Hindawi

Applied Computational Intelligence and Soft Computing
Volume 2022, Article ID 2232000, 17 pages
https://doi.org/10.1155/2022/2232000

Review Article

@ Hindawi

Rule-Based Classification Based on Ant Colony Optimization: A

Comprehensive Review

Sayed Kaes Maruf Hossain

» Sajia Afrin Ema

, and Hansuk Sohn

Department of Industrial Engineering, New Mexico State University, Las Cruces, NM 88003, USA

Correspondence should be addressed to Hansuk Sohn; hsohn@nmsu.edu

Received 19 January 2022; Revised 8 March 2022; Accepted 25 March 2022; Published 8 April 2022

Academic Editor: Manikandan Ramachandran

Copyright © 2022 Sayed Kaes Maruf Hossain et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The Ant Colony Optimization (ACO) algorithms have been well-studied by the Operations Research community for solving
combinatorial optimization problems. A handful of researchers in the Data Science community have successfully implemented
various ACO methodologies for rule-based classification. This family of ACO algorithms is referred to as AntMiner algorithms.
Due to the flexibility of the framework, and the availability of alternative strategies at the modular level, a systematic review on the
AntMiner algorithms can benefit the broader community of researchers and practitioners interested in highly interpretable
classification techniques. In this paper, we provided a comprehensive review of each module of the AntMiner algorithms. Our
motivation is to provide insight into the current practices and future research scope in the context of the rule-based classification.
Our discussions address ACO methodologies, rule construction strategies, candidate selection metrics, rule quality evaluation
functions, rule pruning strategies, methods to address continuous attributes, parameter selection, and experimental settings. This
review also reports a summary of real-life implementations of the rule-based classifiers in diverse domains including medical,
genetics, portfolio analysis, geographic information system (GIS), human-machine interaction (HMI), autonomous driving, ICT,
quality, and reliability engineering. These implementations demonstrate the potential application domains that can be benefitted

from the methodological contributions to the rule-based classification technique.

1. Introduction

The rule-based classification method appeals to the data
mining community due to the high interpretability of the
classifier. While widely used classification techniques such as
Support Vector Machines and Artificial Neural Network are
admired for their robustness and accuracy, they are often
criticized for the lack of interpretability. In contrast, the
decision rules in a rule-based classifier are readily inter-
pretable to humans. Naturally, the rule-based classification is
popular in the application areas where the interpretability of
the classifier to domain experts is deemed crucial such as
cancer research, genetics, and financial analytics [1, 2].

A rule-based classifier consists of a set of “IF-THEN”
rules obtained by statistically apprehending the training
data. Each rule of the classifier consists of an antecedent and
a consequent. The antecedent part contains one or more

terms, where each term is comprised of a variable name, an
operator, and a value. In the cases where an antecedent
contains more than one term, the terms are joined by the
“AND” conjunction. On the other hand, the consequent part
of the rule represents the class label associated with the rule.
The key components of a generic classification rule are
shown in Figure 1.

The process of exploring such rules requires a decision
on which attributes and corresponding values to consider for
classification. This is aligned with the idea of combinatorial
optimization, in the sense that the goal is to find a set of
attributes and corresponding instance values connected by
conjunctions, which maximizes the objective measures and
accuracy. If the dataset under consideration is large, the
computational effort for extracting such a set of rules can be
considerably expensive. Given this context, using intelligent
heuristic search algorithms can be helpful in reducing the

mailto:hsohn@nmsu.edu
https://orcid.org/0000-0003-2023-3031
https://orcid.org/0000-0002-2646-5338
https://orcid.org/0000-0002-8126-730X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2232000

Antecedent

[I

[
IF (A = P) AND IF (B = Q) AND IF (C = R) THEN CLASS = X
L1

Consequent

Term

Attribute label Relational Operator ~ Attribute value

FiGure 1: The structure of a generic classification rule. The example
demonstrates the key components of a classification rule. The
antecedent contains one or more attribute-value pairs connected by
AND conjunction. The suggested class is shown in the consequent
on the right side of the THEN clause.

computational effort. It is important to note that such al-
gorithms will not guarantee finding the best classifier, but
one of the top-performing ones. Thus, it is critical to im-
plement the algorithm with effective strategies.

Ant Colony Optimization (ACO) algorithms are a family
of heuristic optimization algorithms inspired by the food
foraging behavior of ants in the natural system. ACO al-
gorithms have been evolving over the last few decades in
terms of search strategies, parameter settings, and new
application areas. Various combinatorial optimization
problems in the area of Operations Research including the
Traveling Salesman Problem [3], Vehicle Routing Problem
[4], Facility Layout Problem [5], and Facility Location
Problem [6] have been efficiently solved by ACO algorithms.

A specialized family of ACO algorithms, AntMiner, has
successfully been implemented to address the rule-based
classification problem. During later years, further extension
of AntMiner algorithms was suggested. Freitas et al. pro-
vided an overview of AntMiner algorithms until that time
and some critical future directions [7]. While this work was
an admirable contribution at the time, the narrations are
brief and may not include the most recent developments. To
the best of our knowledge, their work is the only dedicated
review article on this topic. In this article, we aim to extend
their work by identifying potential application areas and
reporting detailed and updated information on AntMiner
algorithms at the modular level. This review covers 83
relevant scientific articles indexed in the Web of Science
and/or Google Scholar. We have included articles that (a)
provide some methodological contribution to AntMiner
algorithms, (b) demonstrate real-life applications of rule-
based classifier, and (c) report developments in the ACO
domain that are relevant to AntMiner algorithms and/or
provide use cases demonstrating successful implementation
of ACO. Note that, in the interest of manifesting the po-
tential disciplines that can be benefitted from future research
contribution in this area, the listing of applications of rule-
based classifiers is not limited to any particular methodol-
ogy. When reviewing existing methods, we sought infor-
mation following the framework shown in Table 1.

This review article is organized as follows. Section 1
provides an introduction to the rule-based classification
problem, an oversight on the connection of the rule-based
classification, and the research framework; Section 2 lists
some existing application domains for rule-based classifi-
cation; Section 3 provides a background of AntMiner al-
gorithm, discusses how concepts in ACO can be transferred
in the context of rule-based classification, and provides a

Applied Computational Intelligence and Soft Computing

high-level description of the AntMiner algorithm; Section 4
provides an extensive survey of existing methods for
implementing different modules of AntMiner; Section 5
outlines most common experimental setting in terms of
measurement metrics and validation approaches and the
datasets used by earlier researchers for benchmarking
purpose; Section 6 discusses the research gaps and recom-
mendations for future research; Section 7 provides some
concluding remarks and closes our article.

2. Real-Life Applications of Rule-
Based Classification

In this section, a list of real-life applications of rule-based
classification is presented. The goal is to identify application
areas that will potentially be benefiting from the research
involving rule-based classification. In Table 2, we included
the reported applications regardless of the rule discovery
methods used which are categorized into eight primary
domains, i.e., medical, genetics, portfolio analysis, geo-
graphic information system (GIS), human-machine inter-
action (HMI), autonomous driving, ICT, and quality and
reliability engineering. A summary of these applications is
provided in the following table. It is interesting to notice that
most applications of rule-based classification reported in the
literature are in the medical domain.

3. Overview of the AntMiner Algorithms

3.1. Background. The AntMiner algorithms are descendants
of ACO algorithms that mimic the natural food foraging
behavior of ants. In the natural system, when ants seek food,
they leave a pheromone trail for the successor ants to follow.
Once they find a food source, ants return to the nest, while
depositing pheromone. Since the deposited pheromone is
exposed to the environment, it continuously evaporates
while the ants travel. Understandably, the ants taking a
shorter distance would return to the nest sooner and the
remaining pheromone level on their path would be higher.
While the following ant makes a decision to select a path
from a set of alternatives, the decision is dictated by the
amount of pheromone deposited on the candidate alter-
natives. The higher the pheromone level on a path, the
higher the chance that it will be selected. However, this
process is stochastic and a higher level of deposited pher-
omone on a path does not guarantee that the path would be
selected. It rather means that the path would have a higher
chance of getting selected over alternate options. As the
process continues, more ants would be inclined to take the
shorter path and possibly make the pheromone level on that
path even stronger [50, 51].

This idea of progressively finding the shortest path is
used in the ACO algorithms. To mimic the natural system,
artificial ants are carefully programmed for tour construc-
tion, pheromone updating, etc. such that the agents col-
lectively work towards finding the shortest path. The original
algorithm developed by Dorigo et al. was applied to solve the
Traveling Salesman Problem (TSP) [51]. Soon after the first
application, the wider combinatorial optimization

Applied Computational Intelligence and Soft Computing

TaBLE 1: Framework for reviewing existing methods.

Methodology

Core modules

Classification specific modules

Identifying reported strategies for implementing core
AntMiner modules

1. Transition probability function

2. Heuristic value function

3. Pheromone updating strategy

Mapping AntMiner variants to a comparable
ACO methodology

4. Evaluation of rule quality

What are different ways to

6. Evaluate rule quality

7. Prune constructed rules

8. Classify an unseen instance
9. How to handle multiclass
problems

5. Handling continuous attributes

TaBLE 2: Applications of rule-based classifier.

Domain Work Application
(8] Detection of epilepsy based on ECG
[9] Predicting radiation toxicity in prostate cancer treatment
(10] Heart disease prediction
[11] Lung nodule detection based on thoracic computed tomography images
[12] Lung nodule detection based on thin section CT images
[13] Predicting diabetes
[14] Classification of premature ventricular complexes
Medical [15] Mammography classification
[16] EEG signal classification
[17] Classification of lung cancer stages from free text pathology reports
(18] Analysis of dermatology databases
[19] Medical decision support
[20] Computer aided diagnosis
[21] Classification of Arabic medical texts
[22] Classification of diseases in discharge summaries
Genetics [23] Analysis of gene-gene and gene-environment interactions in genetic association study
Portfolio analysis [24, 25] Bankruptcy prediction
[26] Landslide prediction
GIS [27] Mapping wetlands
[28, 29] Land cover classification
HMI [30, 31] Body poses and gesture recognition
[32] Handwriting recognition
Autonomous driving (33] Classification of lighting conditions for driving scenes
[34] User behavior prediction on website
(35] Event driven messaging system
[36] Sports video indexing
[37, 38] Network anomaly detection
ICT (39] Image processing
[40] Sentiment analysis on microblog
[41] Finding people with emotional distress in social media
[42] Detecting travel modes
[43] Classification of data streams
[44] Fault detection of bearings
[45] Fault detection and diagnosis of vapor compression air conditioners
Quality and reliability [46] Fault diagnosis of rotating machinery
[47] Fault detection in semiconductor wafers
(48] Analysis of bank service quality
[49] Recognition of power quality disturbances

community has implemented ACO algorithms and their
variants to solve problems in diverse areas including Qua-
dratic Assignment Problem, Job-Shop Scheduling Problem,
Vehicle Routing Problem, Graph Coloring Problem, and
Network Routing Problem, to name a few [52]. Over the
following years, there have been several versions of the al-
gorithm developed by the ACO practitioners incorporating

various search strategies, pheromone updating strategies,
heuristic function values, and local updating rules [53, 54].

3.2. An Example of Ant Colony Optimization for TSP. We
introduce a short demonstrative example of how the ACO
algorithm is used to solve the classical TSP. For further

details, the readers may refer to Dorigo, Caro, and Gam-
bardella [52]. In the TSP, our interest is to find the shortest
route that a salesman can take to cover all cities in a given set.
While the salesman travels, he/she may not travel to the
same city more than once but will return to the origin city.
The available information is the distance between each pair
of cities. For demonstration purpose, let us consider a TSP
with four cities: A, B, C, and D, with A as the origin city. The
distances between the cities are arbitrarily chosen and are
illustrated in Figure 2. It is assumed that there is an artificial
ant colony consisting of two ants and they probabilistically
choose one edge at a time to construct tour solutions. This
probability is a function of heuristic value and pheromone
value. The heuristic value in this case would be determined
by the distances between each pair of cities. On the other
hand, the pheromone level will be increased or decreased
over the iterations on each edge, depending on how often an
edge is used by the ants to construct a tour solution. In the
beginning, the pheromone level on each edge is equally
distributed. As the population only consists of two ants, two
solutions in the first iteration exist (see Figures 2(a) and
2(b)). By examining these two solutions, it is easy to see that
the edges A-B and C-D were used by both ants. Hence, the
pheromone levels on these paths are reinforced by a pre-
determined increment value. To avoid saturation of pher-
omone, the pheromone levels on all edges are reduced by a
certain rate at each iteration. Figure 2(c) shows an analogy
representing the value of pheromone on each edge by the
levels of darkness and thickness of the edges. Darker and
thicker lines would mean relatively higher levels of phero-
mone on corresponding edges. The edges that possess higher
levels of pheromone will have higher probabilities of getting
chosen in the following iterations. A common modification
of this strategy is to allow the best ant in each iteration to
deposit pheromone rather than allowing every ant to do so.
Over the iterations, quality solutions get higher probabilities
of getting explored and exploited. Depending on a termi-
nation criterion (such as the number of iterations or satu-
ration), the algorithm stops and returns the incumbent
solution. While there is no guarantee that such solutions will
be the optimal solutions, the literature supports the claim
that they often provide solutions with satisfactory quality at a
reasonable amount of time.

3.3. Bridging ACO and AntMiner. Bennett and Parrado-
Hernandez methodologically show some interesting in-
terplay between machine learning and optimization in the
general sense [55]. In line with the idea, the rule induction
process in a rule-based classifier can be modeled as a
combinatorial optimization problem. Thus, a customized
version of ACO algorithms can be justifiably used for rule
discovery. In the context of rule-based classification, each
unique attribute-value pair can be considered a virtual
node of a graph. However, in this case, a modified con-
straint will be that the nodes associated with every attribute
can appear at maximum once. Also, depending on the
model, it may not be required to include all attributes in
every rule.

Applied Computational Intelligence and Soft Computing

Given this context, Figure 3 shows an illustrative ex-
ample of how such a rule can be discovered. This is an
imaginary dataset replicating the credit default dataset. An
ant can construct a rule by visiting a maximum of one value
from each attribute. Thus, each node of the graph in this case
is represented as a two-dimensional index (labeled by at-
tribute and corresponding value). The particular rule shown
as an example path in the figure can be expressed as IF
(Age=Group_2) AND IF (Employment = Full-time) AND
IF (Credit_Score=Mid-High) THEN Class = Not_Default.
In the upcoming sections, we will provide details on the
mechanisms of discovering such classifiers.

Parpinelli et al. proposed the first strategy to use an
ACO-based algorithm and named it AntMiner. The Ant-
Miner algorithm was tested on publicly available medical
domain datasets [1]. In the following years, a number of
researchers have proposed and analyzed various strategies to
improve the performance and expand the capabilities of the
algorithm.

In this paper, to minimize ambiguity, when referring to
the original version of AntMiner, we will use the name
‘AntMiner’. The phrase ‘AntMiner algorithms’ will also refer
to the family of all rule-based classification algorithms that
are developed based on the ACO algorithms. Finally, the
term ‘AntMiner version” would refer to a certain version of
AntMiner algorithms.

3.4. High-Level Description of AntMiner. The AntMiner al-
gorithms start with a preprocessed full training set provided
by the user. The user also needs to input some parameters
before the initialization. During the first iteration, the al-
gorithm has coverage-related information for every po-
tential term. However, the ultimate impact each term will
have on the rule quality can only be evaluated once a
complete rule is constructed. The heuristic values and
pheromone values are initialized using a predetermined
mechanism. Every ant will use a probability function to
progressively select strictly one value from each attribute.
The order of selection does not affect the rule quality. The
best rule constructed by the ant is selected as the iteration
best rule. The terms used in this iteration best rule are
rewarded by allowing addition of pheromone to the terms
used in the iteration best rule. On the other hand, the terms
not used in the best rule are penalized by reducing their
pheromone level, metaphorically known as pheromone
evaporation. As the algorithm progresses, the terms asso-
ciated with high-quality rules will get a higher pheromone
level, leading to a higher probability of selection in the
succeeding iterations. If the same rule is suggested over
several iterations, the search process is converged. After a
predetermined number of iterations are performed or the
algorithm has converged, the best rule among all the iter-
ation best rules is selected and added to the discovered rules
list. This means the newly added rule to the discovered rules
list has become a member of the rules in the classifier. A
pseudocode for this process is shown in Figure 4.

Before moving forward, the instances covered by the
latest discovered rule are removed from the training set. This

Applied Computational Intelligence and Soft Computing

(©

FIGURE 2: An example of ACO algorithm being used to find the optimal solution of TSP problem. In a population of two ants, (a) and (b) are
the paths constructed by the two ants. The choice of an edge is probabilistically done. (c) shows how the pheromone levels on the edges are

updated following an iteration.

Age Employment Credit_Score . g Class
//\/ Full-time \,\\
ST N High
Group_1 Part-time \\\ P T
e/ ""Mid-High - 1---- ----{_ Default
‘ Group_2 Y Student e NoTTTTTS ~<
S~ -7 Medium 8 I\\Iot,Default/)
Group_3 Retired TTtT
Low
Unemployed

FIGURE 3: An example of rule construction by ants on the problem graph. The example replicates a credit default setting where the
classification rules will suggest whether a given instance should be classified as a potential credit default risk or not.

means the previous heuristic and pheromone-related in-
formation will no longer be useful as the number of instances
in the training data has changed. Thus, all the ACO pa-
rameters are reinitialized, and the algorithm is executed to
discover the next rule. Once a new rule is discovered and
added to the discovered rules list, the training data is further
reduced by removing the covered instances. This process
continues until the number of instances in the training data
is equal to or less than a user-selected parameter, called
maximum uncovered case. Table 3 gives some useful defi-
nitions of parameters commonly used in AntMiner
algorithms.

4. AntMiner Algorithms-Framework
and Modules

4.1. ACO Methodologies Implemented in AntMiner
Algorithms. Given the modular features available to cus-
tomize the well-known ACO algorithms, in some cases, it is
difficult to say all the features of certain AntMiner versions
are solely inherited from one version of the ACO algorithm.
However, in this section, we would refer to an ACO algo-
rithm as the base of an AntMiner version, which shares the
most resemblance in terms of implementation.

The original AntMiner algorithm was implemented
based on the concept of the Ant System (AS) algorithm.
Although in the case of AS algorithm pheromone is updated
once all ants in the population have constructed respective
complete solutions, in the AntMiner algorithm pheromone
is updated each time an ant constructs a solution. This
enables the immediate next ant to use the updated phero-
mone information. The authors have referred to this process
as having a population of a single ant. While they have
discussed the idea of having a population of more than a

single ant in the population, it was not demonstrated in the
AntMiner algorithm [56]. The algorithm proposed by Liu
et al. is also based on the AS algorithm [57].

Liu et al,, on the other hand, implemented an interesting
concept of controlling the balance between the magnitude of
exploration and exploitation to be used [58]. This idea was
originally proposed in the Ant-Q family of algorithms for
TSP [59]. The authors claimed that the Ant-Q algorithm
strengthened the connection between reinforcement
learning and AS. A similar idea was incorporated into the
ACS algorithms [3, 60]. In short, a parameter is used to
control whether a term will be selected based on AntMiner’s
probability function or just random selection. As apparent
from the definition, the probability function uses infor-
mation from the previously discovered rules by the means of
pheromone value (encouraging exploitation) but the ran-
dom selection is independent of any influence from previous
information (encouraging exploration). In a later work, Liu
et al. provided a theoretical demonstration of how their
earlier work can provide more diversity in the search process
compared to the original AntMiner [61].

The AntMiner +algorithm implements the MAX-MIN
ACO algorithm for classification. The main idea is to
constrain the minimum and maximum level of pheromone
on the discovered path as the ants continue to construct
solutions. The AntMiner +also introduced two dynamic
parameters in the probability function itself, to control the
weight of heuristic value and pheromone level. This provides
a mechanism to select the weight of the exploration and
exploitation operators as part of the search process [2, 62].

While the remaining AntMiner versions have some
other forms of contributions, the ACO algorithms they used
are limited to the abovementioned methodologies, in
principle.

Applied Computational Intelligence and Soft Computing

training_set < training data
discovered_rules < []

while (|training_set| > max_uncovered_cases):

initialize(user_input)
calculate_heuristic ()
best_rule <« []

while (iteration <= max_iteration) and (rule_converge == False):

it_best_rule < []
it_best_ Q=0

while (ant_id < max_ant):

rule < []

while (|rule| < max_length) and (min_cases_rule == True):

| rule.append(choice(term_ij))

class = conseqgent ()
Q = evaluate(rule)

if(Q > it_best_Q):

it_best_rule = rule

ant_id +=1

it_best_rule = prune (it_best_rule)
it_best_Q = evaluate (it_best_rule)

if (it_best_Q > best_Q) :

best_rule = it_best_rule
best_Q =it_best_Q

update_pheromone ()
update_parameters ()
iteraton += 1

return discovered_rules

discovered_rules. append (best_rule)
training_set < training_set\covered_by (best_rule)

FIGURE 4: A generic high-level pseudocode for AntMiner algorithms.

TaBLE 3: Definitions of commonly used parameters in AntMiner algorithms.

Parameter

Definition

Maximum uncovered cases
(max_uncovered_cases)

Minimum cases per rule (min_cases_rule)
Number of iterations (max_iteration)

Number of ants (max_ant)

The maximum number of cases in the training data that can be left out without being

covered by any rule

The minimum number of cases that must be covered by a rule when a new term is added to

the rule

The maximum number of ant cycles allowed if other convergence criteria are not met
The maximum number of ants representing how many rules are to be constructed in each

ant cycle

4.2. Rule Construction Strategies. The task of rule con-
struction for a rule-based classifier involves traversing
through the attributes and values to construct the antecedent
and select an appropriate class label. In all of the existing
AntMiner algorithms, each ant constructs a rule where
exactly one value from each of the attributes is included in
the antecedent unless an early termination criterion is ap-
plied. Later, using some pruning strategy, the length of the
rule is shortened when possible.

In AntMiner, the first ant starts exploring the entire
training set. It keeps adding one feasible value from each
attribute unless adding that new term decreases the coverage
of the rule below a predetermined threshold, min_ca-
ses_covered. The following ants construct rules in a similar
way until all ants have constructed a rule or a predetermined
number of consecutive ants have constructed the same rule.
Once all ants finish construction, the best rule in this phase is
added to the discovered_rules list. Also, the training

Applied Computational Intelligence and Soft Computing

instances covered by this rule are removed from the training
dataset. The process keeps repeating until the maximum
number of uncovered training instances (max_uncover-
ed_cases) is reached. We see a similar rule construction
strategy implemented in Liu et al. with some changes as
discussed in the following sections [57, 58].

The AntMiner + starts by selecting a class for which rules
will be discovered. This provides the advantage of having to
calculate heuristic values associated with one class value
only. Martens et al. also reformulated a graph that allows
ants to deposit pheromone on the edges rather than the
vertices. The algorithm uses a population of ants in each ant
cycle (iteration) instead of a single ant for constructing rules.
The best ant in each ant cycle is allowed to reinforce
pheromone while all trails are subject to pheromone
evaporation. Only the best rule in each ant cycle is passed on
to the pruning procedure. The algorithm also keeps track of
the error measure on a validation set to deal with overfitting.
If the error measure in the validation set starts increasing the
algorithm stops [2].

Baig, Shahzad, and Khan suggested an approach where
the ant selects the class label before the main ACO loop
begins. The class is chosen probabilistically weighted in
proportion to their frequencies in the uncovered training
data. They argued in favor of using well-recognized dis-
cretization methods for handling continuous attributes at
the preprocessing step. They also suggested a heuristic
function that takes into account correlation between the
class label, last selected term, and candidate terms [63].

The algorithm by Smaldon and Freitas also starts by
assigning a consequent before constructing an antecedent of
the rule, however, aiming at discovering an unordered set of
rules. They used a new heuristic value function and pher-
omone updating strategy which could potentially be ex-
tended to the ordered rule set as well [64].

Salama et al. proposed gAntMiner which uses separate
pheromone information for each class. While in this algo-
rithm the consequent is selected before the rule is con-
structed, the ant may construct rules containing different
consequents in the same rule discovery stage like Ant-
Miner+. However, it is different from the view that infor-
mation on terms with respect to each consequent label is
kept independent of each other [65].

4.3. Transition Probability Functions. In most AntMiner
variants, each attribute-value pair (i.e., term) is represented
as a node on the problem graph. A probability function
defines the probability of a term to be included in the partial
rule that is being constructed. Although there are functional
similarities between the transition probability functions used
for AntMiner algorithms and general ACO algorithms, there

are some differences in the interpretations. In general ACO,
Pj; refers to the transition probability from node i to j via arc
ij whereas in most AntMiner versions it represents the
probability of selection of node ij representing the value j of
attribute i, regardless of the departing node. A weighted

random selection process is used to pick a term;;, based on
the corresponding P;; value [1, 56].
NijTij
Pij (1)

= bi—'
ZZ=1ZZ:1xi’7lekz

Another transition probability function is used by Liu
et al. which is similar to the strategy in ANT-Q and ACS
[58]. This function provides an explicit mechanism to keep
the exploration process active, regardless of the level of
pheromone available on the path. A random number ¢[0,1]
is generated and checked against a threshold value (g). If g is
less than the threshold, the term is chosen probabilistically
using the conventional probability function shown in
equation (1). Otherwise, the term with the maximum P;
value is selected deterministically. In the following equation,
S indicates a weighted probabilistic choice of term;; using
equation (1) for Pj;.

if (9<qo),

S,

T { arg max(p,»j), otherwise. @)

Martens et al. redefined the problem graph into a version
that is more in line with the conventional ACO models [2],
where the pheromone is deposited on the arcs between a pair
of vertices. The probability of selecting the edge leading to a
vertex v;; is given by the following equation. Also, in this
case, the normalization takes place over the values in the
next available variable only. This is sufficient because in
AntMiner+ the order of variables for an ant to traverse is
predetermined. They also included weights (a,f) on the
pheromone level and heuristic value, providing a direct way
to control the weight of exploration and exploitation in the
probability function itself.

[Tk (t)]a [m[,j (t)]ﬁ

]

s Y [T (t)]“ [11 (t)]ﬁ.

(3)

4.4. Heuristic Value Functions. There are two major ap-
proaches for evaluating heuristic values reported in the
literature. The first one is an information-theoretic measure
of the entropy of a discovered rule, based on the information
theory [66]. The original AntMiner algorithm used this
method to compute the heuristic value of a discovered
rule [56].

log, ¢ - H(WIAi = Vij)

Applied Computational Intelligence and Soft Computing

Mij

Y (%) (log, ¢ H(WIA = V)

(4)

H(WIA = V) =~ 3 (P(ul4, =V Jog, P(ul, =,)) ®

w=1

Here, P(w|A;=V}) represents the conditional proba-
bility of selecting a class label w given the term A;=Vj; is
selected. A higher value of H(w|A; = V};) means the classes
are more uniformly distributed and selecting A; = V;; will add
less value; in turn, it should have less probability of being
included in the current partial rule. The value of H(w|
A;=V}) varies in the range of 0 < H(w|A;=V}) <Log,C,
where C represents the number of class labels in the class
attribute W.

The other major approach to measure heuristic value is
based on density estimation [57]. While the authors ac-
knowledged that this measure may not be as accurate as the
information-theoretic measure, they claimed this compro-
mise is not large and can be potentially compensated by the
pheromone updating strategy. Considering the reduced
computational effort in the density-based method, the most
recent works in this area are inclined to use this method
[2, 58]. The mathematical expression for measuring density-
based heuristic value is shown in

~ |Term =T;; AND Class = Majority,class(Tij)'

nij (6)

Term =T;;

The heuristic value measure used in AntMiner+ is very
similar to the above. However, since the class is selected
before the rule is constructed, the Majority_class(T;;) is
replaced by the class selected by the ant class_ant [2].

Term = T;; AND Class = class_ant|

Mij = (7)

Term =Tj;

In the previous two heuristic value functions, we evaluate
the metric based on a ratio where there may be potential
special cases of having small numbers in both denominator
and numerator leading to high heuristic values, whereas
there may be a considerably higher coverage with a small
error in class prediction. To address this situation, Smaldon
et al. proposed the following heuristic value function [64].
The same function was later adopted by Liang et al. [67].
Here, k represents the number of class labels.

Term = T;; AND Class = class_anti +1 ®)
8

i = Term =T;;| + k

Baig et al. reported another heuristic value function that
looks into the correlation of the class label and the last
selected term to the candidate term. The other part of the
function contains the coverage by this triple. This method is
expressed by equation (9), where T;,;. represents the last

selected term, Tj; represents a candidate term, and Class-
committed Tepresents the committed class [63].

|T-; AND T;; AND Class

committed
ij = (9)
|T;-;- ANDT,||T;. ;. AND Class ommitea
4.5. Pheromone Updating Strategies. The pheromone

updating policy of AntMiner algorithms contains two as-
pects. First, which terms should get the pheromone update?
And second, at what rate should the pheromone deposition
and/or evaporation take place? Based on the philosophy of
the ACO algorithm, the set of terms associated with each
constructed rule should be evaluated by means of the relative
quality of the rule. The quality of the rule dictates which
terms to retain higher pheromone levels after an iteration.
This is to be noted that all terms in the same rule will have the
same degree of change in pheromone.

In AntMiner, only the best ant is allowed to deposit
pheromone. The increase in pheromone is quantified by the
product of Q (see Evaluation of Rule Quality section) and the
current pheromone level. As there is only one ant in each ant
cycle, the ant deposits pheromone to the terms used in the
rule constructed. There is no direct evaporation factor
considered in this approach. However, after pheromone
deposition, the pheromone values are normalized over all
terms. This passively reduces the pheromone level on the
unused terms. During initialization, all of the terms are
assigned with the same amount of pheromone [56].

1
Zi:lbi (10)

Tij(n+1) =1;;(n) + 7;;(n) - Q

7;;(0)

In Liu et al.’s work, an exclusive pheromone evaporation
factor p is introduced. Also, the use of Q is transformed in
the pheromone updating function [58]. While the purpose of
using p is easily understood from our previous discussion on
ACO methodologies, the authors did not explicitly describe
the motivation of using the transformed function of Q.
Similar to AntMiner, the pheromone level for unused terms
is updated by normalization; however, the pheromone level
for terms used in the constructed rule is updated using

T,-j(n+1):(l—p)‘rij(n)+<l—ﬁ)-Tij(n). (11)

The AntMiner +algorithm initializes the pheromone
values for each term with the maximum allowed pheromone

Applied Computational Intelligence and Soft Computing

value Tp,.x [2]. In subsequent ant cycles, pheromone levels
on all trails are subject to reduction due to evaporation.
However, the pheromone on the best ant’s path is reinforced

)(t+ 1) =pT(V

(Vij’viﬂ,k ijoVitl,

(confidence + coverage)

k) (t) +Ar (Vij’vi+1,k)’

(see (11)). The definition of coverage and confidence is
provided in the Evaluation of Rule Quality section.

(12)

10

Az (Vij’viﬂ,k) -

0>

Smaldon and Freitas used a preference operator to select
the ants to deposit pheromone. The argument is to allow
only the ants that constructed a rule that meets some ac-
ceptable threshold to deposit pheromone. The threshold is
determined by the following function. If the Laplace

Rule_Confidence_Threshold = max<0.5,

Laplace_Corrected_Confidence =

4.6. Evaluation of Rule Quality. The traditional method for
evaluating the quality of a rule is to use the following metric
which is the product of sensitivity and specificity [56, 58].

Q- TP TN
“"\TP+FN/\TN+FP /)’

where TP: |Cases Covered by rule AND Class = Predicted
Class|, FN: |Cases NOT Covered by rule AND Class-
= Predicted Class|, TN: |Cases NOT Covered by rule AND
Class # Predicted Class|, FP: |Cases Covered by rule AND
Class # Predicted Class|

Table 4 provides the definition of TP, FN, TN, and FP in
a matrix form.

Two other means of rule quality as used in AntMi-
ner + are coverage and confidence. In the context of a rule,
confidence refers to the ratio of correctly classified instances
over total instances covered by the rule; and coverage refers
to the ratio of total instances covered by the rule over the
total number of instances in the training data. Note that the
training set size dynamically shrinks as new rules are dis-
covered. These relations are defined in equations (17)-(20).

(16)

Q = rule_confidence + rule_coverage, (17)
TP
rule_confidence = P EP (18)
1 TP + FP (19)
rule_coverage = ——,
verag |Training|

, if arc(vij, vi+1,k)is used by best ant

(13)

otherwise.

corrected confidence is greater than the threshold, Q amount
of pheromone is deposited (see equations (14) and (15)).
Otherwise, no pheromone is added [64]. The function
representing transitioning pheromone is the same as in
AntMiner.

|Class = class,| (14)
|Training|
ITP| +1
. 15
TP + FP| + k (15)
|Training| = TP + FP + TN + FN. (20)

The AntMiner,,,c proposed a different rule quality
evaluation function using the same parameters as shown

below [67].

o

Further, Salama and Abdelbar conducted a study on
various rule quality measures in the context of the
pAntMiner algorithm. The suggested use of the Kappa
function provides a better balance of average size and av-
erage accuracy (readers are referred to [68] for further in-
formation about this metric).

TP + FP
|Training|

TP TP + FN
TN+ FP |Training|

(21)

4.7. Rule Pruning Strategies. The rule pruning strategy in
AntMiner takes place after each rule is constructed. This
involves iteratively removing one term at a time from the
rule and evaluating for improvement. The term whose re-
moval results in the most improvement is removed from the
rule. This process of removing one term at a time continues
until the point where removal of no term results in im-
provement or there is only one term left in the rule. This is to
be noted that, in AntMiner, every time a term is removed
from the rule, the class label may be reassigned [1, 56].
The rule pruning in AntMiner+ is similar to this except it
uses a different metric, confidence to evaluate the im-
provement of rules. Also, only the best rule from each ant
cycle is allowed to go through the pruning process [2]. While

10

TaBLE 4: Matrix defining TP, FN, FP, and TN in the context of
classification rules.

Covered (P) NOT Covered (N)

Class = Predicted Class TP FN
Class + Predicated Class FP N

using a single ant population approach like AntMiner, the
AntMiner-CC also allows only the best-so-far ant to go
through pruning. This means the pheromone updating takes
place without accounting for pruning.

Smaldon and Freitas used a pruning method where the
class label is not changed during the pruning process and
argued this reduces some computational effort as rule quality
is to be evaluated for the selected class only [64].

In a later work, Chan and Freitas criticized the above
methods for being computationally expensive and identified
the pruning stage as a bottleneck for the algorithm. The
algorithm would reportedly perform poorly for datasets with
a larger number of attributes [69]. The authors proposed a
“Faster Rule Pruning Procedure” to tackle this problem,
inspired by [70]. In the essence, in the proposed method the
original AntMiner’s rule pruning operator is still used to
reduce the length of a rule, but only on a stochastically
reduced number of terms in the rule. The user is required to
select the maximum number of terms (r) to be passed on to
the original pruning operator. If the length of the currently
constructed rule is greater than r, the algorithm reduces the
length to r number of terms using roulette wheel selection.
The rule pruning process of AntMiner is executed on the
reduced rule containing selected terms only. The probability
of selecting a term in the reduced rule is weighted according
to the information gain achieved by that term. This is im-
portant to note that the pruning process gets the information
gain achieved for terms precalculated by another procedure
in AntMiner (see equation (5)). If the current rule contains
less than r terms, the rule is directly passed to the rule
pruning process of AntMiner.

In cAntMiner, the use of entropy-based discretization
allows for a simpler rule pruning process. The author
suggests that, due to the nature of rule construction, the
continuous attributes can be removed in the reverse order
they were added (see the Handling Continuous Attributes
section for more information on the discretization process)
[71].

In ycAntMiner, the rule pruning procedure is similar to
the original AntMiner except that, for gcAntMiner, the
consequent is preselected and does not change due to the
pruning [72].

4.8. Handling Continuous Attributes. In Parpinelli et al.’s
method, the continuous attributes are discretized at the
preprocessing step, where the C4.5 Disc discretization

Applied Computational Intelligence and Soft Computing

method is used for discretization. First, for each continuous
attribute, a pair containing the continuous attribute and the
class attribute data is fed to C4.5. Based on the output
decision tree the continuous values of the attribute are
replaced with categorical labels [1, 56].

Swaminthan used the Mixed Normal Kernel approach to
handle continuous attributes. Although this approach still
uses the C4.5 Disc discretization method for generating
intervals, the intervals do not replace the original numeric
values. After getting the intervals, the mean and standard
deviations for each interval are calculated. These values are
used to generate a Gaussian distribution. Then a multimodal
mixed kernel function representing a probability distribu-
tion function is generated adding each kernel distribution
corresponding to intervals. The area within each interval of
the mixed kernel represents the pheromone value for that
interval. When an interval is picked by an ant in a rule, a new
kernel is added to the mixed kernel with the mean and
standard deviation of the selected range. This represents an
increase in pheromone level for the selected term [73].

In AntMiner+ the ants construct attribute intervals on
the fly. The problem graph is first modified to accommodate
for handling ordinal attributes. For each ordinal attribute,
two vertices are considered. Each vertex holds a value from
the ordinal attribute and the range between them is con-
sidered an interval. The algorithm forbids the second vertex
to become the same or less than the first vertex in each
attribute. For consistency, the categorical attributes also
contain two vertices, where one is a dummy containing no
data. The author suggests some discretization and/or chi-
square-based approach to address data with high dimen-
sionality [2].

The cAntMiner is another strategy to handle contin-
uous attributes on the fly. The algorithm targets at finding
the best split in the domain of the continuous attribute. The
best split value is calculated based on an entropy measure as
shown below in equation (22). Only the threshold values
(v) from an attribute a; that form boundaries between
classes are evaluated. The definition of boundary values is
given in [74]. Once a split is achieved, the half that gives less
entropy is selected as a term [71]. This is important to note
that the calculations for threshold value involve only the
examples covered by the current partial solution. For
continuous attributes, the pheromone can no longer be
updated in the conventional manner. The pheromone is
added to the attribute vertex (T;) instead of a particular
attribute-value pair. In equation (22), ISai <l represents the
number of cases where a; < v, |S, _,| represents the number
of cases where a;> v, and |S| represents the total number of
cases. The best threshold value v, will correspond to the
threshold value that minimizes the entropy of the partition.
After vy, is selected, the entropy of the term is given by
equation (23).

Applied Computational Intelligence and Soft Computing 11
e _ |Sa,-< 1/| |Sa,v2 v| (22)

py(a;,v) = § entropy (a; <v) + 5 entropy (a; > v),
entropy (T;) = min{entropy (a; < Vpey), entropy (a; > vyee)}- (23)

Later on, Otero et al. published two further extensions of
cAntMiner [75]. The first method is based on the Minimum
Description Length (MDL) approach [74]. In this method,
the previously mentioned splitting technique based on the
threshold is recursively applied to find multiple intervals.
Instead of referring to only one-half partition, the intervals
can be more specific by giving a lower bound and an upper
bound. The process still uses the threshold selection model
from cAntMiner but in the next step, the threshold is passed

log, (IS| - 1) N A(a;,v;S)

through another criterion (see equations (23)-(26)) to ac-
cept or reject the threshold for an interval. Once a threshold
value is selected the discretization is recursively repeated for
each partition. In the end, the MDL approach may provide
multiple intervals. The interval corresponding to the lowest
entropy is selected. In equation (24), ¢ represents the number
of different classes contained in the training cases covered by
the condition indicated in the subscripts of c.

Gain (a;,v;S) > (24)
() N IS|

. 'S“K"i 'Saiz 1’| 25

Gain (a;, v; S) = entropy (S) — § entropy(Sai < v) + 5 entropy(Sai > v), (25)

A(a;,v;S) = log, (3°-2) - [c - entropy () - ¢, . ,entropy (Saicy) — Cas Ventropy(Sai<v)]. (26)

The other extension in this work suggests that depositing
pheromone on the edges instead of vertex could account for
the interactions. Such an approach is also used in Ant-
Miner+. However, in AntMiner+ the order of selection of
attributes is predetermined. The influence of the order of
selection of terms in the context of dynamic intervals is taken
care of in this version of cAntMiner. Another modification
suggested is for rule pruning. The author mentioned that
once an attribute is removed from the rule disregarding the
order as in rule pruning of AntMiner, that may change the
context based on which the threshold value was selected. The
author suggests that removing the terms from the rule in the
reverse order of construction can provide more useful in-
formation. Recently, Helal and Otero suggested a proba-
bilistic approach of discretizing continuous variables on the
go [76].

Taking advantage of the preselected class, in
uycAntMinter, the threshold values are calculated in the
context of the selected class. The algorithm picks the
threshold value providing maximum quality discrimination
which is a function of support and confidence provided by
each partition with respect to that threshold value [72].

4.9. Classification of Unseen Data. Once a classifier con-
sisting of a set of decision rules is constructed, it can be used
to classify new unseen instances of data. In this case, a new
question arises, that is, which rule we should use to classify
the new instance.

4.9.1. Ordered Rule Set. The most conventional way of
constructing a rule-based classifier is to produce an ordered
rule set, organized in the order of their discovery. When an
unseen instance is to be classified, it is checked against the
ordered rule set. The first rule to cover the instance will be
used to classify it.

4.9.2. Unordered Rule Set. Smaldon and Freitas proposed an
AntMiner methodology for using unordered rule sets for
classification. In this case, while classifying an unseen in-
stance, multiple situations are possible. Firstly, if no rule
covers the instance the default class is assigned. Secondly, if
there is only one rule that covers the instance, the class label
is assigned based on the rule. Thirdly, if there are multiple
rules which cover the instance but all of the rules suggest the
same class, the suggested class is assigned. Finally, if there are
multiple rules which cover the instance but a disagreement
exists in regard to the consequent, a selection strategy is
required. One of the two such selection strategies is to select
the rule in agreement with the rule with the highest quality.
The other is to select the class based on the class distribution
[64].

4.9.3. Voting. Due to the stochastic nature of the AntMiner
algorithms, the classifiers generated on the same training
data at different times are likely to be different. To tackle this
instability Liang et al. suggested AntMiner,,,. which uses
multiple rule sets in the classifier such that each rule set can

12 Applied Computational Intelligence and Soft Computing

TaBLE 5: List of datasets used in previous AntMiner implementations.

Number of))

Name . Attribute types Implementation
Instances Classes Attributes

Ljubljana breast cancer 282-286 2 9 Categorical (1, 2, 56, 62, 64, 67, 73]
Wisconsin breast cancer 683-699 2 9 Continuous [1, 2, 56-58, 61-64, 73]
Hepatitis 155 2 19 Mixed [1, 56, 63, 64, 67, 71-73, 75]
Dermatology 358-366 6 34 Mixed [1, 56, 63-65, 67, 73]
Tic-tac-toe 958 2 9 Categorical [2, 56, 58, 61-65, 67, 68, 73]
Cleveland heart disease 303 5 8 Mixed [56, 64, 73]
Chess 3196 2 36 Categorical [69]
House-votes-84 434 2 16 Categorical [69]
Web-mining 1 124 3 159 * [69]
Web-mining 2 124 3 293 * [69]
Web-mining 3 124 3 339 * [69]
Uniprot 1 540 2x2 153 Categorical [77]
Uniprot 2 1343 2x2 156 Categorical [77]
Uniprot 3 1872 2x2 102 Categorical [77]
Uniprot 4 1826 2x2 101 Categorical [77]
Uniprot 5 622 2x2 34 Categorical [77]
German credit scoring 1000 2 30 Mixed [62, 73]
Ripley’s 2 2 Continuous [2, 62]
Diabetes 768 2 8 Continuous [73]
Thyroid 3772 4 30 Mixed [73]
Ionosphere 350-351 2 34 Continuous [63, 65, 67, 71-73, 75]
Contraceptive method choice 1473 3 9 Mixed [2, 65, 67]
Iris 150 3 4 Continuous [2, 67, 68, 72]
Teacher assistant evaluation 151 3 5 Mixed [2, 63, 65, 68]
Balance scale 625 3 4 Categorical [2, 63, 65, 67, 68]
car 1728 4 6 Categorical [2, 63, 65, 67, 68]
Wine 178 3 13 Continuous [2, 65, 68, 71, 75, 78]
Wdbc 569 2 30 Continuous [63, 71, 75]
Crx 690 2 15 Mixed [71, 75]
Glass 213-214 7 9 Continuous [63, 65, 67, 68, 71, 75]
Australian 690 2 14 Mixed [71, 75]
Heart 270 2 13 Mixed [63, 71, 72, 75]
Congress house votes 435 2 17 Categorical [63]
Credit history Australia 690 2 14 Mixed [63, 65, 67, 68, 72]
Credit history Germany 1000 2 19-20 Mixed [63, 65, 72]
Ecoli 336-366 8 7 Continuous [63, 67, 72]
Haberman 307 2 3 Continuous [63]
Hayes Roth 132-160 3 5 Categorical [63, 65, 67, 68]
Image segmentation 2310 7 19 Continuous [63]
Mammographic mass 961 2 5 Continuous [63]
Pima Indian diabetes 768 2 8 Continuous [63, 67]
SPECT heart 267 2 22 Categorical [63, 65]
Transfusion blood 748 2 4 Continuous [63, 72]
Vehicle 282 4 18 [63]
Z00 282 7 16 Mixed [63, 65, 68]
Annealing 896 6 38 Mixed [72]
Automobile 205 7 25 Mixed [72]
Breast cancer W 569 2 30 Continuous [67, 72]
Cylinder bands 540 2 35 Mixed [72]
Heart-c 303 5 12 Mixed [65, 67, 72]
Heart-h 294 5 13 Mixed [72]
Horse colic 365 2 22 Mixed [72]
Parkinsons 195 2 22 Continuous [72]
Segmentation 2269 7 19 Continuous [72]
Hill-valley 606 2 100 Continuous [67]
Liver-disorder 345 2 6 Continuous [67]
Tae 151 3 5 Mixed [67]
Monks 432 2 6 Categorical [65, 68]
Post-operative patient 90 3 8 Mixed [65, 68]

Applied Computational Intelligence and Soft Computing

13

TaBLE 5: Continued.

Number of))
Name . Attribute types Implementation
Instances Classes Attributes

Voting records 435 2 16 Categorical (65, 68]
Audiology 266 24 69 Categorical [65]
Breast cancer (Wisconsin) 286 2 9 Continuous [65]
Mushrooms 8124 2 22 Categorical [65]
Soybean 307 19 35 Categorical [65]
CSTR 360 6 3 Continuous [78]
CSTR_ distillation 252 12 3 Continuous [78]

Note: In [67, 71], the original size of the dataset is shown in the table. In the experiment duplicate values were removed and the number of instances was

reduced. * Information not available.

complement the others when classifying unseen data [67].
Each of the rule sets is trained on a different subset of the
original training data. While classifying unseen data, the
class label is determined based on voting from each rule set.
They also suggested a new heuristic function which was
discussed in the heuristic value function section.

5. Experimental Settings

Typically, AntMiner algorithms are tested against their
predecessors, decision tree counterparts, and high-accuracy
yielding algorithms such as SVM, ANN. In this section, we
discuss the performance criteria for algorithm evaluation in
the context of rule-based classifiers and provide a list of
datasets used in the previous implementations.

5.1. Performance Criteria. The two most common criteria for
evaluating rule-based classifiers are predictive accuracy and
interpretability. The predictive accuracy metric is commonly
reported in terms of mean accuracy and standard deviation.
The interpretability is measured using the number of rules in
the classifier and the average length of the rules. The length
of the rules is calculated using the number of terms used in
the rule. In many implementations, 10-fold cross-validation
is used for performance evaluation. Hence the average and
standard deviations for each of accuracy, no. of rules, and no.
of terms per rule are reported.

5.2. Data Sets. In Table 5, we have listed the datasets used for
testing different AntMiner versions for data classification.
Most datasets are available on the UCI machine learning
repository except for Web-mining and Uniprot. The authors
of this review article neither own nor maintain these
datasets. Any data related to questions may be forwarded to
the corresponding author of the referenced article. Note that
the goal of this paper is to provide a map to assist future
researchers for the benchmarking purpose.

6. Future Research Directions

There are several ACO strategies in the general optimization
domain which have not been utilized in the AntMiner family
yet, for example, the dynamic balance of diversification and
intensification by Yan et al. [54] and using ACO for
problems with continuous domains by Socha and Dorigo

[79]. This would be interesting to see how the latest de-
velopments of ACO in the optimization domain perform
when adopted for the classification problem.

The existing AntMiner implementations mostly focus on
extending on Ant System and Max-Min Ant System. As
reported in the review there are other ACO methodologies
that are yet to be implemented for classification. For ex-
ample, one of the oldest ACO techniques Ant Colony System
(ACS) is not yet implemented for classification. Although
Liu et al. used the probability function of ACS, the rule
construction strategy is still built on the Ant System.

We have limited information with regard to the per-
formance of AntMiner algorithms and their modules. Ali
and Shahzad provided a comparative analysis of several
AntMiner versions. However, their experiments used the
default parameter setting [80]. This is imperative to optimize
the parameters for all of the variations before conducting
such experiments for a fair comparison. The algorithmic
framework allows easy adaptation of modules of one al-
gorithm version into another. Further analyses of compu-
tational complexity and experimental studies involving
different ACO modules such as probability function, heu-
ristic, and pheromone updating strategy are needed to make
conclusive remarks on their performance.

Parameter tuning is a big contributor to the successful
implementation of AntMiner algorithms. In the general
optimization area, there have been studies that report a
suggested range for some parameters. However, the classi-
fication problem may benefit from specialized parameter
settings for AntMiner algorithms. An extensive study on
optimal parameter setting for AntMiner algorithms is yet to
be done.

Several scholars identify the rule pruning procedure as
the most computationally expensive procedure in the
AntMiner algorithms. While some improvements are sug-
gested in terms of performance, all of them come with some
trade-off. Further research on rule pruning is needed to find
more efficient as well as high-accuracy yielding procedures.

One particular rule pruning by Chan and Freitas sug-
gests using the conventional rule pruning on a randomly
selected part of a constructed rule [69]. Their strategy in-
volves a user decision on how many terms to be passed on to
the rule pruning procedure. Without informed choice, this
may result in a trade-off in accuracy for faster operation. A
suggested range of values for r that works well for all rules is

14

yet to be determined. Another potential path for handling
this is to find a dynamic strategy for selecting .

Given the computational intelligence used in AntMiner
algorithms, they have the potential to be useful for datasets
with a high number of attributes and values. Also, systems
requiring online classification can be particularly benefitted
from such heuristics. There are some experiments reported
on large datasets involving limited versions of AntMiner
methodologies, reporting competitive results. There is no
application for online classification reported in the
literature.

In recent times, there is a rise in research on parallel
implementation strategies in both of the ACO and rule-
based classification domains [81-83]. However, none of such
strategies were adopted for AntMiner algorithms yet. We
believe this will be a timely contribution to explore effective
parallel implementation strategies for AntMiner algorithms.

7. Conclusions

Many real-life applications of machine learning tools de-
mand easy interpretations of the classifiers to humans, in
addition to yielding high accuracy. This could be due to
reliability, accountability, ethics, or other concerns. Rule-
based classifiers have been a successful tool for such ap-
plications. We have provided a list of such applications to
outline the application areas that already benefitted from the
rule-based classification technique. Due to the high com-
putational complexity and combinatorial nature of the
construction process of rule-based classifiers, heuristic op-
timization algorithms such as AntMiner are considered to be
a helpful method. In this article, an extensive review of the
state-of-the-art AntMiner algorithms was conducted, and
the relevant future research directions were suggested. Our
suggestions emphasize exploring ACO methodologies in-
cluding parallel implementation strategies, conducting ex-
perimental studies to find recommended parameter settings,
comparative experimental studies to systematically evaluate
the performance of existing strategies at the modular level,
developing new strategies for rule pruning, and exploring
the potential of AntMiner for online classification. This work
will be beneficial to the researchers devoting their effort to
improving or deploying the metaheuristic for rule-based
classification.

Data Availability

This is a review article that does not deal with any datasets.
To access the datasets cited in this article, the readers are
referred to the source articles’ authors.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This research was partially supported by the US Department
of Agriculture (USDA) under Grant no. 2021-67037-34163.

Applied Computational Intelligence and Soft Computing

References

[1] R.S. Parpinelli, H. S. Lopes, and A. A. Freitas, “An ant colony
based system for data mining: applications to medical data,”
in Proceedings of the 3rd Annual Conference on Genetic and
Evolutionary Computation, San Francisco, CA, USA, July
2001.

[2] D. Martens, M. De Backer, R. Haesen, J. Vanthienen,
M. Snoeck, and B. Baesens, “Classification with ant colony
optimization,” IEEE Transactions on Evolutionary Compu-
tation, vol. 11, no. 5, pp. 651-665, 2007.

[3] M. Dorigo and L. M. Gambardella, “Ant colony system: a
cooperative learning approach to the traveling salesman
problem,” IEEE Transactions on Evolutionary Computation,
vol. 1, no. 1, pp. 53-66, 1997.

[4] J. E. Bell and P. R. McMullen, “Ant colony optimization
techniques for the vehicle routing problem,” Advanced En-
gineering Informatics, vol. 18, no. 1, pp. 41-48, 2004.

[5] R. A. Hasan, M. A. Mohammed, N. Tipus, and

O. A. Hammood, “A comprehensive study: ant Colony Op-

timization (ACO) for facility layout problem,” in Proceedings

of the 2017 16th RoEduNet conference: Networking in Edu-
cation and Research (RoEduNet), pp. 1-8, Targu-Mures,

Romania, September 2017.

A. Kole, P. Chakrabarti, and S. Bhattacharyya, “An ant colony

optimization algorithm for uncapacitated facility location

problem,” in Proceedings of the 38th International Conference
on Computers and Industrial Engineering, Beijing, China,

October-November 2013.

A. Freitas, R. Parpinelli, and H. Lopes, “Ant colony algorithms

for data classification,” Encyclopedia of Information Science

and Technology, vol. 1, pp. 154-159, 2009.

[8] G.Wang, Z. Deng, and K.-S. Choi, “Detection of epilepsy with
Electroencephalogram using rule-based classifiers,” Neuro-
computing, vol. 228, pp. 283-290, 2017.

[9] J. L. Dominguez-Olmedo, J. Mata, V. Pachdén, and
J. L. L. Guerra, “Application of a rule-based classifier to data
regarding radiation toxicity in prostate cancer treatment,” in
Proceedings of the 11th International Joint Conference on
Biomedical Engineering Systems and Technologies, pp. 384-
398, Funchal, Madeira, Portugal, January 2018.

[10] S. Narayan and J. Gobal, “Optimal decision tree fuzzy rule-
based classifier for heart disease prediction using improved
cuckoo search algorithm,” International Journal of Business
Intelligence and Data Mining, vol. 15, no. 4, pp. 408-429, 2019.

[11] M. N. Gurcan, B. Sahiner, N. Petrick et al,, “Lung nodule
detection on thoracic computed tomography images: pre-
liminary evaluation of a computer-aided diagnosis system,”
Medical Physics, vol. 29, no. 11, pp. 2552-2558, 2002.

[12] Q. Li, F. Li, and K. Doi, “Computerized detection of lung
nodules in thin-section CT images by use of selective en-
hancement filters and an automated rule-based classifier,”
Academic Radiology, vol. 15, no. 2, pp. 165-175, 2008.

[13] G. Thippa Reddy and N. Khare, “FFBAT-optimized rule based
fuzzy logic classifier for diabetes,” International Journal of
Engineering Research in Africa, vol. 24, pp. 137-152, 2016.

[14] O. Wieben, V. X. Afonso, and W. J. Tompkins, “Classification
of premature ventricular complexes using filter bank features,
induction of decision trees and a fuzzy rule-based system,”
Medical, & Biological Engineering & Computing, vol. 37, no. 5,
pp. 560-565, 1999.

[15] O.R.Zaiane, M.-L. Antonie, and A. Coman, “Mammography
classification by an association rulebased classifier,” in Pro-
ceedings of the Third International Workshop on Multimedia

[6

[7

Applied Computational Intelligence and Soft Computing

Data Mining, MDM/KDD2002, pp. 62-69, Edmonton,
Alberta, Canada, July 2002.

[16] M. Sabeti, M. Sadreddini, and J. T. Nezhad, “EEG signal
classification using an association rule-based classifier,” in
Proceedings of the 2007 IEEE International Conference on
Signal Processing and Communications, pp. 620-623, Dubai,
UAE, November 2007.

[17] A. N. Nguyen, M. J. Lawley, D. P. Hansen et al., “Symbolic
rule-based classification of lung cancer stages from free-text
pathology reports,” Journal of the American Medical Infor-
matics Association, vol. 17, no. 4, pp. 440-445, 2010.

[18] T. Deepa, B. Sathiyabhama, J. Akilandeswari, and
N. P. Gopalan, “Action fuzzy rule based classifier for analysis
of dermatology databases,” International Journal of Bio-
medical Engineering and Technology, vol. 15, no. 4, pp. 360-
379, 2014.

[19] J. M. Alonso, C. Castiello, M. Lucarelli, and C. Mencar,
“Modeling interpretable fuzzy rule-based classifiers for
medical decision support,” in Data Mining: Concepts,
Methodologies, Tools, and Applications, pp. 1064-1081, IGI
Global, Hershey, PA, USA, 2013.

[20] Q. Liand K. Doi, “Analysis and minimization of overtraining
effect in rule-based classifiers for computer-aided diagnosis,”
Medical Physics, vol. 33, no. 2, pp. 320-328, 2006.

[21] Q. A. Al-Radaideh and S. S. Al-Khateeb, “An associative rule-
based classifier for Arabic medical text,” International Journal
of Knowledge Engineering and Data Mining, vol. 3, no. 3-4,
pp. 255-273, 2015.

[22] 1. Solt, D. Tikk, V. Gal, and Z. T. Kardkovacs, “Semantic
classification of diseases in discharge summaries using a
context-aware rule-based classifier,” Journal of the American
Medical Informatics Association, vol. 16, no. 4, pp. 580-584,
2009.

[23] T. Lehr, J. Yuan, D. Zeumer, S. Jayadev, and M. D. Ritchie,
“Rule based classifier for the analysis of gene-gene and gene-
environment interactions in genetic association studies,”
BioData Mining, vol. 4, no. 1, p. 4, 2011.

[24] P.R. Kumar and V. Ravi, “Bankruptcy prediction in banks by
fuzzy rule based classifier,” in Proceedings of the 2006 Ist
International Conference on Digital Information Management,
pp- 222-227, IEEE, Bangalore, India, December 2006.

[25] H. Lei, C. Chan, and J. Cheh, “Rule-based classifier for
bankruptcy prediction,” in Proceedings of the Fourteenth
Midwest Artificial Intelligence and Cognitive Sciences Con-
ference, pp. 74-81, Cincinnati, OH, USA, April 2003.

[26] B. T. Pham, D. Tien Bui, I. Prakash, and M. B. Dholakia,
“Rotation forest fuzzy rule-based classifier ensemble for
spatial prediction of landslides using GIS,” Natural Hazards,
vol. 83, no. 1, pp. 97-127, 2016.

[27] J. Li and W. Chen, “A rule-based method for mapping
Canada’s wetlands using optical, radar and DEM data,” In-
ternational Journal of Remote Senmsing, vol. 26, no. 22,
pp. 5051-5069, 2005.

[28] D. G. Stavrakoudis, G. N. Galidaki, I. Z. Gitas, and

J. B. Theocharis, “A genetic fuzzy-rule-based classifier for land

cover classification from hyperspectral imagery,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 50, no. 1,

pp. 130-148, 2011.

P. Bolstad and T. Lillesand, “Rule-based classification models-

Flexible integration of satellite imagery and thematic spatial

data,” Photogrammetric Engineering ¢ Remote Sensing,

vol. 58, no. 7, pp. 965-971, 1992.

[29

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

(44]

(45]

[46]

15

T. Hachaj and M. R. Ogiela, “Rule-based approach to rec-
ognizing human body poses and gestures in real time,”
Multimedia Systems, vol. 20, no. 1, pp. 81-99, 2014.

A. Riad, H. K. Elminir, and S. M. Shohieb, “Hand gesture
recognition system based on a geometric model and rule
based classifier,” British Journal of Applied Science & Tech-
nology, vol. 4, no. 9, pp. 1432-1444, 2014.

X. Fang and A. Alouani, “Unconstrained handwritten nu-
meral recognition using fuzzy rule-based classifier,” in Pro-
ceedings of the Thirty-Fourth Southeastern Symposium on
System Theory (Cat. No. 02EX540), pp. 256-260, Huntsville,
AL, USA, March 2002.

E. Soares, P. Angelov, B. Costa, and M. Castro, “Actively semi-
supervised deep rule-based classifier applied to adverse
driving scenarios,” in Proceedings of the 2019 International
Joint Conference on Neural Networks (IJCNN), pp. 1-8,
Budapest, Hungary, July 2019.

Q. Yang, T. Li, and K. Wang, “Building association-rule based
sequential classifiers for web-document prediction,” Data
Mining and Knowledge Discovery, vol. 8, no. 3, pp. 253-273,
2004.

K. C. Gross, C. J. Digate, and E. H. Lee, “Event-driven rule-
based messaging system,” Google Patents, 1994.

W. Zhou, A. Vellaikal, and C. J. Kuo, “Rule-based video
classification system for basketball video indexing,” in Pro-
ceedings of the 2000 ACM Workshops on Multimedia,
pp- 213-216, Los Angeles, CA, USA, October-November 2000.
N. Duffield, P. Haffner, B. Krishnamurthy, and
H. A. Ringberg, “Systems and methods for rule-based
anomaly detection on IP network flow,” Google Patents, 2016.
S. Ghosh, A. Pal, A. Nag, S. Sadhu, and R. Pati, “Network
anomaly detection using a fuzzy rule-based classifier,”
Computer, Communication and Electrical Technology,
pp. 61-65, 2017.

T. Nakashima, G. Schaefer, Y. Yokota, and H. Ishibuchi, “A
weighted fuzzy classifier and its application to image pro-
cessing tasks,” Fuzzy Sets and Systems, vol. 158, no. 3,
pp. 284-294, 2007.

U. A. Siddiqua, T. Ahsan, and A. N. Chy, “Combining a rule-
based classifier with ensemble of feature sets and machine
learning techniques for sentiment analysis on microblog,” in
Proceedings of the 2016 19th International Conference on
Computer and Information Technology (ICCIT), pp. 304-309,
Dhaka, Bangladesh, December 2016.

M. Chau, T. M. Li, P. W. Wong, J. J. Xu, P. S. Yip, and
H. Chen, “Finding people with emotional distress in online
social media: a design combining machine learning and rule-
based classification,” MIS Quarterly, vol. 44, no. 2, 2020.

G. Xiao, Q. Cheng, and C. Zhang, “Detecting travel modes
using rule-based classification system and Gaussian process
classifier,” IEEE Access, vol. 7, pp. 116741-116752, 2019.

H. Shahparast, S. Hamzeloo, and M. Z. Jahromi, “A self-
tuning fuzzy rule-based classifier for data streams,” Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, vol. 22, no. 02, pp. 293-303, 2014.

M. Heidari, “Fault detection of bearings using a rule-based
classifier ensemble and genetic algorithm,” International
Journal of Engineering, vol. 30, no. 4, pp. 604-609, 2017.

T. Rossi and J. Braun, “A statistical, rule-based fault detection
and diagnostic method for vapor compression air condi-
tioners,” HVAC & R Research, vol. 3, no. 1, pp. 19-37, 1997.
D. Dou, J. Jiang, Y. Wang, and Y. Zhang, “A rule-based
classifier ensemble for fault diagnosis of rotating machinery,”

16

Journal of Mechanical Science and Technology, vol. 32, no. 6,
pp. 2509-2515, 2018.

[47] R. Nakagaki, M. Kurihara, and T. Honda, “Defect classifier
using classification recipe based on connection between rule-
based and example-based classifiers,” Google Patents, 2011.

[48] Y. Bidulya and E. Brunova, “Sentiment analysis for bank
service quality: a rule-based classifier,” in Proceedings of the
2016 IEEE 10th International Conference on Application of
Information and Communication Technologies (AICT),
pp. 1-4, Baku, Azerbaijan, October 2016.

[49] R. Kumar, B. Singh, D. Shahani, A. Chandra, and K. Al-
Haddad, “Recognition of power-quality disturbances using
S-transform-based ANN classifier and rule-based decision
tree,” IEEE Transactions on Industry Applications, vol. 51,
no. 2, pp. 12491258, 2014.

[50] J.-L. Deneubourg, S. Aron, S. Goss, and J. M. Pasteels, “The
self-organizing exploratory pattern of the argentine ant,”
Journal of Insect Behavior, vol. 3, no. 2, pp. 159-168, 1990.

[51] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: op-
timization by a colony of cooperating agents,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 26, no. 1, pp. 29-41, 1996.

[52] M. Dorigo, G. D. Caro, and L. M. Gambardella, “Ant algo-
rithms for discrete optimization,” Artificial Life, vol. 5, no. 2,
pp. 137-172, 1999.

[53] O. Cordon Garcia, F. Herrera Triguero, and T. Stiitzle, “A
review on the ant colony optimization metaheuristic: basis,
models and new trends,” Mathware and Soft Computing,
vol. 9, 2002.

[54] Y. Yan, H.-s. Sohn, and G. Reyes, “A modified ant system to
achieve better balance between intensification and diversifi-
cation for the traveling salesman problem,” Applied Soft
Computing, vol. 60, no. C, pp. 256-267, 2017.

[55] K. P. Bennett and E. Parrado-Hernandez, “The interplay of
optimization and machine learning research,” Journal of
Machine Learning Research, vol. 7, pp. 1265-1281, 2006.

[56] R.S. Parpinelli, H. S. Lopes, and A. A. Freitas, “Data mining
with an ant colony optimization algorithm,” IEEE Transac-
tions on Evolutionary Computation, vol. 6, no. 4, pp. 321-332,
2002.

[57] B.Liu, H. A. Abbass, and B. McKay, “Density-based heuristic
for rule discovery with ant-miner,” in Proceedings of the 6th
Australia-Japan Joint Workshop on Intelligent and Evolu-
tionary System, Canberra, Australia, November 2002.

[58] B. Liu, H. A. Abbas, and B. McKay, “Classification rule
discovery with ant colony optimization,” in Proceedings of the
IEEE/WIC International Conference on Intelligent Agent
Technology, pp. 83-88, Halifax, NS, Canada, October 2003.

[59] L. M. Gambardella and M. Dorigo, “Ant-Q: a Reinforcement
Learning approach to the traveling salesman problem,” in
Machine Learning Proceedings 1995, A. Prieditis and
S. Russell, Eds., 252-260, Morgan Kaufmann, San Francisco
(CA), 1995.

[60] R. Sun, S. Tatsumi, and G. Zhao, “Multiagent reinforcement
learning method with an improved ant colony system,” vol. 3,
pp. 1612-1617, 2001.

[61] B. Liu, H. A. Abbass, and R. I. McKay, “Classification rule
discovery with ant colony optimization,” IEEE Intelligent
Informatics Bulletin, vol. 3, no. 1, pp. 31-35, 2004.

[62] D. Martens, M. De Backer, R. Haesen, B. Baesens, and
T. Holvoet, “Ants constructing rule-based classifiers,” in
Swarm Intelligence in Data Mining, pp. 21-43, Springer,
Berlin, Germany, 2006.

Applied Computational Intelligence and Soft Computing

[63] A. R. Baig, W. Shahzad, and S. Khan, “Correlation as a
heuristic for accurate and comprehensible ant colony opti-
mization based classifiers,” IEEE Transactions on Evolutionary
Computation, vol. 17, no. 5, pp. 686-704, 2012.

[64] J. Smaldon and A. A. Freitas, “A new version of the ant-miner
algorithm discovering unordered rule sets,” in Proceedings of
the 8th annual conference on Genetic and evolutionary com-
putation, pp. 43-50, Seattle, WA, USA, July 2016.

[65] K. M. Salama, A. M. Abdelbar, and A. A. Freitas, “Multiple
pheromone types and other extensions to the Ant-Miner
classification rule discovery algorithm,” Swarm Intelligence,
vol. 5, no. 3-4, pp. 149-182, 2011.

[66] T. M. Cover and]. A. Thomas, Elements of Information

Theory, John Wiley & Sons, Hoboken, NY, USA, 1991.

Z.Liang, J. Sun, Q. Lin, Z. Du, J. Chen, and Z. Ming, “A novel

multiple rule sets data classification algorithm based on ant

colony algorithm,” Applied Soft Computing, vol. 38,

pp. 1000-1011, 2016.

[68] K. M. Salama and A. M. Abdelbar, “Exploring different rule
quality evaluation functions in aco-based classification al-
gorithms,” in Proceedings of the 2011 IEEE Symposium on
Swarm Intelligence, pp. 1-8, Paris, France, April 2011.

[69] A. Chan and A. Freitas, “A new classification-rule pruning
procedure for an ant colony algorithm,” in Proceedings of the
International Conference on Artificial Evolution (Evolution
Artificielle), pp. 25-36, Lille, France, October 2005.

[70] D. R. Carvalho and A. A. Freitas, “A hybrid decision tree/
genetic algorithm method for data mining,” Information
Sciences, vol. 163, no. 1-3, pp. 13-35, 2004.

[71] F. E.B. Otero, A. A. Freitas, and C. G. Johnson, “cAnt-Miner:
an ant colony classification algorithm to cope with continuous
attributes,” in Ant Colony Optimization and Swarm Intelli-
gence, pp. 48-59, Springer Berlin Heidelberg, Berlin, Ger-
many, 2008.

[72] K. M. Salama, A. M. Abdelbar, F. E. B. Otero, and
A. A. Freitas, “Utilizing multiple pheromones in an ant-based
algorithm for continuous-attribute classification rule dis-
covery,” Applied Soft Computing, vol. 13, no. 1, pp. 667-675,
2013.

[73] S. Swaminathan, Rule Induction Using Ant Colony Optimi-
zation for Mixed Variable Attributes, Texas Tech University,
Lubbock, TX, USA, 2006.

[74] U. Fayyad and K. Irani, “Multi-interval discretization of
continuous-valued attributes for classification learning,”
IJCAI, pp. 1022-1027, 1993.

[75] E. E. Otero, A. A. Freitas, and C. G. Johnson, “Handling
continuous attributes in ant colony classification algorithms,”
in Proceedings of the 2009 IEEE Symposium on Computational
Intelligence and Data Mining, pp. 225-231, Nashville, TN,
USA, March 2009.

[76] A.Helal and F. E. Otero, “A mixed-attribute approach in ant-
miner classification rule discovery algorithm,” in Proceedings
of the Genetic and Evolutionary Computation Conference 2016,
pp- 13-20, Denver CO, USA, July 2016.

[77] A. Chan and A. A. Freitas, “A new ant colony algorithm for
multi-label classification with applications in bioinfomatics,”
in Proceedings of the 8th annual conference on Genetic and
evolutionary computation, pp. 27-34, Seattle, WA, USA, July
2016.

[78] P.S. Shelokar, V. K. Jayaraman, and B. D. Kulkarni, “An ant
colony classifier system: application to some process engi-
neering problems,” Computers ¢ Chemical Engineering,
vol. 28, no. 9, pp. 1577-1584, 2004.

[67

Applied Computational Intelligence and Soft Computing

[79] K. Socha and M. Dorigo, “Ant colony optimization for
continuous domains,” European Journal of Operational Re-
search, vol. 185, no. 3, pp. 1155-1173, 2008.

[80] Z. Ali and W. Shahzad, “Comparative analysis and survey of
ant colony optimization based rule miners,” International
Journal of Advanced Computer Science and Applications,
vol. 8, no. 1, pp. 49-60, 2017.

[81] J. Peake, M. Amos, N. Costen, G. Masala, and H. Lloyd,
“PACO-VMP: parallel ant colony optimization for virtual
machine placement,” Future Generation Computer Systems,
vol. 129, pp. 174-186, 2022.

[82] J. Yu, “A novel parallel ant colony optimization algorithm for
warehouse path planning,” Journal of Control Science and
Engineering, vol. 2020, 2020.

[83] A. Govada, V. S. Thomas, I. Samal, and S. K. Sahay, “Dis-
tributed multi-class rule based classification using RIPPER,”
in Proceedings of the 2016 IEEE International Conference on
Computer and Information Technology (CIT), pp. 303-309,
Nadi, Fiji, December 2016.

17

