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�e deep neural network (DNN) was applied for estimating a set of unknown parameters of a dynamical system whose measured
data are given for a set of discrete time points. We developed a new vectorized algorithm that takes the number of unknowns (state
variables) and number of parameters into consideration. �e algorithm, �rst, trains the network to determine weights and biases.
Next, the algorithm solves the systems of algebraic equations to estimate the parameters of the system. If the right hand side
function of the system is smooth and the system have equal numbers of unknowns and parameters, the algorithm solves the
algebraic equation at the discrete point where absolute error between the neural network solutions and the measured data is
minimum. �is improves the accuracy and reduces computational time. Several tests were carried out in linear and non-linear
dynamical systems. Last, we showed that the DNN approach is more successful in terms of computational time as the number of
hidden layers increases.

1. Introduction

Our environment is surrounded by phenomena that can often
bemodeled by dynamical systems. For instance, a researcher in
mathematical biology [1], ecology [2, 3], or epidemiology [4]
trying to understand and predict the interaction between
di�erent species may encounter a multidimensional dynamical
systems with several parameters. Another example of appli-
cations of multidimensional dynamical systems are chemical
reactions [5]. �ese also depend on certain parameters, such as
the reaction rate or the equilibrium constant [6, 7].

Further applications can be found in economy. For
example, when analyzing the dynamics of a certain eco-
nomic systems for predicting an unfavorable situation, such
as a recession or a depression [8]. Understanding the dy-
namics of such cases enables planning ahead to reduce the
impact of possible negative e�ects.

�e study of the dynamics of several continuous vari-
ables leads to the analysis of a system of ordinary di�erential

equations [9, 10]. �e coe�cients of these systems usually
depend on some parameters which need to be estimated so
that the dynamical system is valid, i.e., it provides a reliable
mathematical explanation for a certain phenomenon or
predictions are reliable. We refer to the estimation of this set
of parameters as calibrating the dynamical system.

In most cases, estimating the parameters involved in
dynamical systems is, in fact, a challenging optimization
problem which needs special consideration since it is an it-
erative method, and at times, there can be issues with the
convergence [11, 12]. Some of the standard approaches: the
Gauss–Newton method [13], multiple shooting, recursive
estimation [14], collocation methods [15], modi�ed multiple
shooting algorithm [16], cross-entropy approach [17], a
generalized smoothing approach [18], or principal di�erential
analysis [19]; etc. However, most of these methods su�er from
one ormore of the following issues: small convergence region,
convergence to a local minimum instead of the absolute
minimum, high computational cost, convergence highly
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dependent on the initial guesses, see, for example, [20, 21] and
further references therein. Despite the variety of methods, this
estimation problem remains still a well-known challenging
problem.

An alternative approach for calibrating dynamical sys-
tems is artificial neural networks (ANN). +e beginning of
ANN is often attributed to the research article by McCulloch
[22]. By then, it was less popular due to the capacity of
computational machines. Nevertheless, the fast development
of computer science and technology in the last decade, has
led to an exponential increase of the capacity of machines,
for both: storing and processing data.

An ANN is defined as “an information-processing system
that has certain performance characteristics in common with
biological neural networks” [23, 24]. A network is composed
of several layers.+e first layer is usually called the input layer,
whereas the last one is referred as the output layer. Layers
falling in between the input and output layers are called
hidden layers. Furthermore, each layer have a set of neurons
or units. Deep neural networks (DNN) are ANNs with more
than one hidden layer [25, 26]. DNNs are widely applied in
artificial intelligence. For instance: in computer vision, image
processing, pattern recognition, and cybersecurity [27–29].
+e successful performance of DNNs is owed to the fact that
deep layers are able to capture more variances [30].

ANNs and, in particular, DNNs, could potentially address
some of the challenges of the aforementioned standard
methods. One of these drawbacks is the need of a large training
dataset to obtain a sufficiently accurate estimation of the pa-
rameters, which entails a high computational cost [31–33].+e
ANN approach has been implemented to minimize this lim-
itation. In particular, Dua [34, 35] proposed ANNmethods for
parameter estimation in systems of differential equations.
However, to the best of the knowledge of the authors, we have
not encountered in the literature a vectorized DNN algorithm
which approximates the solution of a dynamical system with
unknown parameters given a set of values of the solution in a
set of time points, and thus, it is the main purpose of the paper.
Additionally, we provide the following original results.

(1) We extended the algorithm from [36] for systems of
differential equations to systems of differential
equations with unknown parameters.

(2) We enhance the efficiency and accuracy of the al-
gorithm in the case when the number of unknowns
of the dynamical system coincides with the number
of unknown parameters.

(3) We show that the DNN algorithm for this problem
becomes faster in terms of computational time as the
number of layers increase.

For the calculation of gradients of the cost functions, we
utilized the auto-differentiation technique supported in the
code by the Autograd package [37] and for the optimization
of the learning rule, we implemented the Adammethod [38],
which successfully addresses the local minimum problem
present in the standard approaches.

+e paper is structured as follows: (2) mathematical
formulation of the problem; (3) DNN model; (4) vectorized

algorithm for parameter estimation; (5) numerical experi-
ments; and (6) conclusions and further work.

2. Problem Formulation

Let us consider a dynamical system described by n ordinary
differential equations involving m unknown parameters,

du(t)

dt
� f(t, u(t), p), t ∈ t0, tend(  ⊂ R,

u t0(  � u0,

(1)

where u(t) � [u1(t), u2(t), . . . , un(t)]T is a vector field with
n components ui(t), i � 1, . . . , n; p � [p1, p2, . . . , pm] ∈ Rm

is the vector containing the unknown parameters; u0 ∈ Rn is
the initial condition and

f(t, u, p): �

f1 t, u1, u2, . . . , un, p1, p2, . . . , pm( 

f2 t, u1, u2, . . . , un, p1, p2, . . . , pm( 

⋮

fn t, u1, u2, . . . , un, p1, p2, . . . , pm( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

is a given vector-valued function, not necessarily linear, with
n components fi(t, u1, u2, . . . , un, p1, p2, . . . , pm),
i � 1, . . . , n. +e measured data for the model equation (1)
will be denoted by u∗(t).

Objective: Given measured data at N time points of (1),
i.e., (tk, u∗(tk)) with k � 1, 2, . . . , N, we aim to develop a
vectorized deep neural network algorithm that estimates the
unknown parameters p and the solution u(t) for all t.

3. Deep Neural Network Model

We consider a deep neural network with a similar archi-
tecture as in [36] for non-parametric systems of ODEs
depicted in Figure 1. In this network diagram, ti ∈ (t0, tend)

with i ∈ 1, 2, . . . N{ } represents N time points; ak
(l) is the

state of the j-th neuron in layer l with l ∈ 1, 2, . . . , L{ }, where
L denotes the total number of layers; b(l) denotes the bias in
layer l; and W(l): � w

(l)
jk denotes the weight matrix of layer l.

Lastly, u
(i)
j denotes the estimated solution of the unknown

function uj(t(i)), evaluated at the time point t(i).
+e architecture of the DNN is based on the following:

(i) An input layer (l � 0) consisting of a single neuron
corresponding to the time point t(i);

(ii) An output layer (l � L) with n output functions u
(i)
j ;

(iii) L − 1 hidden layers with hl neurons in each layer,
l � 1, . . . L − 1{ }.

Let us remark that the number of neurons in each hidden
layer might not be the same. As a result, the weight matrix W

has dimension hl × hl−1, and thus it might not be a square
matrix.

Moreover, the number of neurons in each hidden layer
could be determined based on the performance of the model
[36]. Here, by performance of the model, we mean the DNN
architecture which gives the best approximation with a small
number of iterations and reduced computational time.
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3.1. Feed-Forward Propagation. +e feed-forward network
proceeds as follows. For each data point t(i), the learning
process starts by assigning a

[0]
1 � t(i).

+en, to obtain a(l) given a(l−1), we require two steps.+e
first step is working out a provisional vector zl by multi-
plying a(l−1) by the weight matrix Wl, and then we add the
bias vector bl, i.e.,

z
l
j ≔ 

hl−1

k�1
w

l
jka

l−1
k + b

l
j. (3)

Alternatively, one can write equation (3) in matrix form
as follows:

zl
� W

lal−1
+ bl

. (4)

+e second and last step requires applying an appro-
priate choice of activation function σl to zl to obtain al. +us,
the values for the next layer are expressed by the following:

al
� σl zl

  � σl
W

lal−1
+ bl

 . (5)

In short, for each given time point ti, we will obtain a zl

and an output al. To illustrate, the dependence from ti, we
will add the superscript (i), i.e., al(i) � σl(zl(i)). +erefore,
using vector and matrix notation, we can write
T � [t1, . . . , tN], Zl � [zl(1), . . . , zl(N)]t and
Al � [al(1), . . . , al(N)] so that we can summarise (4) and (5)
for all ti

A
0

� T,

Z
l

� W
l
A

l−1
+ bl

,

A
l

� σl
Z

l
 , for l ∈ 1, . . . , L{ }.

(6)

We will refer to the values of the output layer AL as the
output of the network, i.e., N(T, WL, bL): � AL or, in
component form
Nj(ti, WL, bL): � πj(AL): � AL

j (ti, W, b), where πj de-
notes the j-th projection.

3.2. Parameter Estimation. In this section, we describe the
DNN algorithm for estimating the parameters in the dy-
namical system (1).

Let us suppose that we have measured data at N points of
(1), i.e., (tk, u∗(tk)) with k � 1, 2, . . . , N. For each ti,
i � 1, . . . , N, we compute the network output, denoted by
AL

j (ti, W, b). +en, the trial solution satisfying the initial
conditions is given by the following:

uj t
(i)

, W, b  � u0j + t
(i)

− t0 A
L
j t

(i)
, W, b , j � 1, . . . , n.

(7)

+e expression (7) can be written in the matrix form as
follows:

u(T, W, b) � u0 + T − t01( N(T, W, b). (8)

We train the network to find W and b by minimizing the
following cost function,

J1(T, W, b) �
1
2



m

i�1
u t

(i)
, W, b  − u(i)

�����

�����
2
. (9)

With the optimal learning parameters W∗ and b∗, the
approximate solutions of the dynamical systems were ob-
tained. In this paper, Adaptive Moment method (also called
Adam method) was applied to update the learning pa-
rameters [39]. +e updating rule is

M
k
w � β1M

k−1
w + 1 − β1( ∇J1 W

k
 ,

M
k
b � β1M

k−1
b + 1 − β1( ∇J1 bk

 ,

V
k
w � β2V

k−1
w + 1 − β2(  ∇J1 W

k
  

2
,

V
k
b � β2V

k−1
b + 1 − β2(  ∇J1 bk

  
2
,

M
k

w �
M

k
w

1 − βk
1

,

V
k

w �
V

k
w

1 − βk
2

,

M
k

b �
M

k
b

1 − βk
1

,

V
k

b �
V

k
b

1 − βk
2

,

W
k+1

� W
k

−
η

���
V

k

w



+ ϵ
M

k

w,

bk+1
� bk

−
η

���
V

k

b



+ ϵ
M

k

b,

(10)

where β1, β2 ∈ [0, 1) are decay rates for the moment esti-
mates, η is the learning rate, and Vw, Vb and Mw, Mb are the
first and the second moment vectors, respectively, that are
initialized to be zero. +e values η � 0.001 , β1 � 0.9, β2 �

0.999 and ϵ � 10−8 are usually applied in the literature, see
e.g., [39].

t(i)
û1

(i)

ûn
(i)

b(l–1)

a1
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b(l)

a1
(l–1)
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(l)
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(l)
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a1
(L)wl
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Figure 1: Schematic diagram of DNN.
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After obtaining the optimal values of the learning pa-
rameters W∗ and b∗, we seek the values of parameter p by
solving the following non-linear system of algebraic
equations,

F(p): �
du
dt

t
(i)

, W
∗
, b∗  − f t

(i)
.u, p  � 0. (11)

When attempting to solve (11), we will distinguish two
possible cases: (1) +e number of equations equals to the
number of parameters and (2) Otherwise.

Case 1. For the particular case in which the right hand side
function of the dynamical system (1) has as many parameters
as equations, i.e., n � m, the following proposition addresses
the existence of a solution in this case. +is proposition
directly follows from the well-known inverse function
theorem.

Proposition 1. If number of unknowns and number of
parameters are equal, i.e., (n � m), F(p) ∈ Rn is C1 in a
neighborhood of some initial parameters p0, and if the Ja-
cobian (zF/zp)(p0) is non-singular, then equation (9) has
unique solution in the neighborhood of p0 and at point
t∗ ∈ (t0, tend).

Proof. Let t∗ ∈ (t0, tend), then C∗ � (du/dt)(t∗, W∗, b∗) is
constant vector, and

F(p) � C∗ − f t
∗
, u, p(  � 0, (12)

is a system of non-linear algebraic equations having n

equations in n unknowns. Hence, the proposition holds by
virtue of the inverse function theorem. □

Remark 1. +e properties of F in the proposition is deter-
mined by the right hand side function f of the dynamical
systems (1). Hence, we require the C1 smoothness of f in
order to apply Proposition 1.

Proposition 2. =e best estimation for the parameter p is
obtained if t∗ is chosen according to Proposition 1 such that
the sum of the absolute error between solutions of the neural
network and the measured data is minimum. =at is, choose
t∗ such that



n

j�1
uj t
∗
, W
∗
, b∗(  − uj t

∗
( 

�����

�����, (13)

is minimum.

Proof. Condition (13) ensures the best fit for the solution
trajectories. □

Case 2. +e number of parameters does not equal to the
number of equations of the dynamical system. In this case,
we can solve the non-linear system (11) by minimizing the
following objective function

J2(p) �
1
2



m

i�1

du
dt

t
(i)

, W
∗
, b∗  − f t

(i)
, u, p 

�������

�������

2

. (14)

Remark 2. Let us note, that the approach suggested in Case 2
can also be applied to Case 1 but not the other way round.

4. Vectorized Algorithm for
Parameter Estimation

In this section, we describe the DNN algorithm to estimate
the parameters of the system of differential equations (1). It
differs from the algorithm in [36]. +e current algorithm
follows supervised learning, since we have the target output.
Additionally, it includes the case where the number of
parameters equals the number of unknowns.

(1) Input data: Define the vector T � [t(1), t(2), . . . , t(m)]

of size 1 × m.
(2) Define the deep neural network structure: Determine

the numbers of layers L, input layer (having one
unit), L − 1 hidden layers (having nl units), and the
output layer (having n units).

(3) Initialize the network parameters: Choose the
weights to have small random entries, whereas the
biases and the moment matrices in the Adam al-
gorithm to have zero entries.

(i) W1 has n1 × 1 dimension,
(ii) Wl has nl × nl−1 dimension, bl has nl × 1

dimension,
(iii) WL has n × nL−1 dimension, bL has n × 1

dimension,
(iv) Mw and Vw have the same size as the corre-

sponding W, and
(v) Mb and Vb have the same size as the corre-

sponding b.

(4) Forward propagation:

(i) For the input layer start by assigning, A0 � T.
(ii) For the hidden layers, 1≤ l≤ L − 1,

Z
l

� W
l
A

l−1
+ bl

, A
l

� σl
Z

l
 , (15)

where σl is the activation function corre-
sponding to the lth hidden layer.

(iii) For the output layer,

Z
L

� W
L
A

L−1
+ bL

, A
L

� σL
Z

L
 . (16)

(iv) Assign the trial solution using equation (8).

(5) Compute the cost J1(T, W, b) and its gradient (9):
Calculate the partial derivatives of the J1 function,
given in (9), gradients with respect to T, W and b. To
carry out these computations, we apply automatic
differentiation techniques [37, 40].

(6) Update the learning parameters using the Adam
method described in (10).
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(7) Solve the non-linear system of algebraic equations
(11) to obtain the parameter p. Recall that there are
two possible scenarios.

(i) If the number of unknowns equals that of pa-
rameters i.e., m � n, find t∗ which minimize the
absolute error given by (13) and solve the al-
gebraic equation given by (12).

(ii) If m≠ n; solve the minimization problem (14).

5. Numerical Experiments

In this section, we apply the algorithm proposed in the
previous Section 4, implemented in Python, to four different
benchmark problems taken from the literature.+e choice of
numbers of neurons, numbers of hidden layers, activation
functions, and other network parameters are specified
within each example. +ree out of four of these problems
have an analytical exact solution which is then used for
validating the model.

Example 1. In this example, taken from [34, 35] and ([6],
problem 1), we consider the following system of differential
equations related to the mathematical modeling of a chain of
irreversible chemical reactions

du1

dt
� −k1u1, u1(0) � 1,

du2

dt
� k1u1 − k2u2, u2(0) � 0.

(17)

+is system consists of two unknown functions, two
parameters. In this case, given the parameters
[k1, k2] � [5, 1], the analytical expression of the solution is as
follows:

u1(t) � e
−5t

,

u2(t) �
5
4
e

−5t
−1 + e

4t
 .

(18)

Let us take discrete points from the analytical solution
(18), see Table 1.

To solve this problem, we considered a neural archi-
tecture with one hidden layer of h � 40 neurons. Further-
more, sigmoid activation functions were applied to each unit
and trained with 90000 epochs.

+e results of applying the algorithm are shown in
Figure 2. On the one hand, Figure 2(a) proves the accuracy of
the method as we cannot distinguish between the analytical
and the approximated solution. On the other hand,
Figure 2(b) shows that the absolute error is bounded by
0.00015.

+e parameters k1 and k2 were worked out using both
approaches, Case 1 and Case 2, (see Remark 2). For the
approach described in Case 1, the corresponding system of
algebraic equation (11) was solved at t∗ � 0.6. Table 2 shows
the estimated parameters obtained through the approaches
described in Case 1 and Case 2, which can be applied due to
Remark 2. In this particular example, the approach from

Case 1 proved to be more accurate. Moreover, the com-
putational time of Step 7 in the algorithm was 2.5ms CPU
time for the first approach, whereas for the second approach,
it was 7.6ms.

Example 2. Dynamical system models a biomass transfer
([41], p. 531).

du1

dt
� −c1u1 + c2u2,

du2

dt
� −c2u2 + c3u3,

du3

dt
� −c3u3,

(19)

with initial condition u(0) � (0, 0, 1)T. For c � [1, 3, 5], the
analytical solution is given by the following:

u1(t) �
15
8

e
−5t

− 2e
−3t

+ e
−t

 ,

u2(t) �
5
2

−e
−5t

+ e
−3t

 ,

u3(t) � e
−5t

.

(20)

Following a similar procedure as for the previous ap-
plication example, we consider 11 points uniformly dis-
tributed in the interval from the analytical solution (20), see,
Table 3.

In this example, we have three unknown functions and
three system parameters. +e neural architecture considered
has one hidden layer with h � 10 neurons, tanh activation
functions for each unit. +e network is trained with 71800
epochs and the results are shown in Figure 3. On the one
hand, Figure 3 shows the estimated solutions using the DNN
approach and the analytical solutions. As we can see,
Figure 3(a) proves again the accuracy of the method. On the
other hand, Figure 3(b) shows that the absolute error is
bounded by 0.0002. +e corresponding system of algebraic
equation (11) was solved at t∗ � 0.4. Again, the parameter
estimation was conducted using approaches fromCase 1 and
Case 2. +e output is shown in Table 4. Last, the compu-
tational time of Step 7 in the algorithm was 2.9ms CPU time
for the first approach and 10.5ms for the second approach.

Table 1: Discrete points of the analytical solution (18).

t u1 u2

0.0 1.000000 0.000000
0.1 0.606531 0.372883
0.2 0.367879 0.563564
0.3 0.223130 0.647110
0.4 0.135335 0.668731
0.5 0.082085 0.655557
0.6 0.049787 0.623781
0.7 0.030197 0.582985
0.8 0.018316 0.538767
0.9 0.011109 0.494326
1.0 0.006738 0.451427
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We conclude that in this example, the approach de-
scribed in Case 1 was again more successful.

Example 3. �e next problem is taken from [20] and
consists of a dynamical system with initial value condition
containing three parameters p1, p2, and p3, see also, ([6],
problem 7).�e model occurs in several applications such as
chemical kinetics, theoretical biology, ecology, etc.

du1
dt

� p1u1 − p2u1u2, u1(0) � 1.0,

du2
dt

� p2u1u2 − p3u2, u2(0) � 0.3.

(21)

�e data are taken from reference [20], as shown in
Table 5.

It is to be noted that the number of unknowns and
parameters do not coincide in this example. Hence, unique
solvability for the corresponding algebraic system (11) is not
guaranteed. For solving this ODE system, we considered a
single layer neural network with 60 units in the hidden
layers, we have chosen 100000 epochs and the activation
functions in the hidden layer were tanh functions. Using the
approach described in Case 2, we obtain
p � [p1, p2, p3] � [0.854, 2.201, 2.013]. �e proposed algo-
rithm gives better �t compared to the results reported in
[20]. �is estimation of the parameters provides an accurate
solution; see Figure 4.

Example 4. Consider a dynamical system with three state
variables which models methanol-to-hydrocarbon process
([34], Example 5).

du1
dt

� − 2k1 −
k1u2

k2 + k5( )u1 + u2
+ k3 + k4( )u1,

du2
dt

�
k1u1 k2u1 − u2( )
k2 + k5( )u1 + u2

+ k3u1,

du3
dt

�
k1u1 u2 + k5u1( )
k2 + k5( )u1 + u2

+ k4u1,

(22)

1.00.80.6
Time t

Exact solution, ANN solution and data

0.4

u1 exact

u2 exact

u1 ANN

u2 ANN

u1
* data

u2
* data

0.20.0

0.0

0.2

0.4
u

0.6

0.8

1.0

(a)

u1 error

u2 error

minimum u1 error

minimum u2 error

1.00.80.6
Time t

The absolute error plot between data and ANN solutions

0.40.20.0

Er
ro

r

0.00030

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000

–0.00005

–0.00010

(b)

Figure 2: Results of Example 1. (a) Exact solution, ANN, and data. (b) Absolute error.

Table 2: Comparison of the two approaches for Example 1.

K True values Approach 1 Error of approach 1 Approach 2 Error of approach 2
k1 5.0 5.0050 0.005 4.9890 0.011
k2 1.0 1.0006 0.006 0.9974 0.003

Table 3: Data generated for Example 2.

t u1 u2 u3

0.0 0.000000 0.000000 1.000000
0.1 0.055747 0.335719 0.606531
0.2 0.166850 0.452330 0.367879
0.3 0.282767 0.458599 0.223130
0.4 0.381125 0.414647 0.135335
0.5 0.454416 0.352613 0.082085
0.6 0.502502 0.288780 0.049787
0.7 0.528506 0.230648 0.030197
0.8 0.536641 0.181006 0.018316
0.9 0.531127 0.140241 0.011109
1.0 0.515706 0.107623 0.006738
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with initial conditions, u0 � [1, 0, 0], and t ∈ [0, 1]. We took
the data from the reference ([34], Table 6).

Using the second approach, we estimated the parameters
k1, k2, k3, k4, and k5 for Example 4. Here, the sigmoid ac-
tivation function with 90000 epochs and one hidden layer
having 40 neurons was used. See Table 7 for comparison.
Figure 5 shows how the solution trajectories nicely �tted to
the data.

Table 8 shows that the results obtained in this paper are
in agreement with those from the existing literature.

5.1. Shallow vs. Deep Layers. Here, we looked at the e�ect of
adding more layers in the network. Speci�cally, we com-
pared the network architecture with one, two, and three

1.00.80.6
Time t

Exact solution, ANN solution and data

0.40.20.0

0.0

0.2

0.4
u

0.6

0.8

1.0

u1 NN

u2 NN

u3 NN

u1 exact

u2 exact

u3 exact

u1
* data

u2
* data

u3
* data

(a)

1.00.80.6

Time t

The absolute error between data and ANN solutions

0.40.20.0

Er
ro

r

0.0004

0.0003

0.0002

0.0001

0.0000

–0.0001

–0.0002
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u2 error

u3 error

minimum u1 error

minimum u2 error

minimum u3 error

(b)

Figure 3: Plot for comparing the ANN solution and exact solution. (a) Exact solution, ANN and data. (b) Absolute error.

Table 4: Comparison of the two approaches for Example 2.

c True values Approach 1 Error of approach 1 Approach 2 Error of approach 2
c1 1 1.0024 0.0024 0.9896 0.0103
c2 3 3.0026 0.0026 2.9811 0.1890
c3 5 5.0150 0.0150 4.9615 0.0385

Table 5: Measurement taken at discrete points Example 3.

t u1 u2

0.0 1.0 0.3
0.5 1.1 0.35
1.0 1.3 0.4
1.5 1.1 0.5
2.0 0.9 0.5
2.5 0.7 0.4
3.0 0.5 0.3
3.5 0.6 0.25
4.0 0.7 0.25
4.5 0.8 0.3
5.0 1.0 0.35

4 53
Time t

Fitted NN solution to the data

2

NN solution u1

NN solution u2

data u1

data u2

10
0.0

0.2

0.4

u

0.6

0.8

1.2

1.4

1.6

1.8

1.0

Figure 4: Neural network solution and the measured data for
Example 3.
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hidden layers. We considered Examples 1 and 2. In the three
possible network structure, we take the same activation
function, 1/(1 + e−2.5x) and we �x the error tolerance of the
cost function to be 10−6. Although further analysis is

required, the experimental results from Tables 9 and 6 show
that reasonable accuracy on the parameter estimation could
be achieved by increasing the hidden layer with less numbers
of epochs and computation time.

Table 6: Comparison of shallow vs. deep layers for Example 2.

Layers and neurons k1 k2 k3 Time (sec) Epochs

1, (40) 1.0044 2.9936 4.9451 20 20000
2, (40, 40) 1.0051 3.0125 5.0515 19 15107
3, (40, 40, 40) 1.0044 2.9936 4.9451 16 9800

Table 7: Comparison of the true and estimated parameters for Example 4.

k True values Approach 2 Error of approach 2
k1 5.2 5.199 0.001
k2 1.2 1.202 0.002
k3 0.0 0.0045 0.0045
k4 0.0 −0.0174 0.0174
k5 0.0 0.0056 0.0056

1.00.80.6
Time t

Fitted ANN solution to the data

0.40.2

ANN solution u1

ANN solution u2

ANN solution u3

data u1

data u2

data u3

0.0

0.0

0.2

0.4

u

0.6

0.8

1.0

Figure 5: Neural network solution and the measured data for Example 4.

Table 8: Comparison of of results obtained vs. reported in literature.

Examples True values Reported in literature �is work Epochs CPU time (s)

Example 1 k1 � 5 5.083 [34] 5.005 90000 79
k2 � 1 0.981 [34] 1.0006

Example 4

k1 � 5.2 5.187 [35] 5.199

90000 79
k2 � 1.2 1.199 [35] 1.202
k3 � 0 0 0.00145
k4 � 0 2.028 × 10−4 −0.017
k5 � 0 0 0.0056
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6. Conclusions and Outlook

In this paper, we developed a vectorized deep neural network
algorithm for estimating the unknown parameters in a
dynamical system based on a system of ODEs as well as the
solution functions of the system. +is problem arises in
different sciences as shown in the Numerical Experiments
Section. We highlighted that there are two approaches ap-
plicable to problems where the number of parameters co-
incides with the number of ODEs in the system. In this case,
the system of algebraic equation arising from the optimal
learning parameters (weights and biases) is uniquely solved
at a specific point provided that the right side function
satisfies the conditions stated in Proposition 1. Choosing t∗

significantly improves the accuracy of the parameter
estimation.

Last, the experimental result shows that, for deep neural
network, reasonable accuracy of parameter estimation could
be achieved for less number of epochs and hence less
running time.

For the future work, it is worth comparing the proposed
method with the traditional methods in terms of accuracy,
computational complexity, and robustness. Furthermore, it
is worth also comparing with other neural network archi-
tectures. Moreover, the method is yet to be exploited, for
instance, for solving delay differential equations, stochastic
dynamical systems, or rather more complex problems such
as integral equations.
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