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�is paper proposes a system to effectively identify brain tumors onMRI images using artificial intelligence algorithms and ADAS
optimization function.�is system is developed with the aim of assisting doctors in diagnosing one of the most dangerous diseases
for humans. �e data used in the study is patient image data collected from Bach Mai Hospital, Vietnam.�e proposed approach
includes two main steps. First, we propose the normalization method for brain MRI images to remove unnecessary components
without affecting their information content. In the next step, Deep Convolutional Neural Networks are used and then we propose
to apply ADAS optimization function to build predictive models based on that normalized dataset. From there, the results will be
compared to choose the most optimal method. �ose results of the evaluated algorithms through the coefficient F1-score are
greater than 94% and the highest value is 97.65%.

1. Introduction

�e brain is a particularly important organ, the control
center of the central nervous system, coordinating the ac-
tivities of all organs and parts in the human body. �e brain
has a complex structure and is protected and covered by the
skull, a very hard bone box. However, a rigid skull may help
protect the brain parenchyma from minor trauma but does
not prevent the development of lesions and abnormal
structures within the brain. One of the brain diseases of
primary concern in medicine is brain tumors. A brain tumor
is a condition in which abnormal cells grow in the brain.
Brain tumors are divided into two types: benign brain tu-
mors and malignant brain tumors (called cancer) [1].
Whether it is a benign brain tumor or a malignant brain
tumor, it affects brain cells, causing brain damage and being
even life-threatening. �ere are about 120 different types of
brain tumors, most of which are tumors in the brain tissue,
in addition to tumors in the meninges, pituitary gland,
cranial nerves. Any form of brain tumor can be dangerous

for the patient. Tumors in brain tissue or benign brain
tumors often progress slowly; the symptoms of brain tumors
in this case will also appear slower and more insidious. In
contrast, if the brain tumor grows rapidly, the patient will
feel the symptoms more pronounced in both frequency and
extent. With current medical capabilities, early detection of
abnormal structures in the patient’s brain can improve the
likelihood of successful treatment and limit the sequelae of
tumors to the brain in general and the patient’s health in
particular.

�e detection of brain tumors today is mostly based on
the ability of doctors to distinguish abnormalities on MRI
images which is a type of high-quality image in the field of
imaging [2].�is is a process that requires a lot of experience
and concentration to detect and classify brain diseases and
brain tumors. From brain MRI, it is possible to diagnose and
recognize many different types of brain tumors and offer
appropriate treatment methods [3]. However, the increasing
number of patients with the large number of images ob-
tained has become a major challenge in the field of
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diagnostic imaging, a field that requires rapid and accurate
evaluation of results by doctor. Artificial intelligence tech-
nology will help classify diseases from MRI images quickly
and bring high accuracy in disease diagnosis. �e classifi-
cation of diseases based on MRI images has not been too
difficult with high accuracy due to the introduction of GPUs
(Graphics Processing Unit) and image processing based on
artificial intelligence (AI).

�is research focuses on the application of image pre-
processing techniques and the development of algorithms
using convolutional neural network (CNN) models, which
are advanced deep learning models such as DenseNet201 [4],
ResNet152V2 [5], MobileNetV3 [6], and VGG19 [7]. At the
same time, the research also focuses on developing and
applying the ADAS optimization algorithm to improve the
accuracy in classifying normal people and brain tumor
patients. �e dataset in this work includes 1307 brain MRI
images in JPEG format that are manually classified by
specialists into 2 categories: normal human brain MRI
images and brain MRI images of people with brain tumor
disease. �e comparison of all experimental results will
evaluate the effectiveness of each model.

�e article is organized as follows. Section 2 presents the
previously conducted MRI brain tumor classification
studies. Section 3 provides an overview of brain MRI images
and the CNN algorithm models used. Section 4 presents the
experimental results and gives evaluation for each algorithm.
Conclusions and future work are outlined in Section 5.

2. Related Work

Several technical methods related to brain MRI images
classification since 2017 based on different classification
models are summarized in Table 1.�ey are divided into two
basic methods: using CNN network architecture and not
using CNN network architecture. In [10], the authors di-
vided brain MRI images into two categories: normal images
and images with abnormal signs.�ey used GLCM to get the
features of the MRI images; then a probabilistic neural
network (PNN) was used to classify the MRI brain images of
people as normal or abnormal. As a result, they obtained a
classification model with an accuracy of 95%. In [14], Ullah
et al. proposed a scheme to classify the brain MRI images of
normal people and patients using equilibrium histograms,
discrete wavelet transforms, and Feedforward Artificial
Neural Networks. Recently, deep learning method has been
widely used for the classification of brain tumors on MRI
images [8, 9]. �e deep learning method does not need to
manually extract the features of the images; it combines the
extraction and classification stages in the self-learning
process. �e deep learning method requires a dataset where
normalized processing of the MRI images is sometimes
required, and then salient features are identified during
machine learning [13].

Convolution Neural Network (CNN), one of the well-
known deep learning techniques for image data, can be used
as a feature extraction tool from which to capture related
features to perform data classification task. Feature maps in
the initial and higher layers of the CNN model extract

low-level features and specific features of high-level content,
respectively. Feature maps in the earlier layer construct
simple structural information, such as shapes, textures, and
edges, while the higher layers combine these low-level
features into constructing (encoding) expressions perfor-
mance, integrating local and global information.

Various researchers have proposed to use CNN to
classify brain tumors based on brain MRI image datasets
[11, 21, 22]. Deepak and Ameer [12] used pretrained
GoogLeNet to extract features from brain MRI images with
CNN network architecture to classify three types of brain
tumors and obtained up to 98% accuracy. Çinar and Yil-
dirim, [15] modified the ResNet50 network based on the
pretrained CNN network architecture by removing the last 5
layers and adding 8 new layers, and that method achieved
97.2% accuracy. Saxena et al. [17] used InceptionV3,
ResNet50, and VGG16 network architectures with legacy
methods to classify brain tumor data. In this study, ResNet50
model obtained the highest accuracy rate with 95%. Dı́az-
Pernas et al. [18] presented a CNN network architecture for
automatic brain tumor segmentation such as glioma, me-
ningioma, and pituitary tumor. �ey evaluated their pro-
posed model using the T1-weighted contrast-enhanced MRI
dataset and obtained an accuracy of 97.3%.

Siddiaue et al. [16] proposed a model based on modified
vgg-16 network architecture for brain tumor images clas-
sification which achieved an accuracy of 96% and an F1-
score of 97%. Abd El Kader et al. [19] developed a differential
deep-CNN-based model to classify MRI images with and
without tumors. In fact, this model was still based on the
basic CNN architecture but obtained an accuracy of 99.25%
and an F1-score of 95.23%. In [20], the authors successfully
deployed transfer learning for some variant architectures of
CNN to apply to the classification of MRI images with and
without brain tumors, in which MobileNetV2 had an ac-
curacy of 92% and F1-score of 92%; InceptionV3 had an
accuracy of 91% and an F1-score of 90.98%; VGG19 had an
accuracy of 88% and F1-score of 88.18%.

In summary, as observed from the above studies, the
accuracy obtained by using deep learning with CNN net-
work architecture to classify brain MRI is significantly
higher than that of the old traditional techniques. However,
deep learning models require a large amount of data to train
in order to perform better than traditional machine learning
techniques.

3. Materials and Methods

3.1. Brain Tumor MRI Images

3.1.1. Content Contained in MRI Images. �e commonly
used standard for MRI images today is DICOM, an acronym
for Digital Imaging and Communications in Medicine
Standards [23]. �is is an industry standard system devel-
oped to meet the needs of manufacturers and users in
connecting, storing, exchanging, and printing medical
images.

As for the DICOM image format standard, in addition to
the image files, it also includes header files as in Figure 1.
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Although stored in different files, when displayed, the header
information is displayed along with the MRI image infor-
mation via a “DICOM browser.” Data in MRI images in-
clude demographic information, patient information,
parameters acquired for imaging studies, image size, and
image matrix size. �e patient’s information displayed in-
cludes patient’s first and last name, gender, age, date of birth,
and place where the MRI scan was performed.

3.1.2. &e Role of MRI Images in the Diagnosis of Brain
Tumors. Magnetic resonance imaging of the brain [24] can
very clearly detect and describe abnormalities in the brain
parenchyma in general such as vascular tumors, arterial
occlusion, and invasion of the venous sinuses as well as the
relationship between tumor and surrounding structures.
�ere are three basic image formats of MRI images: T1W,
T2W, and T2 Flair.�ey are used in specific cases depending
on the situation of the disease.

T1W imaging is mainly used to identify necrotic tumors,
hemorrhage in tumors, or cysts. For example, with MRI
images in meningiomas, on T1-weighted images, most
meningioma shows no difference in signal intensity com-
pared with cortical gray matter.

For image in the T2W phase, the received signal has been
changed completely; it is a fairly homogeneous gain signal
block. Imaging is also helpful in evaluating hemorrhages and
cysts. In particular, the role of the T2W phase is very useful
in reflecting the homogeneity of benign soft tumors or
meningiomas.

For Fluid-Attenuated Inversion Recovery (T2-FLAIR),
this type of phase image is very useful to evaluate the
consequences and effects of edema. Although this finding is
not specific for meningiomas in particular, it is very
meaningful in the diagnosis as well as the long-term
prognosis for the patient.

Overall, the sensitivity and specificity of MRI are very
high in the diagnosis of meningiomas. MRI has been shown
to be superior in tumor delineation by its relationship to
surrounding structures.

3.2. Model Architectures

3.2.1. Supervised Learning. Supervised learning [25] is an
algorithm that predicts the output (outcome) of a new data
(new input) based on previously known (input, outcome)
pairs.�is data pair is also known as (data, label). Supervised
learning is the most popular group of machine learning
algorithms.

Figure 1: Actual DICOM image (patient information has been
removed).

Table 1: Summary of studies on brain tumor classification.

Author Classification method Objective Dataset Feature extraction
method Accuracy

Khawaldeh et al. [8] CNN Classification of brain MRI into
normal and abnormal

587 MR
images CNN 91.16%

Paul et al. [9] Fully connected and
CNN

Brain tumor classification of MR
brain image

3064 MR
images CNN 91.43%

Varuna Shree and
Kumar [10]

Probabilistic neural
network (PNN)

Classification of brain MRI into
normal and abnormal

650 MR
images

Gray level cooccurrence
matrix (GLCM) 95%

Hemanth et al. [11] CNN Classification into normal and
abnormal

220 MR
images CNN 94.5%

Deepak and Ameer
[12] Deep transfer learning Classification of glioma,

meningioma, and pituitary tumors
3064 MR
images Google Net 98%

Das et al. [13] CNN Brain tumor classification 3064 MR
images CNN 94.39%

Ullah et al. [14] Feedforward neural
network

Classification of brain MRI into
normal and abnormal

71 MR
images DWT 95.8%

Çinar and Yildirim
[15] CNN models Brain tumor detection and

classification
253 MR
images CNN 97.2%

Siddiaue et al. [16] Proposed DCNN model Brain tumor classification 253 MR
images CNN 96%

Saxena et al. [17] CNN networks with
transfer learning

Binary classification of brain
tumor normal and abnormal

253 MR
images CNN 95%

Dı́az-Pernas et al.
[18] Multipathway CNN Brain tumor classification 3064 MR

images CNN 97.3%

Abd El kader et al.
[19]

Proposed differential
deep-CNN Brain tumor classification 25000 MR

images CNN 99.25%

Tazin et al. [20] CNN architectures Brain tumor classification 2513 MR
images CNN Up to

92%
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Mathematically, supervised learning consists of a set of
input variables X � x1, x2, . . . , xN  and a corresponding set
of labels Y � y1, y2, . . . , yN , where xi and yi are vector.
�e data pairs (xi, yi) ∈ X × Y are called the training
dataset. From this training dataset, we need to create a
function that maps each element from the set X to a cor-
responding (approximate) element of the set Y as

yi ≈ f xi( , ∀i � 1, 2, . . . , N. (1)

�e goal is to approximate the function f very well so
that when we have a new data x we can compute its cor-
responding label:

y � f(x). (2)

A problem is called classification if the labels of the input
data are divided into a finite number of groups.

3.2.2. Convolutional Neural Network Architectures.
Convolutional Neural Network (CNN) [31] is one of the
most popular and most influential deep learning models in
the computer vision community. CNN is used in many
problems such as image recognition and video analysis or for
problems in the field of natural language processing and
solves most of these problems well.

CNN includes a set of basic layers such as convolution
layer, nonlinear layer, pooling layer, and fully connected
layer. �ese layers are linked together in a certain order.
Basically, an image will be passed through the convolution
layer and nonlinear layer first; then the calculated values will
be passed through the pooling layer to reduce the number of
operations while preserving the characteristics of the data.
�e convolution layer, nonlinear layer, and pooling layer can
appear one or more times in the CNN network. Finally, the
data is passed through fully connected network and soft-max
to calculate the probability of object classification.

Table 2 summarizes some typical CNN network archi-
tectures since 2012. To evaluate and compare network
structures, two parameters are used, Top 1 Accuracy and Top
5 Accuracy. In the case of Top 1 Accuracy, the correct
model’s prediction must be the model that predicts the class
with the highest probability. In the case of Top 5 Accuracy,
the correct model’s prediction is the model that correctly
predicts one of the 5 classes with the highest probability.

In this study, four different network architectures are
used: DenseNet201 [4], ResNet152V2 [5], MobileNetV3 [6],
and VGG19 [7]. All the above four network architectures are
developments and upgrades based on the basic network
architecture CNN, one of the advanced deep learning
models for image classification that has been verified with
high accuracy on image sets, ImageNet [32]. �ese CNN
variant network architectures are widely used in image
recognition and classification problems. All four network
architectures have a structure consisting of two basic layers,
the feature extraction layer and the classifier layer. In this
research, the input to the network architecture is a 256 × 256
brain MRI image containing information with or without
brain tumors. �e feature extraction layer has the role of

extracting features of brain MRI images such as white
matter, gray matter, cerebrospinal fluid, cerebral cortex, and
brain tumor. �en, the classification layer is responsible for
synthesizing the features of brain MRI images, giving spe-
cific features of images with tumors and images without
tumors to serve the classification process.

3.3. Optimal Algorithms. �e optimization algorithm is the
basis for building a neural network model with the aim of
“learning” the features (or patterns) of the input data, from
which it is possible to find a suitable pair of weights and
biases to optimize the model. But the question is how to
“learn?” Specifically, how the weights and biases are found,
not just randomly taking the weights and biases values for a
finite number of times and hoping after some steps a so-
lution can be found. �erefore, it is necessary to find an
algorithm to improve weights and biases step by step, and
that is why optimizer algorithms were created.

Some of the factors commonly used to evaluate an
optimizer algorithm are as follows:

Fast convergence (Training Process)
High generalization (can recognize previously un-
trained patterns)
High accuracy

�e popular optimization algorithms are listed in Fig-
ure 2. �ese algorithms are GD-Gradient Descent [33],
SGD-Stochastic Gradient Descent [34], ADAS-Adaptive
Scheduling of Stochastic Gradients [35], AdaGrad-Adaptive
Subgradient Methods for Online Learning and Stochastic
Optimization [36], Momentum [37], RMSProp [33], and
ADAM-Adaptive Moment Estimation [38].

Among the above algorithms, the Optimal Algorithms
belonging to the adaptive family usually have fast conver-
gence speed. Meanwhile, algorithms belonging to the SGD
family often have high generalization. However, this study
only focuses on the development and application of ADAM
and ADAS algorithms.

3.3.1. ADAM Algorithm: A Method for Stochastic
Optimization. ADAM is a combination of Momentum and
RMSProp. One of the key components of ADAM is expo-
nential weighted moving averages (also known as leak av-
erages) that estimate both the momentum and the second-
order moment of the gradient. Specifically, it uses state
variables as follows:

v←β1vt − 1 + 1 − β1( gt,

s←β2st − 1 + 1 − β2( g
2
t ,

(3)

where v is the first moment vector, s is the second moment
vector, β1 and β2 are the jump parameters at the initial and
the second points in ADAM’s algorithm, t is the time for the
correction steps, and g is the gradient. Here β1 and β2 are
nonnegative weight parameters. Popular choices for them
are β1 � 0.9 and β2 � 0.999. �is means that the variance
estimate moves much slower than the momentum term.
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Note that if initializing the values v0 � s0 � 0, the algorithm
will have a significant initial bias towards smaller values.�is
problem can be solved using 

t
i�0(1 − βt)/(1 − β) to nor-

malize the terms. Similarly, state variables are normalized as
follows:

vt
′ �

vt

1 − βt
1
,

vt
′ �

st

1 − βt
2
.

(4)

From the appropriate estimates, the updated equations
can be established. First, the gradient value will be adjusted,
similar to that in RMSProp [33] to get

gt
′ �

ηst��

st
′



+ ε
,

(5)

where ε is a constant and it is chosen to be ε � 10−6 to
balance arithmetic stability and reliability, and η is the
learning rate. From there, the update step is defined as
follows:

xt←xt − 1 − gt
′. (6)

When looking at the design of ADAM, the inspiration of
the algorithm is clear. Momentum and range are clearly
represented in the state variables. Moreover, based on
RMSProp it is easy to see that the combination of both terms
is quite simple. Finally, the learning rate η allows us to
control the update step length to solve convergence
problems.

3.3.2. ADAS Algorithm: Adaptive Scheduling of Stochastic
Gradients. ADAS [35] is an optimization algorithm be-
longing to the family of Stochastic Gradient Descent (SGD)
algorithms. �e updated rules for ADAS are established
using SGD with momentum as follows:

η(t, l)←β.η(t − 1, l) + ζ · [G(t, l) − G(t − 1, l)],

v
k
l Gα · v

k−1
l − η(t, l) · g

k
l ,

θk
l Gθk−1

l + v
k
l ,

(7)

where η is the learning rate, t is the time for the correction
steps, β is ADAS gain factor, ζ is the knowledge gain
hyperparameter, k is the current minibatch, t is the current
epoch iteration, l is the convolution block index, G(·) is the
average knowledge gain obtained from both mode-3 and
mode-4 decompositions, v is the velocity term, and θ is the
learnable parameter. �e learning rate is calculated relative
to the rate of change of knowledge acquired after the training
epochs.�e learning rate η(t, l) is then further updated by an
exponential moving average called the gain factor, with the
hyperparameter β, to accumulate the history of the
knowledge gained over the series epochs. In fact, β controls
the trade-off between convergence rate and training accu-
racy of ADAS.

ADAS is an adaptive optimization tool for scheduling
the learning rate in the training of a CNN network. ADAS
exhibits a much faster convergence speed than other opti-
mization algorithms. ADAS demonstrated generalization
characteristics (low test loss) on par with SGD-based op-
timizers, improving on the poor generalization character-
istics of adaptive optimizers. In addition to optimization,
ADAS introduces new polling metrics for CNN layer re-
moval (quality metrics).

3.4. Accuracy and F1-Score. �e classification problem in
this study is a binary classification problem, in which one
class is an MRI image with a brain tumor and the other is an
MRI image without a brain tumor. �is study considers the
image class with brain tumor to be positive and the
remaining image class without brain tumor to be negative.
�e parameters True Positive (TP), False Positive (FP), True

Table 2: Some CNN architectures and ImageNet benchmark (image classification).

CNN architectures Author Top 1 accuracy (%) Top 5 accuracy (%)
AlexNet Krizhevsky et al. [26] 63.3 84.6
VGG16 Simonyan and Zisserman [7] 74.4 91.9
VGG19 74.5 92.0
GoogLeNet (InceptionV1) Szegedy et al. [27] 69.8 89.5
ResNet50 He et al. [5] 77.1 93.3
ResNet152 78.6 94.3
DenseNet201 Huang et al. [4] 77.4 93.7
MobileNet224 Howard et al. [6] 70.6 89.5
MobileNetV3 79.0 94.5
ResNeXt101 Xie et al. [28] 80.9 95.6
EfficientNet-L2 Tan and Le [29] 90.2 98.8
RegNet-Y Radosavovic et al. [30] 79.9 95.0

GD SGD Adagrad

Momentum

RMSprop AdaM

AdaS

Figure 2: �e development of optimization algorithms.
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Negative (TN), and False Negative (FN) are described as in
Table 3.

In this paper, the parameters used to evaluate the ef-
fectiveness of the model are accuracy, precision, recall, and
F1-score [39]. When building a classification model, the
ratio of correctly predicted cases to the total number of cases
is always considered. �at ratio is called accuracy. Precision
is the answer to the question: how many true positives are
there out of the total number of positive diagnoses? Recall
measures the rate of correctly predicting positive cases
across all samples in the positive group. F1-score is the
harmonic mean between precision and recall. �erefore, in
situations where the precision and recall are too different,
the F1-score will balance both values and help us to make an
objective assessment. Accuracy, precision, recall, and F1-
score are defined as the following equations:

accuracy �
TP + TN

total sample

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

F1 � 2 ×
precision × recall
precision + recall

.

(8)

4. Experiments and Results

�is study will compare the results of the network archi-
tectures DenseNet201, ResNet152V2, MobileNetV3, and
VGG19 in the cases before and after data normalization with
the ADAM optimization function. �en, the study will
specifically compare the performance of the above algo-
rithms with the ADAM and ADAS optimization functions
on the same normalized dataset.

4.1. Collecting and Normalizing Data

4.1.1. Collecting Data. In this study, the dataset is a set of
MRI brain tumors of 123 patients with brain tumors at Bach
Mai Hospital, Hanoi, Vietnam, of all ages. Initially, the MRI
image was in DICOM format; to remove the information in
the patient’s DICOM image and convert the image format
for machine learning, the DICOM format was converted to
the JPEG image format. �e size of the converted images is
256 × 256 pixels.

�e image used during training is a T2 pulse sequence
image as in Figure 3. Signal intensity with T2 phase cor-
relates very well with not only homogeneity but also tissue
profile. Specifically, with low-intensity signals, the tumor has
a fibrous and stiffer character than the normal parenchyma.
For example, the tumor is fibroblastic in nature, while the
more intense sections show a softer characteristic such as a
vascular tumor. �erefore, the image of the T2 pulse se-
quence is considered a pulse sequence that best assesses
whether the patient has a brain tumor or not.

With the above 123 patients with brain tumor pathology
and 100 healthy persons, 1307 images of T2 pulse sequence
were selected, of which 647 images showed brain tumors and
660 images did not show brain tumors. �e images are all
brought to a size of 256× 256 pixels to serve the training and
testing process of the algorithms.

4.1.2. Normalizing Data

(1) Minimizing Image Redundancy. In the raw MRI image
data, it is easy to see that there is a rather large black border,
but that is the air in the optical field of themachine, so it does
not carry information about the skull to be examined.
�erefore, it is really necessary to remove the black out-of-
the-edge image from the MRI image without affecting the
image information content.

�e skull on an MRI is usually surrounded by a bright
white border, the outer layer of fat around the skull.
Meanwhile, the MRI image is a grayscale image (one-di-
mensional); the range of values of each element in the image
matrix representing the brightness of the pixel is in the range
[0, 255]. In order tomaximize the black border on the image,
the easy method implemented by this study is to find the first
pixel with a nonzero value in the directions from left to right,
from right to left, from top to bottom, and from bottom to
top as shown in Figure 4. After determining the coordinates
of those pixels, remove the outer edges.�e normalization of
images by cutting out the parts that do not make sense in
image classification aims to increase the accuracy of the
training process and reduce the training time of the
algorithm.

(2) Normalizing Image Size. �e normalization of the image
size helps to improve the accuracy and efficiency of the
algorithm. In this study, the image size is 256 × 256. �is is
the right image size for AI algorithms and ensures MRI

Table 3: Confusion matrix.

Actual
Predicted

Positive Negative
Positive TP FN
Negative FP TN

Figure 3: Image of the T2 pulse sequence showing the patient’s
brain tumor.
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image quality after resizing. Choosing a smaller size will
make it difficult for AI algorithms to detect small differences
between pixels, affecting the accuracy of the algorithm. If the
image size is larger, it will affect the quality of the MRI image
after resizing/reducing image quality, negatively affecting
the accuracy and performance of the algorithm.

Normalization of data is processed by image data files
corresponding to each type of patient’s MRI image and by
using Python programming. �e normalized data removes
the nonsignificant parts of the image classification, which
increases the accuracy of the model training process and
reduces the training time of the algorithm.

4.2. Image Classification Process

Step 1. Preparing the training dataset and feature extraction.
�is step is considered an important step in machine

learning problems because it is the input for learning to find
the model of the problem. We must know how to select the
good features, remove the bad features of the data or the
noisy components, and estimate how many dimensions of
the data are good or in other words how many features to
select. If the number of dimensions is too large, making it
difficult to calculate, it is necessary to reduce the number of
dimensions of the data while maintaining the accuracy of the
data (reduce dimension).

In this step, the dataset to test on the model is needed to
be prepared. Usually, cross-validation will be used to divide
the dataset into two parts, one for training (training dataset)
and the other for testing purposes on the model (testing
dataset). �ere are two ways commonly used in cross-val-
idation: splitting and k − folding. For the above algorithms,
during the training process, the data is divided according to
the ratio 6 : 2 : 2, in which 60% of the data is for training and
20% is for the training validation process (validation). And
the remaining 20% is for the process of retesting the model
after training.

With the dataset consisting of 1307 images (T2-Images)
as mentioned above, the image set has been divided
according to the ratio 6 : 2 : 2 to serve the training, vali-
dation, and testing processes. Specifically, the number of
images used includes 813 images for training, of which 414
images do not show brain tumors and 399 images show

brain tumors; 239 images for validation, including 121
images showing brain tumors and 118 images not showing
brain tumors; 255 images for the test process, including 130
images showing brain tumors and 125 images not showing
brain tumors.

Step 2. Classifier model.
�e purpose of the training model is to find a function

f(x) from which to label the data. �is step is often called
learning or training.

f(x) � y, (9)

where x is the feature or input of the data and y is the class
label or output.

�e classification model used here is the above super-
vised learning algorithms DenseNet201, ResNet152V2,
MobileNetV3, and VGG19.

Step 3. Checking data with model to make prediction.
After finding the classification model in Step 2, in this

step, new data will be added to test on the classification
model.

Step 4. Evaluating the classification model and selecting the
best model.

In the final step, the model will be evaluated by assessing
the error level of the testing data and the training data
through the found model. If the system results are not as
expected, the parameters (turning parameters) of the
learning algorithms must be changed to find a better model
as well as to test and reevaluate the classification model.
From there, it is possible to choose the best classification
model for the problem. All steps mentioned above can be
described as in Figure 5.

4.3. Evaluation of Experiment Results

4.3.1. Evaluating the Effectiveness of Applying Data
Normalization

(1) Results of Training Process. In order to appraise the ef-
fectiveness of data normalization, this work evaluates the
convergence (accuracy) of network architectures in
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Figure 4: Removal of redundant areas of MRI images.
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classification through 100 epochs.�e network architectures
used here are DenseNet201, ResNet152V2, VGG19, and
MobileNetV3. �e optimal algorithm used in the training
processes in this section is the ADAM optimization
algorithm.

From Figures 6–9, it is easy to see that the training
accuracies before and after normalization of the network
architectures are almost the same. �e specific results of the
DenseNet201, ResNet152V2, MobileNetV3, and VGG19
network architectures are 99.88%, 99.95%, 99.7%, and
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Figure 11: Loss of network architectures after data normalization.
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Figure 12: Training time over 100 epochs of network architectures before and after normalization.

Table 4: Table of comparison results between algorithms before and after data normalization.

CNN
architectures

Training accuracy Validation accuracy Time (s)
Before data

normalization
After data

normalization
Before data

normalization
After data

normalization
Before data

normalization
After data

normalization
DenseNet201 99.87% 99.88% 91.63% 94.14% 3165 455
ResNet152V2 99.95% 99.95% 92.86% 93.31% 3639 927
MobileNetV3 99.66% 99.70% 88.70% 91.21% 1869 1398
VGG19 99.91% 99.91% 89.54% 92.88% 3165 2691
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99.91%, respectively. However, the results of the validation
step of the algorithms showed a marked increase in the
accuracy when comparing before and after data normali-
zation. Specifically, the accuracy of the validation process for
the DenseNet201 network architecture after normalization is
94.14%, higher than before normalization with an accuracy
of 91.63%. �e validation result of ResNet152V2 network
architecture after normalization has an accuracy of 93.31%,
slightly better than before normalization with an accuracy of
92.86%. And this result of ResNet152V2 network archi-
tecture after normalization has higher stability than before

normalization as presented in Figure 7; Figure 8 indicates
that the validation process of MobileNetV3 network ar-
chitecture after normalization has higher accuracy than
before normalization with accuracy of 91.21% and 88.70%,
respectively. �e validation results of the VGG19 network
architecture are similar to those of the three algorithms
above with an accuracy of 92.88% after normalization
compared to 89.54% before normalization as shown in
Figure 9. And it can be seen that all network architectures
have convergence with 90% accuracy after only 40 epochs
when they use normalized data.
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Figure 16: VGG19 network architecture accuracy based on F1-score.

Table 5: Accuracy of network architectures based on F1-score.

CNN architectures DenseNet201 ResNet152V2
F1-score 95.29% 95.69%
CNN architectures MobileNetV3 VGG19
F1-score 92.55% 92.16%
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Figure 17: Accuracy of DenseNet201 network architectures using ADAM and ADAS optimization algorithms.
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In this paper, in order to be consistent with the collected
brain MRI image data, with the ADAM optimal algorithm
and the training process with steadily increasing accuracy,
where the loss (loss) decreases the most, this study used
different learning rates for each network architecture.
Specifically, with the network architectures DenseNet201,
ResNet152V2, MobileNetV3, and VGG, the initial learning
coefficients are η0 � 3e − 6; 3e − 6; 2e − 5; 3e − 6{ }, respec-
tively. And the results of using these learning coefficients
have shown the stability of the training process to avoid
overfitting and are shown in Figures 10 and 11.

In practice, it is not always the case that the longer the
model training process, the lower the loss function. When it
reaches a certain number of epochs, the loss function value

will reach saturation; it can no longer decrease and may even
increase again. �at is overfitting phenomenon. To prevent
this phenomenon and free up computational resources, the
training process should be stopped right at that saturation
point. In this study, as shown in Figure 11, it can be seen that
the values of the loss function for all architectures reach
saturation when the number of epochs is 100.

When comparing the efficiency of processing speed on
the same resource, based on Figure 12, it can be seen that all
4 network architectures give a shorter training time with
normalized image data than the training time with denor-
malized image data. Comparison results between algorithms
with datasets before and after normalization are shown in
Table 4. Clearly, the results showed that the benefits of
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Figure 18: Accuracy of ResNet152V2 network architectures using ADAM and ADAS optimization algorithms.

0 20 40 60 80 100
epoch

1.0

0.8

0.6

0.4

0.2

0

ac
cu

ra
cy

Model Train Accuracy Mobilenet_v3

Mobilenet_v3_with_adam
Mobilenet_v3_with_adas

0 20 40 60 80 100
epoch

1.0

0.8

0.6

0.4

0.2

0

va
l_

ac
cu

ra
cy

Model Validation Accuracy Mobilenet_v3

Mobilenet_v3_with_adam
Mobilenet_v3_with_adas

Figure 19: Accuracy of MobileNetV3 network architectures using ADAM and ADAS optimization algorithms.
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normalizing the image data make the network architectures
capable of classifying brain tumors with higher accuracy and
shorter training time.

(2) Evaluating the Accuracy of Network Architectures Based
on F1-Score. After performing the training process, models
of the respective network architectures were generated. In
this part, they will be tested for testing on the test dataset.
�is dataset includes 255 images of which 130 images are
showing brain tumors and 125 images are not showing brain
tumors.

�e results illustrated in Figures 13–16 and the summary
data in Table 5 show that all algorithms have an accuracy
greater than 92% when based on the F1-score, in which
ResNet152V2 network architecture has the highest results.
�is is expected to be implemented in practice.

4.3.2. Comparing the Accuracy of Models Using ADAM and
ADAS Optimal Function

(1) Results of Training Process. In this section, the accuracy of
the classification network architectures will be evaluated and
compared using the ADAM and ADAS optimization
functions. �e network architectures will execute the
training, validation, and testing processes on the same
normalized database with the same computational
resources.

Similar to the ADAM optimization algorithm, in order
to fit the brain MRI image data, it is suitable for the ADAS
optimization algorithm and the training process has a steady
increase in accuracy and the most uniform decrease in loss.
Each network architecture uses its own learning coefficient.
In this study, the learning coefficients of DenseNet201,
ResNet152V2, MobileNetV3, and VGG network architec-
tures are η0 � 7e − 3; 5e − 3; 4e − 3; 1e − 2{ }, respectively.

With the above input data, the experimental results of
network architectures with ADAM and ADAS optimal

functions are shown in Figures 17–20, respectively. �ese
results show that the training accuracy of the network ar-
chitectures using the ADAM and ADAS optimization al-
gorithms are almost the same with the obtained values being
greater than 99%. However, for the results of the validation
process of the network architectures, the accuracy when
implementing the ADAS optimization algorithm has im-
proved significantly in comparison with when using the
ADAM optimal algorithm. Specifically, the accuracy of the
validation process for the DenseNet201 network architecture
using the ADAS optimization algorithm is 95.39% compared
to 94.14% when using the ADAM optimization algorithm.
And to achieve accuracy, with the ADAM optimal algo-
rithm, the DenseNet201 network needs 40 epochs while with
the ADAS optimization algorithm it only needs 10 epochs.
�e training validation process of ResNet152V2 network
architecture using ADAS and ADAM optimization algo-
rithms has the accuracy of 94.47% and 93.31%, respectively.
To achieve 90% accuracy, ResNet152V2 network needs 30
epochs when using ADAM optimal algorithm while with
ADAS optimal algorithm it only needs 20 epochs. For the
MobileNetV3 network architecture, the accuracy of the
validation process when using the ADAS optimization
function is 95.39% compared to 91.21% when using the
ADAM optimization algorithm. �e convergence speed for
using the ADAS optimization function is also much higher
than using the ADAM function, specifically to achieve 90%
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Figure 20: Accuracy of VGG19 network architectures using ADAM and ADAS optimization algorithms.

Table 6: Comparison results between network architectures using
ADAM and ADAS optimization algorithms.

CNN
architectures

Training
accuracy

Validation
accuracy Times (s)

ADAM ADAS ADAM ADAS ADAM DAS
DenseNet201 99.87% 99.88% 94.14% 95.39% 2455 s 2340 s
ResNet152V2 99.95% 99.97% 93.31% 94.47% 2927 s 3161 s
MobileNetV3 99.66% 99.71% 91.21% 95.39% 1398 s 1234 s
VGG19 99.91% 99.9% 92.88% 94.56% 2691 s 2447 s
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Figure 21: Training time over 100 epochs of network architectures with ADAM and ADAS optimization functions.
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Figure 22: Accuracy evaluation matrix of DenseNet201 network
architecture using ADAS optimization algorithm via F1-score.
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Figure 23: Accuracy evaluation matrix of ResNet152V2 network
architecture using ADAS optimization algorithm via F1-score.
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Figure 24: Accuracy evaluation matrix of MobileNetV3 network
architecture using ADAS optimization algorithm via F1-score.
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Figure 25: Accuracy evaluation matrix of VGG19 network ar-
chitecture using ADAS optimization algorithm via F1-score.
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accuracy, with the ADAM MobileNetV3 function requiring
40 epochs while only 10 epochs are required when using the
ADAS function. �e VGG19 architecture also has the same
results as the above architectures with the accuracy of
94.56% and 92.88%, respectively, with the ADAS and
ADAM functions. And also with 90% accuracy, the number
of VGG19 network architecture epochs needs to be 25 and
11 when using the ADAM and ADAS functions,
respectively.

�e performance comparison between ADAS and ADAM
algorithms is summarized in Table 6. According to this table
as well as the above analysis, it is easy to see that the ADAS
optimization algorithm has increased the accuracy of the
training process; the convergence in the training process also
occurs faster. Figure 21 shows the comparison of training time
when using 2 optimization functions with the same nor-
malized dataset. Obviously, the model training time when
using the ADAS function in most network architectures is
faster. Only for ResNet152V2 architecture, the training time
with the use of the ADAS function is slightly longer than with
the use of the ADAM function. �is can also be one of the
problems that need to be studied in the future.

(2) Evaluation of F1-Score of Network Architectures Using
ADAS Optimization Algorithm. Performing evaluation
through F1-score similar to ADAM’s algorithm, according
to Figures 22–25, the accuracy evaluation through F1-score
of network architectures using ADAS optimization function
is established as shown in Table 7.

Obviously, when comparing the synthetic results pre-
sented in Tables 5 and 7, it is easy to see that the ADAS
optimization algorithm has significantly increased the ac-
curacy of the aforementioned models, in which the Mobi-
leNetV3 network model gives the highest accuracy of
97.65%. Combined with the results analyzed above, for the
problem of brain tumor identification on MRI-T2 images,
the ADAS optimization algorithm has significantly im-
proved the accuracy of the training, validation, and testing
processes of all the models surveyed in this work as well as

shortening the training time of those models compared to
the ADAM algorithm.

4.3.3. Comparison of Results. �e performance of the pro-
posed system in our study will be compared with the most
recently published studies mentioned above. �e results of
that comparison are shown in Table 8. Based on this table, it
is easy to see that the proposed system gave better results in
both accuracy and F1-score than other studies with the same
subjects. Obviously, although using the same variants of the
DCNNs family, the data normalization and the ADAS
optimization function helped to significantly improve the
performance of the proposed system compared to those
other systems.

5. Conclusion

�is article has focused on deploying the application of ar-
tificial intelligence algorithms in classifying brain tumor pa-
tients and normal people using human brainMRI images.�e
dataset used is MRI images of Vietnamese people, including
123 patients and 100 healthy people. �e four algorithms that
are experimentally compared in the study are DenseNet201,
ResNet152V2, MobileNetV3, and VGG19. �e experimental
results in the study have shown that the normalization of the
initial data processing is very important when it has signifi-
cantly increased the accuracy in classifying and detecting
patients as well as reducing the training time of those models.
On the other hand, the paper has also shown the efficiency of
the ADAS optimization function compared with the very
popular ADAM optimization function. In particular, the
ADAS algorithm has advantages in comparison with the
ADAM function in improving accuracy as well as reducing
model training time. Of the four algorithmsmentioned above,
the MobileNetV3 algorithm is the most efficient. �is can be
considered as the foundation for implementing the above
system in practice. However, the system also has the disad-
vantage that the dataset is still small. In the future, besides

Table 7: Accuracy of network architectures based on F1-score using ADAS optimization function.

CNN architectures DenseNet201 ResNet152V2
F1-score 96.47% 96.86%
CNN architectures MobileNetV3 VGG19
F1-score 97.65% 94.90%

Table 8: Accuracy and F1-score comparison with other previous studies.

Paper Algorithms Accuracy F1-score
Dı́az-Pernas et al. 2021 [18] Multipathway CNN 99.4% 97.3%
Siddiaue et al. 2021 [16] Proposed DCNN model 96% 97%
Abd El Kader et al. 2021 [19] Proposed differential deep-CNN 99.25% 95.23%
Tazin et al. 2021 [20] CNN architectures Up to 92% Up to 92%
�is paper CNN architectures Up to 99.97% Up to 97.5%
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collectingmore data to increase the accuracy of the system, the
research will also developmethods to specifically classify those
tumor types according to their tumor characteristics (benign
or malignant) or by type of disease.
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