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Novel coronavirus (COVID-19) is a new strain of coronavirus, �rst identi�ed in a cluster with pneumonia symptoms caused by
SARS-CoV-2 virus. It is fast spreading all over the world. Most infected people will develop mild to moderate illness and recover
without hospitalization. Currently, real-time quantitative reverse transcription-PCR (rqRT-PCR) is popular for coronavirus
detection due to its high speci�city, simple quantitative analysis, and higher sensitivity than conventional RT-PCR. Antigen tests
are also commonly used. It is very essential for the automatic detection of COVID-19 from publicly available resources. Chest
X-ray (CXR) images are used for the classi�cation of COVID-19, normal, and viral pneumonia cases.�e CXR images are divided
into sub-blocks for �nding out the discrete cosine transform (DCT) for every sub-block in this proposed method. In order to
produce a compressed version for each CXR image, the DCT energy compaction capability is used. For each image, hardly few
spectral DCT components are included as features. �e dimension of the �nal feature vectors is reduced by scanning the
compressed images using average pooling windows. In the 3-set classi�cation, a multilayer arti�cial neural network is used. It is
essential to triage non-COVID-19 patients with pneumonia to give out hospital resources e�ciently. Higher size feature vectors
are used for designing binary classi�cation for COVID-19 and pneumonia.�e proposed method achieved an average accuracy of
95% and 94% for the 3-set classi�cation and binary classi�cation, respectively.�e proposedmethod achieves better accuracy than
that of the recent state-of-the-art techniques. Also, the time required for the implementation is less.

1. Introduction

COVID-19 or coronavirus-infected patients will experience
mild to moderate respiratory illness, which may sometimes
lead to pneumonia. In order to limit the widespread of the
coronavirus, early detection of COVID-19 is important. For
detecting COVID-19, polymerase chain reaction (PCR) is
the most widely used technique. PCR sensitivity is found to
be low [1]. Moreover, PCR is time-consuming and not very
accurate [2]. For tracking the pathological signature of
COVID-19 on the CXR of suspected patients [3, 4], chest
radiography is performed worldwide in diagnosis. Unfor-
tunately, the CXR abnormalities caused by COVID-19 are

similar to those of viral pneumonia [5, 6]. In order to detect
and di¡erentiate COVID-19 and pneumonia, automation is
required.

Arti�cial intelligence, such as machine and deep
learning, has been employed to achieve such automation
based on CXR [7]. A deep learning approach to detect
COVID-19 and viral pneumonia was achieved in Reference
[8] implementing ResNet-101 with high accuracy. ResNet-
50 architecture along with the SVM classi�er also produced
good accuracy [9]. Makris et al. [10] employed several
convolutional neural network (CNN) models and compared
their performances in classifying COVID-19, pneumonia,
and normal images [10]. Asif et al. [11] trained InceptionV3

Hindawi
Applied Computational Intelligence and So Computing
Volume 2022, Article ID 2656818, 7 pages
https://doi.org/10.1155/2022/2656818

mailto:fatma.taher@zu.ac.ae
https://orcid.org/0000-0001-8358-9081
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2656818


using transfer learning techniques to distinguish COVID-19
from viral pneumonia and normal CXR and obtained a high
accuracy. Das et al. [12] have developed an interesting model
using ensemble average learning employing three pretrained
CNN networks; DenseNet201, Resnet50V2, and Incep-
tionV3 achieved high accuracy and sensitivity. Ridhi et al.
[13] classified COVID-19, pneumonia, and normal CXR
employing stacked of DenseNet and GoogleNet. Gupta et al.
[14] implemented a CNN network termed InstaCovNet-19
integrating several deep networks and achieved high accu-
racy both in binary (COVID-19 vs. non-COVID-19) and in
3-class (COVID-19, pneumonia, and normal) classifications.
Another CNN network was proposed in Reference [15]
which achieved high accuracy for binary, 3-class, and 4-class
classifications. Canayaz et al. [16] proposed a diagnosis of
COVID-19 using deep neural networks and metaheuristic-
based feature selection and achieved very high accuracy.
Khuzani et al. [17] employed features extracted using the
spatial domain (GLCM, GLDM, and texture), spectral-do-
main (FFT), and spaciospectral-domain (wavelet) trans-
forms fed to a feedforward neural network for a 3-class
classification, COVID-19, pneumonia, and normal [17]. It is
shown in Reference [17] that features associated with the
spectral domain have better prediction power than the other
groups (spatial and spaciospectral) regarding COVID-19
prediction from CXR images. It is worth mentioning here
that vagueness may be introduced in the CXR images during
the sampling techniques and due to transformation from
three-dimensional to bi-dimensional images which may
require the implementation of fuzzy techniques to enhance
both the contrast and edges of the CXR images before
classification [18, 19].

)is work presents a novel efficient method for 3-class
classification, COVID-19, normal, and pneumonia. )e
proposed method employs the energy compaction property
of the DCT for a compressed spectral-domain feature ex-
traction.)e rest of the paper is organized as follows: Section
2 summarizes the essential properties of the DCT. )e
proposed technique is illustrated in Section 3. A discussion is
given in Section 4 to elaborate on the main advantages of the
proposed technique over the present state-of-the-art
methods. Finally, Section 5 concludes the work.

2. Discrete Cosine Transform

)e DCT incorporates real sinusoids and has many inter-
esting features. In addition to its orthogonal structure, the
DCT has excellent energy concentration properties. Only
10% of the DCT spectral components contain about 90% of
the total signal power [20]. Consequently, the DCT is the
core of multimedia image and video compression techniques
such as Joint Photographic Experts Group (JPEG) and
Moving Picture Experts Group (MPEG) compression
standards [21]. Moreover, the DCT has good decorrelating
properties and may be employed to reduce the inherent high
correlation that exists between the rows and columns of
images [22]. )e elements of matrix T of one-dimensional
DCT in the case ofN-element input vectors can be defined as
follows [21]:

Tkn � α(k)cos
π
N

k n +
1
2

  . (1)

For k, n � 0, 1, . . . , N − 1, with α(k) �
����
1/N

√
for k � 0

and α(k) �
����
2/N

√
otherwise.

Another advantage of DCT is its two-dimensional
separability. If X is an input image, then its representation Y
in the transform domain of two-dimensional DCT can be
calculated as follows [20]:

Y � TXT
t
. (2)

Modern image applications partition input images into
8× 8-pixel blocks. Consequently, 8× 8 DCT has been given
special consideration to provide for approximations that are
computationally simple. Since the pioneering work by
Haweel [20] that explored a DCT approximation requiring
only 24 additions, many other approximations have been
introduced in the literature. A comparative study for all
effective approximations has been analysed in Reference
[22].

3. Proposed Technique

3.1. Dataset. )e employed data set contained the CXR
images of COVID-19-positive cases, normal, and viral
pneumonia cases. )ese CXR images were produced at the
Rashid Hospital Radiology Department in Dubai in the
United Arab Emirates. Balanced sets were selected where
each of the three sets contains 600 CXR images. Images are
in JPEG format having a dimension of 1024×1024 pixels.

3.2. Feature Extraction. All images are resized to 256× 256
grayscale, and every image is scanned by an 8× 8 mask. )e
two-dimensional DCT is computed for each masked block
using Equation (2). Out of the 64 spectral components, only
the highest 8 transform pixels (top left) are retained while all
other transformed pixels are discarded. )at is, all images
have been compressed by a factor of 8. To illustrate the
quality of the compressed CXR images, the discarded pixels
are zeroed and the masked blocks are transformed back to
the spatial domain [20].

X � T
t
YT. (3)

Figure 1 shows the original and the compressed
reconstructed images for the three cases.)e subjective good
quality of the compressed images is clear. )e percentage
error energy norm (PEEN) has been computed as an ob-
jective measure for the degradation caused by compression.
)e PEEN is defined as follows [20]:

PEEN �

���������������������������


M−1
m�0 

M−1
n�0 (I(m, n) − IR(m, n))

2


M−1
m�0 

M−1
n�0 I

2
(m, n)




× 100, (4)

where I (m, n) is the original CXR image and IR (m, n) is the
reconstructed (compressed) image.

Table 1 illustrates the PEEN for the three cases which
indicates that they are all low and almost equal. Since this
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slight degradation due to compression is almost the same for
the three sets, the effect of compression on the classification
stage is negligible.

As further evidence for the low impact of the DCT
compression on the CHX images, the peak signal-to-noise
ratio (PSNR) has been estimated for the three cases. )e
PSNR is defined as follows [22]:

PSNR � 10∗


M−1
m�0 

M−1
n�0 I

2
max(m, n)


M−1
m�0 

M−1
n�0 (I(m, n) − IR(m, n))

2. (5)

Table 2 shows the PSNR for the three cases. )e retained
highest 8 transformed pixels for each 8× 8 block are con-
catenated to form one 8-pixel raw, so that the compressed
image size is now 32× 256. A pooling averaging window
mask of 4× 4 is performed for every compressed image
twice. At the first run, the average resulting image size is
8× 64, and after the second run, the size is 2×16. )e final
averaged image is flattened to produce a 32-feature vector
for each CXR image in each class. Figure 2 illustrates the
feature extraction methodology.

3.3. Normal, COVID-19, and Pneumonia Classification. A
feedforward neural network is employed to classify
the three sets as shown in Figure 3. )e input layer is
32 neurons corresponding to the 32-feature vectors.
Two hidden layers with 50 and 20 neurons, respectively,
are used. )e number of neurons in the hidden layers
was optimized for best performance. )e output layer has
3 neurons corresponding to the three classified sets.
)e upper output neuron is on (has a value of 1) if the
32-feature vector corresponds to the normal set, the
middle neuron is on for COVID-19 feature vector, and

finally, the last output neuron is on for pneumonia feature
vector as shown in (6), where O is the output (target)
matrix.

O � [NCP] �

1 0 0

0 1 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (6)

)e transfer functions for the neurons connecting the
second hidden layer to the output neurons are the log-
sigmoid since the swing of the outputs is between zero and
one.

)e Levenberg–Marquardt algorithm has been
employed for updating the suggested neural network. Like
the quasi-Newton methods, the Levenberg–Marquardt al-
gorithm is designed to approach second-order training
speed without having to compute the Hessian matrix [23].
)e Hessian matrix, H, can be approximated as follows [23]:

H � J
t
J, (7)

and the gradient can be estimated as follows [23]:

Table 1: PEEN for compressed CXR images.

Normal COVID-19 Pneumonia
PEEN 3.5845 3.5033 3.5066

Table 2: PSNR for compressed CXR images.

Normal COVID-19 Pneumonia
PSNR 33.8528 33.5137 33.1771

Divide into
8×8 windows

DCT on each
window

32×256
image
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Input CXR image
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Figure 2: Feature extraction steps for the 3-set classification.
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Figure 3: Employed multilayer neural network for the 3-set
classification.
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Figure 1: Original and compressed CXR images.
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g � J
t
e, (8)

where J is the Jacobian matrix that contains the first de-
rivatives of the network errors with respect to the weights
and biases and e is a vector of network errors. )e Lev-
enberg–Marquardt algorithm uses this approximation to the
Hessian matrix in the following Newton-like update to
minimize the mean-squared error (MSE) [23]:

Xk+1 � Xk − J
t
J + μI 

− 1
J

te, (9)

where µ is an adaptation variable. )e Lev-
enberg–Marquardt is fast and more accurate near an error
minimumwhere µ is highly reduced near theminimum [24].
)e number of input CXR images employed in the training
session is 500 images from each class (a total of 15000
images). )eMSE learning curve is shown in Figure 4 where
the very fast convergence near the minimum MSE is clear.
)e training algorithm reached an MSE of about −90 dB in
88 epochs only. )is target MSE was set a priory to stop the
training program as an indication for convergence. Figure 5
shows the variation of µ during the training phase. )e start
value of µ is 1e− 3 and the final value is 1e− 15. It is also
noted that µ has been dramatically reduced near the targeted
minimum MSE as expected. Validation tests have been
performed to ensure that the employed neural network did
not overfit or underfit the input data (features derived from
the 3-set CXR images).

)e convergent neural network has been tested using 100
images from each class (a total of 300 images). As an in-
dication of the test phase of the proposed technique, five test
output vectors corresponding to true positive COVID-19
CXR cases are listed in Table 3, which shows almost ones and
zeros at the expected positions.

3.4. COVID-19 and Pneumonia Classification. In many
situations, the CXR indicates a suspect subject and the target
is to classify the subject either to be a COVID-19 case,
needing special care, or just a pneumonia Case [25, 26]. For
this reason, a binary classification session has been carried
out on the data set of COVID-19 and pneumonia. )e
second 4× 4 average pooling block in the 3-set scheme in
Figure 2 has been reduced to be 2× 2 so that the feature
vector has 128 samples. )is increase in the feature vector is
necessary to track the little differences between the CXR
images of COVID-19 [27, 28] and pneumonia and to in-
crease the accuracy of the binary classification. To further
track and learn the binary fluctuations, the hidden layers
have been increased to be 70 and 30 for the first and second
hidden layers, respectively, as shown in Figures 6 and 7.

Again, the number of hidden layer neurons has been
optimized for better performance, and validation checks
have been performed to avoid underfitting or overfitting.
)e learning curve for a convergence target of −70 dB using
the Levenberg–Marquardt algorithm is shown in Figure 8.

3.5. Performance. )e confusion matrix is commonly used
to evaluate the classification performance of a network.
Table 4 illustrates the elements of the confusion matrix.

)e following metrics are commonly employed; accuracy,
precision, recall (sensitivity), and F1-score [7, 29]. In the case
of balanced data set multiclass classification, as the case in
hand, these metrics are, commonly, defined as follows [30]:

Accuracy �


M
i�1 TPi + TNi/TPi + FNi + FPi + TNi

M
,

Precision �


M
i�1 TPi/TPi + FPi

M
,

Recall �


M
i�1 TPi/TPi + FNi

M
,

F1 − score � 2
(Recall × Precision)

(Recall + Prevission)
,

(10)

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100

M
ea

n 
Sq

ua
re

d 
Er

ro
r (

dB
)

0 10 20 30 40 50 60 70 80 90
Epoch Number

Figure 4: Learning curve for the 3-set classification neural
network.
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where M is the total number of classes (M� 3 in this study)
and i� 1, 2, 3, corresponding to normal, COVID-19, and
pneumonia, respectively. To find the metrics for each class

separately, the expressions in the numerators are used
without dividing by M. )e estimated metrics for the
proposed method are illustrated in Table 5.

4. Discussion

Most of the recent state-of-the-art literature reported on
machine learning detection of COVID-19 adopted deep
learning through CNN. However, the parameters employed
in the analysis of such work are huge, actually millions [17].
For example, GoogleNet-V1 has about 5 million [31],
ResNet-50 has about 25 million [32], AlexNET has about 60
million [33], and VGG-16 has about 138 million parameters
[34, 35]. Consequently, the time required for training and
testing is also large (in the range of thousands of seconds),
even with the use of multiple graphics processing units
(GPUs). On the other hand, the number of parameters
employed in neural network-based machine learning
techniques, such as the proposed one, is in the range of
thousands, and the processing times are tens of seconds for
both training and testing even without GPUs.

5. Conclusion

COVID-19 is a serious pandemic threatening mankind. )e
rapid spread of severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) has led to the COVID-19

Table 3: Outputs for tested true positive COVID-19 CXR cases.

4.9923e− 08 8.2066e− 11 2.7338e− 08 1.0418e− 12 8.5371e− 11
1.0000e + 00 1.0000e + 00 1.0000e + 00 1.0000e + 00 1.0000e + 00
1.0093e− 07 3.8957e− 08 7.3039e− 07 5.1293e− 10 1.9430e− 11
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Figure 6: Feature extraction for binary classification.
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network.

Table 4: Confusion matrix.

Predicted positive Predicated negative
Actual positive True positive (TP) False negative (FN)
Actual negative False positive (FP) True negative (TN)

Table 5: Estimated performance metrics for the 3-set classification.

Normal COVID-19 Pneumonia Average
Accuracy (%) 95 96 94 95
Precision (%) 94 97 92 94
Recall (%) 93 97 96 95
F1-score (%) 96 92 93 93
For the binary classification of COVID-19 and pneumonia (M� 2 and i� 1,
2), the estimated metrics are tabulated in Table 6.

Table 6: Estimated performance metrics for the binary
classification.

COVID-19 Pneumonia Average
Accuracy (%) 95 93 94
Precision (%) 94 92 93
Recall (%) 96 94 95
F1-score (%) 93 92 92.5

Applied Computational Intelligence and Soft Computing 5



worldwide pandemic. Developing highly accurate methods
for the identification and isolation of SARS-CoV-2 infected
patients is critical. Machine learning is implemented to
automatically detect COVID-19 using features extracted
from chest X-ray images. )is work employs features based
on DCT spectral transformations of CXR image sub-blocks.
No spatial features are incorporated. )e DCT energy
compaction property is employed to compress each spectral
sub-block. )e compressed spectrum is further manipulated
through averaging windows to reduce the total number of
feature elements representing each CXR image. Multilayer
NN is implemented to classify sets containing COVID-19,
normal, and pneumonia cases. )e NN converged rapidly
achieving a very low mean-squared error. )e proposed
method achieved an average accuracy of about 95% for the 3-
set classification (normal, COVID-19, and pneumonia) and
94% for the binary classification (COVID-19 and pneu-
monia). While achieving a comparable accuracy, the com-
putational burden and the time required for both training
and testing of the proposed technique are very low compared
to the state-of-the-art methods based on convolutional
neural network deep learning.
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