear relationships

between target and predictor variables, as reported by Liu
et al. [45].

,e results of the experiments suggest that the PCA and
SWR cause a loss of predictive accuracy. In addition, the
predictive models developed by using the RF-selected
models outperform the models using all available variables.
It reveals that the RF has sufficient complexity to reduce a
high-dimensional dataset.

Another focus of this study is to investigate the abilities
of the feature selection methods. ,e selected variables by
SWR, RF#1, and RF#2 are listed in Table 7. ,e selected
variables describe geospatial, geographical, climatic, in-
dustrial, and household factor.,is could be interpreted that
all groups of variables play an essential role in predicting
electricity consumption.,ere are some differences between
the selected variable in each variable group. Even if the
redundant and irrelevance variables are discarded, the
correlation between the rest of the variables still exists.

,e identically identified variables by SWR, RF # 1 and
RF # 2 are Usage_Type, Mean_Maximum_Temperature,
Mean_Relative_Humidity, Industrial_Labor, andHousehold.
,erefore, these variables are considered to be the critical
variables in explaining electricity consumption. Among the
industrial factor group of variables, all three models have
selected Industrial_Labor, while the SWR and RF#1 have
selected Industrial_Plant. ,e largest number of selected
variables represents the climatic factor group of variables.
,is result confirms the findings of the previous study by
Walker et al. [8], Deb et al. [13], and Zekic ́-Sušac et al. [18].
Among all variables of the climatic factor, the temperature is
reported to be the most significant variable influenced by the
electricity consumption [3].

,e hybrid predictive model in this study successfully
integrates the existing machine learning algorithms and the
selection of predictor variables in the electricity consump-
tion is demonstrated. ,e predictive model is constructed
from the actual electricity consumption data during
2018–2019 from the Provincial Electricity Authority of

Table 4: Feature importance based on the SWR model.

Group of variables Variable code Coefficients SE coef t-value p-value VIF

Geospatial
Usage_Type (dummy variable)

Agriculture −3.724E+ 04 1.144E+ 03 -32.556 <2E− 16 1.7382
Government −3.755E+ 04 1.146E+ 03 -32.763 <2E− 16 1.7332
House< 150 4.953E+ 04 1.169E+ 03 42.378 <2E− 16 1.6988
House> 150 2.475E+ 05 1.164E+ 03 212.582 <2E− 16 1.7033

Large 5.338E+ 05 1.170E+ 03 456.169 <2E− 16 1.6971
Medium 1.781E+ 05 1.170E+ 03 152.206 <2E− 16 1.6966
Small 1.029E+ 05 1.149E+ 03 89.538 <2E− 16 1.7275

TOU (dummy variable) Semipeak 1.687E+ 04 7.327E+ 02 23.031 <2E− 16 1.4001
Peakday 2.737E+ 04 1.044E+ 03 26.210 <2E− 16 1.4000

Geographical Population_Ratio −1.330E+ 02 1.417E+ 00 -93.872 <2E− 16 3.2135

Climatic

Mean_MSL_Pressure 1.585E+ 04 2.453E+ 02 64.603 <2E− 16 4.4071
Mean_Maximum_ temperature 2.438E+ 04 3.329E+ 02 73.236 <2E− 16 3.7922

Mean_Relative_ humidity 7.057E+ 03 1.073E+ 02 65.774 <2E− 16 5.4626
Total_Rainfall 1.114E+ 01 4.604E-01 24.193 <2E− 16 2.9923

Industrial Industrial_Labor 1.626E+ 01 1.460E-01 111.316 <2E− 16 9.8164
Industrial_Plant −3.204E+ 01 5.090E+ 00 -6.294 3.09E− 10 8.5413

Household Household 1.059E+ 02 1.144E+ 00 92.641 <2E− 16 1.5609
Liabilities 3.041E− 02 1.403E− 03 21.665 <2E− 16 2.3207

Table 5: Feature importance based on the RF model.

Variable code Variable importance
(% IncMSE)

Usage_Type 0.4000
Area 0.1600
Mean_Station_Pressure 0.0800
Industrial_Labor 0.0800
Household 0.0400
Mean_Relative_Humidity 0.0300
Mean_Maximum_Temperature 0.0200
Mean_Minimum_Temperature 0.0200
Mean_Drybulb_Temperature 0.0200
Expenditure 0.0200
Income 0.0200
Season 0.0100
Mean_MSL_Pressure 0.0100
Total_Rainfall 0.0100
Agriculturists 0.0100
Industrial_Plant 0.0100
Liabilities 0.0100
Population_Ratio 0.0100
TOU 0.0000
Population_N 0.0000
Electrical_Substation 0.0000
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,ailand. ,e derived hybrid machine learning model can
assist in determining key variables to support or make
decisions on the management of electricity consumption.
Based on a successful demonstration with authentic data, the
Provincial Electricity Authority can deploy this hybrid
predictive model to achieve efficient energy demand plan-
ning and management. Future studies to improve the pre-
dictive accuracy may include machine learning techniques
for feature selection or deep learning.

5. Conclusions

,is study investigates the machine learning algorithms
under different models to predict electricity consumption.
,e most effective prediction will likely come from using a
more relevant dataset. ,e number of predictor variables is
an important factor, directly related to the performance and
accuracy of the predictive models. Some influential predictor
variables must be selected to achieve a robust and accurate
predictive model and reduce the computation time. ,e
PCA, SWR, and RF algorithms are employed to select the
predictor variables according to their importance.,is study
successfully selected 11 predictor variables out of the original
21 predictor variables by the RF. Both SWR and RF select the
same set of 5 predictor variables, and the others are slightly
different selections between models.

,e BPNN with 21 predictor variables is conducted as a
benchmark for performance comparison in this study. ,e

hybrid models are constructed by combining the PCA, SWR,
and RF with the BPNN. ,e 10-fold cross-validation
technique is also employed to ensure the unbiased, reliable,
and accurate predictive model. ,is performance is com-
pared in line with the RMSE, MAPE, NRMSE, SMAPE, R2,
and accuracy metrics. Comparison results confirm that the
RF is superior to the PCA and SWR. Based on the exper-
iments, the integrated RF with the BPNN algorithm could
effectively improve the accuracy of the electricity con-
sumption prediction.
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Table 6: Performance of proposed predictive models on the test sample.

Predictive model No. of nodes in input layer RMSE MAPE NRMSE SMAPE R2 Acc
BPNN 21 0.0415 8.1999 0.0458 21.0117 0.9638 0.9631
PCA # 1+BPNN 9 0.0601 10.5201 0.0596 28.0458 0.6910 0.7921
PCA # 2+BPNN 13 0.0405 8.5201 0.0499 22.0321 0.8913 0.8908
SWR+BPNN 12 0.0454 8.1921 0.0488 21.0112 0.9492 0.9487
RF # 1 + BPNN 18 0.0416 8.1992 0.0470 21.0114 0.9932 0.9926
RF # 2 + BPNN 11 0.0419 8.1994 0.0475 21.0117 0.9930 0.9923

Table 7: Comparison of predictor variables selected by SWR and RF feature selection methods.

Group of variables SWR RF # 1 RF # 2

Geospatial Usage_Type
TOU

Usage_Type
Season Usage_Type

Geographical Population_Ratio Area Population_Ratio Area

Climatic

Mean_MSL_Pressure
Mean_Maximum_Temperature

Mean_Relative_Humidity
Total_Rainfall

Mean_Station_Pressure
Mean_Maximum_Temperature

Mean_Relative_Humidity
Mean_Minimum_Temperature

Mean_Drybulb
_Temperature

Mean_MSL_Pressure
Total_Rainfall

Mean_Station_Pressure
Mean_Maximum_Temperature

Mean_Relative_Humidity
Mean_Minimum_Temperature
Mean_Drybulb_ temperature

Industrial Industrial_Labor
Industrial_Plant

Industrial_Labor
Industrial_Plant Industrial_Labor

Household Household
Liabilities

Household
Expenditure
Income

Agriculturists
Liabilities

Household
Expenditure
Income
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