
Research Article
Clustering Ant Colony-Based Edge-Server Location Strategy in
Mobile Crowdsensing

Ahmed. A. A. Gad-Elrab and Amin Y. Noaman

Faculty of Computing and Information Technology, King Abdul-Aziz University, Jeddah, Saudi Arabia

Correspondence should be addressed to Ahmed. A. A. Gad-Elrab; aaahmad4@kau.edu.sa

Received 17 June 2022; Revised 5 December 2022; Accepted 9 December 2022; Published 29 December 2022

Academic Editor: Jun He

Copyright © 2022 Ahmed. A. A. Gad-Elrab and Amin Y. Noaman. Tis is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Recently, edge-based mobile crowdsensing has become an important sensing technology that takes advantage of mobile devices to
collect information about surroundings based on using a group of mobile edge servers that are deployed at the network edge as a
link between users and the central server for data fltering and aggregation. Each user may collect multiple data types in mobile
collective sensing. For facilitating data aggregation, the same data type carried by various users is assumed to be uploaded to the
same mobile edge server. Te main problem is determining the server which should be activated to process each data type for
reducing the overall cost. In this paper, the problem is formulated as one form of the unqualifed multicommodity facility location
problem. To solve this problem, two edge-server location strategies are proposed, which use a clustering method for dividing the
set of mobile users with data items into clusters and use the ant colony approach to select a mobile edge server for each data type in
each cluster. Extensive simulations are conducted based on widely used real data sets. Te simulation results show that the
proposed strategy achieves better performance than the existing methods in terms of service and facility costs.

1. Introduction

In recent decades, a new sensing paradigm appeared, called
mobile crowdsensing (MCS), due to the existence of a lot of
mobile devices with efcient sensing and powerful capa-
bilities in human life [1–4]. In MCS, mobile devices are used
for collecting sensing data form the surrounding environ-
ments [5, 6]. Tis collected data can be used for introducing
various services such as construction of radio environment
map [7], management of roadside parking [8], and assess-
ment of road surface [9].

Previously, the architecture of traditional MCS is cen-
tralized, where there is a central server (CS) that receives
directly uploaded sensing data from mobile users. Te main
drawback of this traditional MCS is that, in the case of large-
scale scenarios, the central server may receive a very big
amount of data streams from mobile users, which creates a
very high load on the CS and networks. In addition, the leak
risk of the user privacy increases because all collected data
are stored on the CS. Fortunately, due to the faster evolution

of Internet-of-Tings (IoTs) and 5G communication, the
paradigm of mobile edge-computing (MEC) [10–12] is very
helpful in solving the problems of the centralized archi-
tecture of MCS.

Mobile edge-computing (MEC) [13] can move the
computation and processing tasks to mobile edge servers
(MESs) that are located near the data source, instead of
executing them on the CS [14]. Tus, MCS architecture
presents a new layer by distributing set of MESs between the
CS and mobile users like a bridge. In this strategy, mobile
users can upload sensing data over MESs instead of
uploading to CS directly. Tis layer aggregates and processes
uploaded data. Based on data types that are carried bymobile
users, the MCS paradigm will guide them to upload data to
diferent edge servers. In other words, each type of data is
aggregated on a single MES. Ten, the aggregated and
processed data are sent to CS for providing the available
services of MCS. Aggregating data of the same type on a
single MES can flter the redundant sensing data and will
remove the erroneous and redundant data. Tis process
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reduces the size of data that will be sent to CS, which de-
creases the computation load and the network trafc on CS.

In edge-based MCS scenario for collecting data of
crowdsensing, the total cost (TC) includes two costs that
must be taken into account, which are service cost (SC) and
facility cost (FC).Te SC represents the cost of movement of
the users to upload data, the FC includes the server acti-
vation cost (SAC) which represents the cost for activating
MES, and the data processing cost (DPC) represents the
processing cost of uploaded data. In daily life, usually mobile
users stay a long time in a few places such as workplaces and
home, and then they tend to leave these places for uploading
data and go back to their initiation. Terefore, the SC is the
total travelling distance for the user from the initial location,
thereafter passing by the corresponding MESs and getting
back to the initial location. As shown in Figure 1, the SC for
user u1 is the summation of costs C1, C2, C3, and C4. Te FC
for ES S1 is C(S1) + C1(b1), which includes the costs for SAC
and DPC of b1 type of data, respectively. Tus, based on this
scenario, the main problem is which MES should be acti-
vated to process each type of data to minimize the total cost
(TC). Tis problem is called mobile edge server activation
problem (MESAP).

Te edge-based MCS paradigm has been studied within
various felds, such as vehicular crowdsensing [16], task
allocation [17], and user recruitment [18, 19]. However,
none of them takes into account the problem of minimizing
the cost of data ofoading in the edge-based MCS. Existing
works regarding task ofoading in MEC concentrate on
minimizing the makespan [20, 21] of task execution or
overhead [22, 23]. Tus, they do not take into account the
movement cost of a user during the data ofoading process,
and they cannot be applied to the described edge-basedMCS
scenario directly. In addition, the existing works in MCS did
not consider the overhead of data processing which rep-
resents the server view, but they focus on minimizing data
uploading cost from the user view [24, 25]. Te frst research
that takes into account the server view (facility cost, FC) and
the user view (service cost, SC) was presented in [15].

In this paper, to solve the MESAP, the server and user
perspectives are considered as presented in [15]. Based on these
perspectives, the MESAP will be formulated based on the
problem of uncapacitated multicommodity facility location,
and two edge-server location strategies are proposed. Each
proposed strategy uses a clustering method for dividing the
mobile users set with data items into clusters. Te frst strategy
uses the ant colony approach in the frst tier to select MES for
each data type in a cluster.Ten, itmerges all the selected sets of
MESs and uses a simple heuristic method in the second tier to
reallocate each data type to its appropriate mobile edge server,
while the second strategy uses the ant colony approach in the
two tiers to do the selection and reallocating processes.

Te major contributions of this paper are described as
follows:

(i) Formulating the MESAP as an uncapacitated
multicommodity facility location problem

(ii) Using clustering to divide the mobile users set with
data items into clusters

(iii) Using the ant colony approach for selecting the
appropriate ES for each data type

(iv) Proposing a new heuristic strategy called one-tier
ant colony clustering-based strategy for solving this
problem

(v) Proposing a new heuristic strategy called two-tier
ant colony clustering-based strategy for solving this
problem

(vi) Studying and simulating the performance of the
proposed strategies using data sets is used wide-
spread in real world: epf/mobility, roma/taxi, and
geolife trajectory

What remains of the paper is organized in the following
manner. Te related works are reviewed in Section 2. In this
section, the mobile edge server activation problem (MESAP)
is described, and also the proposed clustering ant-colony-
based strategies. In Section 3, the evaluation and simulation
results are conducted to evaluate the proposed strategies
performance. Finally, the last section concludes this paper.

2. Related Works

2.1. Edge-Based Mobile Crowdsensing (EMCS). Tere are
some approaches that have been proposed for MCS based on
distributed architectures. In [26], a new anonymized data-
collection method was proposed for estimating data dis-
tributions. In [27], the authors studied the correlation efect
of sensing data on diferential privacy for protection of MCS
systems and introduced two mechanisms of perturbation for
two diferent perspectives. From protector’s perspective,
they introduced a mechanism that uses the standard def-
nition of diferential privacy for deducing the scale value
based on the Bayesian network for modelling the proba-
bilistic relevance among sensing data. While in adversary’s
perspective, they proposed a mechanism that analyzes the
importance of maximum correlated group for computing
the Bayesian diferential privacy leakage based on Gaussian
correlation model for describing the data correlation.

In [28], the authors proposed two strategies for man-
aging privacy preserving reputation and handling malicious
participants in MCS based on edge computing. Marjanovic
et al. [29] proposed MEC paradigm for MCS for increasing
the quality of service inMCS. In [16], the authors introduced
an edge-based framework in applications of largescale ve-
hicular crowdsensing for minimizing the energy con-
sumption of participating vehicles in the heterogeneous
crowdsensing applications. Te authors in [30] proposed an
edge-based network selection scheme in vehicular crowd-
sensing and formulated the problem as an optimization
problem with double objectives to maximize user satisfac-
tion. In [31], based on edge computing, the authors proposed
a distributed ledger framework in MCS for supporting
decentralized incentives. In [32], the authors introduced a
mechanism of edge-assisted incentive in MCS to satisfy the
individual rationality and truthfulness. In [17], the authors
proposed a fog-assisted task allocation method in MCS. In
addition, a scheme for secure data deduplication with fog-
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assisted method was proposed for improving the efciency
of communication. Furthermore, there are some ap-
proaches that have been proposed by concentrating on the
user recruitment in edge-aided MCS [18, 19, 33]. In [18],
for sparse data collection, the authors investigated the user
recruitment. In [19, 33], the authors proposed a mechanism
for incentive-aware recruitment in edge-based MCS. In
addition, in [15], the authors studied the edge-server lo-
cation problem in MCS and proposed a strategy for edge-
server location to minimize the crowdsensing cost, which
considers the facility cost (server perspective) and the
service cost (user perspective). However, the authors in [15]
did not consider the load balance among MESs in MCS
scenario.

Aforementioned approaches explore the edge-based
MCS from diferent aspects. Nevertheless, none of them
takes into account all aspects in terms of facility cost, service
cost, and load balance. Terefore, in this paper, new edge-
server location strategies are proposed to solve edge-server
location problem by considering all of these issues.

2.2. Te Problem of Facility Location (FLP). Te problem of
facility location (FLP) is a classic optimization problem that
determines the best location for a warehouse or factory to
be placed based on facility costs, transportation distance,
and geographical demand. FLP aims to maximize the proft
of a supplier based on the given location and demand of the
customer. FLP has stirred the interest of numerous re-
searchers. Based on the capacity of the facility, FLP can be
categorized into the capacitated facility location [34–36]
and uncapacitated facility location [37–40]. In addition,
there are numerous shapes of the classical FLP. For ex-
ample, the problem of k-median is a kind of FLP which has
a limitation on the number of opened facilities. In [41], the
authors formulated the problem of total movement

minimization of clients and facilities as a problem of k-
median. To solve the problem of a k-median, the authors in
[42] proposed an algorithm of greedy local search. Te k-
level uncapacitated FLP is another shape of FLP where the
demands must be moved between the facilities in a hier-
archical order. For the 2-level FLP, there are some works,
such as [37, 38], which proposed the approximation al-
gorithm. In addition, [43] introduced a logarithmic ap-
proximation algorithm for the multilevel FLP. On the other
hand, a client can request a subset of commodities, and in
this case, the FLP problem is called multicommodity fa-
cility location (MFL). In [39, 44], for uncapacitated MF, the
authors proposed approximation algorithms, while the
authors in [35] proposed a wide-ranging approach for
capacitatedMFL. Furthermore, some works take the facility
disruption into account, where some failed facilities may be
subjected [45–47].

In this paper, FLP will be represented based on the
problem of uncapacitated multicommodity facility location
as it was considered in [15]. Tis form of FLP is diferent
from the classical MFL, which takes into consideration two
constraints which are as follows: (1) each commodity can be
served only by single facility and (2) the travelling distance
between various facilities. Tese two constraints make FLP
problem harder than the classical MFL, so most of the
present approaches are not applicable directly for solving the
FLP problem.

Based on the above-mentioned ideas, the main chal-
lenges are as follows: (1) the simplest FLP is NP-hard, (2)
there are various data types, and the distance of travelling
among mobile edge servers is considered to determine a
facility location strategy with minimum cost, so it is more
difcult than the traditional FLP, where there is only one
kind of data, and (3) the traditional combination optimi-
zation approaches could not work well in case of multiple
data types scenario.
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Figure 1: Problem description in a system of edge-basedMCS for user u1 who spends movement costs C1, C2, C3, and C3 for uploading data
and for server S1 which has cost C(S1) for activating the server and C1(b1) to process data b1 (a modifed example based on [15]).
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2.3. Mobile Edge Server Activation Problem (MESAP)

2.3.1. Assumptions and Models. Here, the MCS scenario is
described as follows: (1) frstly, moving users collect sensing
data, (2) moving users upload data to the mobile edge
servers, (3) mobile edge servers execute data fltering and
aggregation, (4) aggregated data are sent to the central cloud
server, and (5) fnally, the central cloud server analyzes the
data and then it generates the knowledge that will be used for
providing the services of MCS.

To satisfy the previous mentioned scenario, an archi-
tecture edge-based MCS is required. Here, this architecture
contains a cloud central server, CS, a set of mobile edge
servers, MES � s1, s2, . . . , sj, . . . , sM􏽮 􏽯, where M is the total
number of mobile edge servers, and a set of mobile users
MU � u1, u2, . . . , ui, . . . , uN􏼈 􏼉, where N is the total number
of mobile users. In addition, there is a data type set denoted
as B � b1, b2, . . . , bt, . . . , bK􏼈 􏼉, where K is the total number of
data types. Each mobile edge server sj is able to operate in
any confguration βj ∈ 2B and the cost of processing of this
combination of data types is denoted as PC(βj). Eachmobile
edge server sj has a cost of activation ACj and for each data
type bt, there is an incremental cost of processing IPCj(bt).
Terefore, the facility cost FCj to activate edge server sj with
confguration βj is defned as follows:

FCj � ACj + 􏽘
bt∈βj

IPCj bt( 􏼁.
(1)

Each user ui in MU has a set of data items denoted as
Di � di

1, di
2, . . . , di

x, . . . , di
Xi

􏽮 􏽯, where each data item di
x has a

data type bt in B. So, each user can carry multiple data types
denoted as BTi⊆B. Here, the service cost SCi for a mobile
user ui represents the travelling distance of a mobile user in
the uploading data process, where any user ui initiates with
an initial location Li and then moves to its correspondent
mobile edge server MSi � msi

1, msi
2, . . . , msi

y, . . . , msi
Yi

􏽮 􏽯

one after another and fnally returns to the initial position.
Tis service cost SCi is defned as follows:

SCi � DC li, ms
i
1􏼐 􏼑 + DC ms

i
Yi

, li􏼐 􏼑

+ 􏽘

msi
y ∈MSi/msi

Yi
􏼐 􏼑

DC ms
i
y, ms

i
y+1􏼐 􏼑, (2)

where DC(∗, ∗) represents the travelling distance cost
between two diferent locations.

Assume the full set of all data items with all users
denoted as FD is described as follows:

FD � ∪
ui∈MU

Di. (3)

As shown in Figure 2, for user u1 that will move towards
servers s1, s2, and s3 for uploading data, u1 will consume the
cost C(u1, s1) + C(s1, s2) + C(s2, s3) + C(s3, u1), which
represents the total distance u1 travels. While for user u2 that
will go to servers s1 and s2 to upload data, u2 will expend cost
C(u2, s1) + C(s1, s2) + C(s2, u2), which represents the total
distance u2 travels. Specifcally, the travelling cost between
initiation and server is named as u − s service cost, for
example, C(u1, s1) + C(s3, u1) or C(u2, s1) + C(s2, u2), and

the cost for travelling between servers is named as s − s

service cost such as C(s1, s2).Temain used notations in this
paper are shown in Table 1.

2.3.2. Problem Formulation. To fnd a solution for deter-
mining which mobile edge servers will be activated and
which data types are assigned to the activated mobile edge
servers to minimize the total cost, the mobile edge server
activation problem (MESAP) will be formulated.

Based on the description of SCi for each mobile user ui

and FCj for each mobile edge server sj, a new variable pj is
proposed to indicate whether the mobile edge server sj is
activated or nonactivated. When sj is activated, pj will be 1
and 0 and vice-versa. In addition, the variable q

bt

j � 1 is
proposed to indicate that the mobile edge server sj processes
bt type data, and it is 0, otherwise. Variable w

bt

ij is 1 if user ui

with bt data type is assigned to server sj to upload data.
Taking into account that when bt � 0, Cj(bt) points to the
cost for activating server sj, consequently, the mobile edge
server activation problem (MESAP) is formulated as follows:

Minimize 􏽘
M

j�1
􏽘

K

t�1
FCj ∗ q

bt

j + 􏽘
N

i�1
SCi. (4)

We have

􏽘

M

j�1
w

bt

ij � 1, ∀bt ∈ BTi, ∀i ∈MU,

􏽘

M

j�1
q

bt

j � 1, ∀bt ∈ B

w
bt

ij ≤ q
bt

j ∀bt ∈ B, ∀sj ∈MES, ∀i ∈MU,

q
bt

j ≤pj ∀bt ∈ B, ∀sj ∈MES,

pj, q
bt

j , w
bt

ij ∈ 0, 1{ }.

(5)

Te frst constraint (15) means that there exists MES for
processing each type of data carried by each user.Te second
constraint (16) means that each data type is processed by a
single MES. Te third constraint (17) means that only when
MES has the ability to process the corresponding data type,
the user can upload data. Te fourth constraint (18) ensures
that a mobile edge server has the ability to process data just
when it is activated. Te ffth constraint (19) shows that the
values of decision variables pj, q

bt

j , and w
bt

ij are 0 or 1 only.
Te aim of the proposed strategies is to fnd the best set of
MESs that reduce the total cost and satisfy the above-
mentioned constraints.

2.4. Te Proposed Ant Colony Clustering-Based Strategies.
In this section, to solve theMESAP, two edge-server location
strategies are proposed. Te frst strategy is called one-tier
ant colony clustering-based strategy (OTACS) and the
second strategy is called two-tier ant colony clustering-based
strategy (TTACS). In the rest of this section, the key idea of
the proposed strategies will be introduced, then the two
proposed strategies are described in detail.
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2.4.1. Basic Idea. Te basic idea of the proposed strategies
depends on those as follows: (1) using clustering to divide the
set of mobile users with data items into clusters, (2) using the
ant colony approach for selecting the appropriate MES for
each data type in each cluster, (3) merging the selected
subsets of mobile edge servers for all clusters, and (4)
reallocating mobile edge server for each type of data for all
users based on the merged mobile edge servers set.

To satisfy the basic idea of the proposed strategies, frstly,
an overview of ant colony approach will be introduced and
then the two proposed strategies OTACS and TTACS will be
described in detail.

2.4.2. Overview of the Ant Colony Approach. Ant colony
optimization (ACO) is a population-based meta-heuristic
technique which depends on the foraging behavior of real
ants. Tese ants forage for food and construct the shortest
routes from their nest to the food source. ACO is a class of
algorithms which construct their solutions based on the data
problem, and it has been presented for application to
problems of discrete optimization. In a real environment,
ants look for food sources randomly. When an ant discovers
a food source, they carry some food back to their colony.
Moreover, when they move along the path, they leave a
chemical substance known as pheromone while they are

Table 1: Main used notations.

Symbol Meaning
CS Te central cloud server
MES Te set of mobile edge servers
MU Te set of mobile users
B Te set of data types
Di Te set of data items with a user ui ∈MU

βj Te confguration of data types that a mobile edge server sj ∈MES can operate on them
BTi Te set of data types with a user ui ∈MU

MSi Te corresponding set of mobile edge servers for a user ui ∈MU

PC(βj)
Te processing cost of any confguration βj

(unit: in terms of time, storage, and energy)

IPC(βj)
Te incremental processing cost of a data type bt

(unit: in terms of time, storage, and energy)

ACj

Te activation cost of mobile edge server
(unit: in terms of time, storage, and energy)

sj ∈MES

FCj

Te facility cost for activating edge server sj with confguration βj

(unit: in terms of time, storage, and energy)

SCi

Te service cost of a user ui ∈MU

(unit: in terms of time, storage, and energy)

C (S1) + C1 (b1) C (S2) + C2 (b2)

C (S3) + C3 (b3)

b1

b2

b3

U1
b1

b2

U2

C1

CS1 ={S1, S2, S3}
CS1 ={S1, S2}

S1

S3 S4

C4
C5

C6

C2

S2

C3

Mobile user

Activated
edge server

Inactivated
edge server

Figure 2: Edge-based MCS system model example. Servers S1, S2, and S3 are chosen to process data types b1, b2, and b3, respectively (a
modifed example based on [15]).

Applied Computational Intelligence and Soft Computing 5



moving. In turn, the higher rate of pheromone trails rep-
resents shorter paths. By using pheromone trails as a
communication mechanism, each ant makes decisions. Te
intensity of the pheromone trails left on the ground depends
on the quality of the solution (food source) found. Phero-
mone trails accumulate with multiple ants in shorter paths,
resulting in a higher density than in longer paths, therefore
increasing its attractiveness. By using an evaporation rate, all
pheromone remains are eventually reduced. On the other
side, an evaporation process introduces the exploration and
prevents staying in a local minimum. At the end of each
iteration, the values of pheromone are updated [48, 49]:

P
k
ij �

aij􏼐 􏼑
α

bij􏼐 􏼑
β

􏽐m∈Nk
i

aim( 􏼁
α

bim( 􏼁
β, j ∈ N

k
i ,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

where Pk
ij is the probability of moving decision of ant k from

node i to node j. Such decision depends on the level of
pheromone and heuristic information. Nk

i is the set of
possible neighborhoods that have not been visited yet by ant
k, bij is a heuristic function, and aij is the pheromone
amount on edge i and j. α and β are the parameters that
determine the relative signifcance of heuristic information
and pheromone concentration. Te pheromone update can
be formulated in the following manner:

aij←aij + Δak
ij,

Δak
ij �

Q

f ψk
􏼐 􏼑

, lij ∈ ψ
k
,

0, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

Te evaporation update process is given by

aij←(1 − ρ)aij, (8)

where ρ is the constant reduction factor of all pheromones,
f(ψk) is the cost of the solution done by ant k, and Q is a
constant. Te aforementioned optimization process is
stopped after a certain amount of iteration.

2.4.3. One-Tier Ant Colony Clustering-Based Strategy
(OTACS). Te frst proposed strategy is called one-tier ant
colony clustering-based strategy (OTACS). OTACS consists
of four phases as follows:

Phase 1: clustering phase
In this phase, to reduce the candidate number of MESs
for selection process, OTACS uses the clustering ap-
proach (any clustering approach of existing algorithms
for clustering can be used) to divide the set of mobile
users MU with their set of data items (FD) based on
the initial location of each mobile user into clusters
such that each cluster must have at least one mobile
edge server. Let us denote a set of clusters as CL �

cl1, cl2, . . . , clz, . . . , clZ􏼈 􏼉, where Z is the total number of
created clusters. Each cluster clz has the following sets:

(i) A set of MESs in a cluster,
MS(clz) � ms1, ms2, . . . , msv, . . . , msVz

􏽮 􏽯, where
Vz is the number of mobile edge servers in this
cluster and MS(clz)⊆MES

(ii) A set of mobile users in a cluster,
UC(clz) � uc1, uc2, . . . , ucr, . . . , ucRz

􏽮 􏽯, where Rz

is the number of mobile users in this cluster and
UC(clz)⊆MU

(iii) A set of data items for all mobile users in a cluster

DI(clz) � Duc1
, Duc2

, . . . , Ducr
, . . . , DucRz

􏼚 􏼛, where

∪ ucr∈UC(clz)Ducr
⊆FD

(iv) A set of data types in a cluster,
DT(clz) � dt1, dt2, . . . , dta, . . . , dtAz

􏽮 􏽯 where Az

is the number of data types in this cluster and
DT(clz)⊆B

Here, the K-means algorithm is used to create the
required clusters and the optimal number of clusters is
obtained by using silhouette method. Assume that
there a set of data points
PI � pi1, pi2, . . . , pil, . . . , piL􏼈 􏼉, then the silhouette
coefcient of a point pil, S(pil), is a measure for cluster
validity, which is defned as follows:

S pil( 􏼁 �
b pil( 􏼁 − a pil( 􏼁( 􏼁

max b pil( 􏼁, a pil( 􏼁( 􏼁
, (9)

where a(pil) stands for the average distance of that
point with all other points in the same cluster, b(pil)

represents the average distance of that point with all
points in the closest cluster to its cluster. Te value of
S(pil) ranges from −1 to +1. If the value of S(pil) is
nearer to 1, then the point is placed in the correct
cluster. If the value of S(pil) is negative, the point is
placed in the wrong cluster. If it is around 0, the object
is between the clusters [50].
Ten, the average silhouette value average S(k) calcu-
lated for all points in all clusters (assume that the
number of clusters is k and the number of total data
points is L) is as follows:

average S(k) �
1
L

􏽘

L

l�1
S pil( 􏼁. (10)

If the value of average S(k) is considerably high, then
the number of clusters k is optimal; in other words, the
clustering structure with k clusters is appropriate. On
the other hand, if the value of average S(k) tends to be
very less or negative, then the cluster structure with k

clusters is not proper, and it may be having either more
or lesser number of clusters than the optimal value.
As illustrated in Figure 3, Cluster C1 has one MES, S1􏼈 􏼉,
three users, u1, u2, u6􏼈 􏼉, and four data types,
b1, b2, b3, b5􏼈 􏼉. Cluster C2 has one MES S4􏼈 􏼉, two users
u3, u7􏼈 􏼉, and three data types b1, b2, b3􏼈 􏼉. Cluster C3 has
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two MESs, S2, S3􏼈 􏼉, three users u4, u5, u8􏼈 􏼉, and three
data types b1, b2, b3􏼈 􏼉. Cluster C4 has one MES, S5􏼈 􏼉,
two users u9, u10􏼈 􏼉, and four data types b1, b2, b4, b5􏼈 􏼉.
Cluster C5 has one MES, S6􏼈 􏼉, two users u11, u12􏼈 􏼉, and
three data types b1, b2, b4􏼈 􏼉.
Phase 2: in-cluster allocating phase
In this phase, for each cluster, OTACS uses the ant
colony (ACO) approach to select a mobile edge server
for each type of data based on the facility cost FCmsv

of

each mobile edge server msv ∈MS(clz) and the service
cost SCucr

of each mobile user ucr ∈ UC(clz). Te
objective of this phase is defned as follows:

Minimize 􏽘

Vz

v�1
􏽘

Az

a�1
FCmsv
∗ q

dta

msv
+ 􏽘

Rz

r�1
SCucr

. (11)

We have

􏽘

Vz

v�1
w

dta

rv � 1, ∀dta ∈ DT clz( 􏼁, ∀ucr ∈ UC clz( 􏼁,

􏽘

Vz

v�1
q

dta

v � 1, ∀dta ∈ DT clz( 􏼁

w
dta

rv ≤ q
dta

v ∀dta ∈ DT clz( 􏼁, ∀msv ∈MS clz( 􏼁, ∀ucr ∈ UC clz( 􏼁,

q
dta

v ≤pv ∀dta ∈ DT clz( 􏼁, ∀msv ∈MS clz( 􏼁,

pv, q
dta

v , w
dta

rv ∈ 0, 1{ }.

(12)

Te output of this phase is a set of selected mobile edge
servers, SMSclz

, that represents the most appropriate
MESs for fltering and aggregating all data items in this
cluster such that each data type is assigned to only one
mobile edge server in SMSclz

.
Phase 3: merging phase
In this phase, OTACSmerges the selected sets of mobile
edge servers for all clusters in CL into one whole set of
selected mobile edge servers, WSCL⊆MES, which is
defned as follows:

WSCL � ∪
Z

z�1
SMSclz

. (13)

Phase 4: reallocating phase
In this phase, OTACS reallocates themobile edge server
for each data type for all users. For each data type bt, by
using the whole set of selected mobile edge servers,
WSCL. Assume that the whole set of selected mobile
edge servers WSCL � s1, s2, . . . , sy, . . . , sY􏽮 􏽯, where Y

denotes the number of mobile edge servers in WSCL.
Te objective of this phase is formulated as follows:

Minimize 􏽘
Y

y�1
􏽘

K

t�1
FCy ∗ q

bt

y + 􏽘
N

i�1
SCi. (14)

We have
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Figure 3: Clustering example for the system model of edge-based MCS.
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􏽘

Y

y�1
w

bt

iy � 1, ∀bt ∈ BTi, ∀i ∈MU, (15)

􏽘

Y

y�1
q

bt

y � 1, ∀bt ∈ B, (16)

w
bt

iy ≤ q
bt

y ∀bt ∈ B, ∀sy ∈WSCL, ∀i ∈MU, (17)

q
bt

y ≤py ∀bt ∈ B, ∀sy ∈WSCL, (18)

py, q
bt

y , w
bt

iy ∈ 0, 1{ }. (19)

Based on this objective, OTACS uses a simple heuristic
approach to select the most appropriate mobile edge
server for each type of data. OTACS calculates the
overall cost for all mobile edge servers in the whole set
of selected mobile edge servers, WSCL, and then for
each data type bt, OTACS selects the mobile edge server
with the minimum overall cost, ssbt

∈WSCL, such that

C ssbt
, bt􏼐 􏼑 � mins∈WSCL

TC s, bt( 􏼁􏼈 􏼉, (20)

where TC(s, bt) represents the overall cost to assign
data type bt to the mobile edge server s ∈WSCL.

2.4.4. Two-Tier Ant Colony Clustering-Based Strategy
(TTACS). In the frst proposed strategy, OTACS, the load
balancing for mobile edge servers in relation to the number of
assigned users and assigned data items for each activated
mobile server is not taken into account. Terefore, the second
proposed strategy called two-tier ant colony clustering-based
strategy (TTACS) is used to tackle this issue. TTACS consists
of four phases as the frst proposed strategy OTACS, but it has
the same frst three phases as described OTACS: clustering
phase, in-cluster allocating phase, and merging phase. While
in the fourth phase, reallocating phase, instead of a simple
heuristic which is used inOTACS, TTACS uses the ant colony
(ACO) approach to select the most appropriate mobile edge
server for each type of data. For each data type, TTACS uses a
ftness function which depends on the overall cost for all
mobile edge servers in the whole set of selected mobile edge
servers, WSCL, and then it constructs the best mobile edge
servers set for all data types to be activated in the edge-based
scenario of MCS taking into account improving the load
balancing on the this activated servers.

Based on these four phases of OTACS and TTACS, they
can select the most appropriate mobile edge server for each
type of data to be activated in the edge-based MCS scenario.
Figure 4 introduces an example of these four phases of the
proposed strategies OTACS and TTACS.

2.4.5. Computational Complexity of OTACS and TTACS.
Here, the computational complexity of the suggested
strategies is going to be described based on the phases of
strategy. As shown on the previous two sections, OTACS

and TTACS consist of four phases: clustering phase, in-
cluster allocating phase, merging phase, and reallocating
phase. So, the computational complexity of OTACS and
TTACS depends on the complexity of each phase of these
four phases which will be described as follows:

(i) Complexity of Clustering Phase. In this phase,
OTACS and TTACS use the k-means algorithm for
creating k clusters, so the computational complexity
of this phase is O(I1k(N + M)), where I1 is the
maximum iterations number for k-means and N

and M are the number of mobile users and mobile
edge servers, respectively.

(ii) Complexity of In-Cluster Allocating Phase. In this
phase, OTACS and TTACS use the ACO approach
for fnding themost appropriate mobile edge servers
set in each cluster, so the computational complexity
of this phase is O(I2m

2
cqc), where I2 is the maxi-

mum number of iterations for ACO and mc and qc

are the number of mobile edge servers and data
types in cluster c, respectively.

(iii) Complexity of Merging Phase. In this phase, OTACS
and TTACS merge all selected sets of mobile edge
servers for all clusters, so the computational com-
plexity of this phase is O(P), where P � |WSCL ≤M|

is the total number of selected mobile edge servers
in the whole set.

(iv) Complexity of Reallocating Phase. In this phase,
OTACS uses a heuristic algorithm for reallocating
the set of selected servers, so the computational
complexity of OTACS in this phase isO(KP), where
K is the total number data types in the system and
P � |WSCL ≤M| is the total number of selected
mobile edge servers in the whole set, While TTACS
uses a ACO approach for reallocating the set of
selected servers, so the computational complexity of
TTACS in this phase is O(I3P

2M), where I3 is the
maximum number of iterations for ACO and P �

|WSCL ≤M| is the total number of selected mobile
edge servers in the whole set.

As a result, the fnal computational complexity of OTACS
and TTACS are O(I1k(N + M)) + O(I2m

2
cqc) + O(KP), and

O(I1k(N + M)) + O(I2m
2
cqc) + O(I3P

2M), respectively.
Table 2 summaries the fnal computational complexity of
OTACS and TTACS.

3. Evaluation and Simulation Results

3.1. Simulation Settings and Data Preparations. To evaluate
the proposed strategies, the performance of six strategies
which are low cost frst (LF), minimum average distance
(DIS), biogeography-based optimization with particle
swarm optimization (BBO_PSO) [47], APX2 [15], CMSA
[15], and random are compared with the proposed strategies
OTACS and TTACS. In LF strategy, a mobile edge server sj

with the lowest processing cost, IPCj(bt), is selected for each
data type bt. In DIS, a mobile edge server with the lowest
average distance to the mobile users set is selected for each
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data type. In BBO_PSO, a heuristic algorithm is used to
select a mobile edge server which maximizes the total cost
ftness for each data type. In random strategy, a mobile edge

server is selected randomly for each type of data. In APX2
[15], a mobile edge server is selected by using a relaxation-
based approximation approach based facility and service

Table 2: Summarization of the fnal computational complexity of OTACS and TTACS.

Phases OTACS TTACS Parameter description

Clustering O(I1k(N + M)) O(I1k(N + M))

(i) I1, maximum number of
iterations for k-means
(ii) N, number of mobile
users
(iii) M, number of mobile
edge servers.
(iv) k, number of clusters

In − cluster allocating O(I2m
2
c qc) O(I2m

2
c qc)

(i) I2, maximum number of
iterations for ACO
(ii) mc, number of mobile
edge servers in cluster c

(iii) qc, number of data
types in cluster c

Merging O(P) O(P)

(i) P � |WSCL ≤M|, total
number of selected mobile
edge servers in the whole
set

Reallocating O(KP) O(I3P
2M)

(i) I3, maximum number of
iterations for ACO
(ii) K, number data types in
the system
(iii) P � |WSCL ≤M|, total
number of selected mobile
edge servers in the whole
set

Final complexity O(I1k(N + M)) + O(I2m
2
c qc) + O(KP) O(I1k(N + M)) + O(I2m

2
c qc) + O(I3P

2M)

Reallocating
phase

Merging
phase

Clustering
phase

Distributed
determination

phase

Mobile user

Activated
edge server

Inactivated
edge server

Mobile user

Selected
edge server

Unselected
edge server

Mobile user

Selected
edge server

Unselected
edge server

Mobile user

Edge server

Cluster label

Figure 4: Example of the four phases of the proposed strategies.
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costs. In CMSA [15], a mobile edge server is selected by using
a connected multiagent simulated annealing algorithm
based on facility and service costs.

In addition, to evaluate the performance of the suggested
strategies to minimize the sensing cost, three data sets are
widespread used in real world, which are the dataset of
roma/taxi [51], dataset of epf/mobility [52], and dataset of
geolife trajectory [53]. Te GPS trajectories in San Francisco
Bay Area of approximately 500 taxis, USA, were recorded in
the epf/mobility set over 30 days.Te dataset of roma/taxi in
in Rome, Italy, that includes approximately 320 taxis’ GPS
for coordinating mobility traces, collected over 30 days. Te
dataset of geolife trajectory for in Geolife project by 182
users that includes 17,621GPS trajectories with a distance of
1.2 million kilometers which were collected.

In the simulation, a uniform distribution is used for
generating the facility costs randomly, and the service costs
for the mobile users are put as the distance of travel when
uploading sensing data in the dataset of real world. Note that
the frst GPS position of the trajectory of a user is selected as
the initial position and the POI positions are selected as a
candidate mobile edge server positions.

3.2. Evaluation Metrics. Here, the evaluation metrics which
are used to evaluate all strategies are described as follows:

(i) Number of activatedmobile edge servers (NAMESs)
is the number of selected servers to be activated for
processing all data types

(ii) Total cost (TC) is the summation of the facility cost,
FCj, and service cost, SCi, for all activatedMESs and
mobile users.

(iii) Load balancing for server-user (LBSU) is the av-
erage load balance among the activated MESs based
on the number of served mobile users by each
activated mobile edge server. Assume that the set of
activated MESs is denoted as NAS and the load
balance for each activatedMES sj in terms of users is
denoted as LBSUj. Te average load balance for
server-user, avg LBSU, is defned as follows:

avg LBSU �
Max LBSU − Min LBSU

|NAS|
, (21)

where

Max LBSU � max
sj∈NAS

LBSUj􏽮 􏽯,

Min LBSU � min
sj∈NAS

LBSUj􏽮 􏽯,
(22)

and |NAS| is the number of activated mobile edge
servers.

(iv) Load balancing for server-data (LBSD) is the av-
erage load balance among the activated MESs based
on the number of received data items from mobile
users by each activated MES. Assume that the load
balance for each activated MES sj in terms of re-
ceived data items is denoted as LBSDj. Te average

load balance for server-data, avg LBSD, is defned as
follows:

avg LBSD �
Max LBSD − Min LBSD

|NAS|
, (23)

where

Max LBSD � max
sj∈NAS

LBSDj􏽮 􏽯,

Min LBSD � min
sj∈NAS

LBSDj􏽮 􏽯.
(24)

Note that lower values of avgLBSU and avgLBSD are
better for satisfying the load balance on the activated
servers.

3.3. Efect of the Number of Data Types. Here, the efects of
diferent number of data types are studied and discussed for
all strategies when the number of mobile edge servers is 20,
and the number of mobile users is 270 in case of epf/
mobility set, and 130 in case of geolife trajectory and roma/
taxi sets. Figures 5(a)–5(c) show the number of activated
mobile edge servers for epf/mobility, geolife trajectory, and
roma/taxi, respectively. As illustrated in Figures 5(a)–5(c),
the number of activated servers grows as the number of data
types grows for most strategies. Additionally, the proposed
strategies, OTACS and TTACS, achieved reasonable values
which are not very low or very high. Tis is because OTACS
and TTACS use the k-means clustering approach to reduce
the number of candidate servers, and it can select the ap-
propriate number of activated servers based on their ftness
function. Additionally, the number of activated servers of
TTACS is greater than OTACS for most values of the
number of data types. Tis is because TTACS uses the ant
colony approach in its two tiers for improving the load
balancing of the activated servers, while OTACS uses ant
colony in one tier only.

Figures 6(a)–6(c) show the achieved total cost for epf/
mobility, geolife trajectory, and roma/taxi, respectively. As
illustrated in Figures 6(a)–6(c), the achieved total cost in-
creases as the number of data types increases for most
strategies. Additionally, the proposed strategies OTACS and
TTACS achieved the lowest total cost among all strategies.
Tis is because OTACS and TTACS use the k-means
clustering approach and ant colony approach with a ftness
function that depends on minimizing the facility and service
cost together.

Figures 7(a)–7(c) show the average load balancing for
sever-user (avgLBSU) for epf/mobility, geolife trajectory,
and roma/taxi, respectively. As illustrated in Figures 7(a)–
7(c), avgLBSU decreases as the number of data types in-
creases for most strategies except the DIS strategy. Tis is
because when the number of data items increases, the
number of activated servers increases, and the load bal-
ancing gets distributed among them. Additionally, LBSU
values of OTACS and TTACS are lower than LBSU values of
other strategies. Tis is beacuse OTACS and TTACS can
distribute the server load in terms of users by using the k-
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mean clustering and ant colony approach. In the case of DIS
strategy, the avgLBSU values are less afected by changing
the number of data types. Tis because DIS uses only the
travelling distance to select the servers to be activated.

Figures 8(a)–8(c) show the average load balancing for
sever-data (avgLBSD) for epf/mobility, geolife trajectory,
and roma/taxi, respectively. As illustrated in Figures 8(a)–
8(c), avgLBSD decreases as the number of data types
grows for most strategies except the DIS strategy. Tis is
because when the number of data items increases, the
number of activated servers increases, and the load bal-
ancing gets distributed among them. Additionally, LBSU
values of OTACS and TTACS are lower than LBSU values
of other strategies. Tis is because OTACS and TTACS
can distribute the server load in terms of users by using the

k-mean clustering and ant colony approach. In the case of
DIS strategy, the avgLBSD values are less afected by
changing the number of data types. Tis is because DIS
uses only the travelling distance to select the servers to be
activated.

3.4. Efect of the Number of Servers. Here, the impact of
diferent number of servers are studied and discussed for all
strategies when the number of data types is 6 and the mobile
users number is 270 in the case of epf/mobility set and 130
in the case of geolife trajectory and roma/taxi sets.
Figures 9(a)–9(c) illustrate the number of activated mobile
edge servers for epf/mobility, geolife trajectory, and roma/
taxi, respectively. As illustrated in Figures 9(a)–9(d), the
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Figure 5: Number of activated servers in terms of data types: (a) epf/mobility set, (b) geolife trajectory set, and (c) roma/taxi set.
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Figure 6: Total cost in terms of data types: (a) epf/mobility set, (b) geolife trajectory set, and (c) roma/taxi set.
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Figure 7: Load balancing for server-user (LBSU) in terms of data types: (a) epf/mobility set, (b) geolife trajectory set, and (c) roma/taxi set.
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number of activated servers is less afected as the number of
candidate servers grows for most strategies. Additionally, the
proposed strategies, OTACS and TTACS, achieved higher
values than other strategies, while in the case of roma/taxi,
OTACS and TTACS achieved reasonable values which are
not very low or very high. Tis is because OTACS and
TTACS use the k-means clustering approach to reduce the
number of candidate servers, and it can select the appro-
priate number of activated servers based on their ftness
function.

Figures 10(a)–10(c) show the achieved total cost for epf/
mobility, geolife trajectory, and roma/taxi, respectively. As
illustrated in Figures 10(a)–10(c), the achieved total cost is
less afected as the number of candidate servers grows for
most strategies. In addition, the proposed strategies,
OTACS, TTACS, and APX2, achieved the lowest total cost
among all strategies. Tis is because OTACS, TTACS, and
APX2 take into account facility and service costs. Addi-
tionally, OTACS and TTACS use the k-means clustering
approach and ant colony approach with a ftness function
that depends on minimizing the facility and service cost
together, and APX2 uses a relaxation-based approximation
algorithm.

Figures 11(a)–11(c) show the average load balancing for
sever-user (avgLBSU) for epf/mobility, geolife trajectory,
and roma/taxi, respectively. As illustrated in Figures 11(a)–
11(c), avgLBSU is less afected as the number of candidate
servers grows for most strategies. Tis is beacuse when the
number of candidate servers grows, the number of activated
servers is less afected and the load balancing will be dis-
tributed among them. Additionally, the LBSU values of
OTACS and TTACS are lower than LBSU values of other
strategies.Tis is because OTACS and TTACS can distribute
the server load in terms of users by using the k-mean
clustering and ant colony approach.

Figures 12(a)–12(c) show the average load balancing for
sever-data (avgLBSD) for epf/mobility, geolife trajectory,
and roma/taxi, respectively. As illustrated in Figures 12(a)–
12(c), avgLBSD is less afected as the number of candidate
servers grows for most strategies. Tis is because when the
number of candidate servers increases, the number of ac-
tivated servers is less afected and the load balancing will be
distributed among them. Additionally, LBSU values of
OTACS and TTACS are lower than LBSU values of other

strategies.Tis is because OTACS and TTACS can distribute
the server load in terms of users by using the k-mean
clustering and ant colony approach.

3.5. Efect of the Number of Users. Here, the impact of dif-
ferent number of users are studied and discussed for all
strategies when the number of data types is 6 and the
number of mobile edge servers is 20 for epf/mobility, geolife
trajectory, and roma/taxi sets. Figures 13(a)–13(c) show the
number of activated mobile edge servers for epf/mobility,
geolife trajectory, and roma/taxi, respectively. As illustrated
in Figures 13(a)–13(c), the number of activated servers is less
afected as the number of candidate servers grows for most
strategies. Additionally, the proposed strategies, OTACS and
TTACS, achieved higher values than other strategies. While
in the case of roma/taxi, OTACS and TTACS achieved
reasonable values which are not very low or very high.Tis is
because OTACS and TTACS use the k-means clustering
approach to reduce the number of candidate servers and it
can select the appropriate number of activated servers based
on their ftness function.

Figures 14(a)–14(c) show the achieved total cost for epf/
mobility, geolife trajectory, and roma/taxi, respectively. As
illustrated in Figures 14(a)–14(c), the achieved total cost
grows as the number of users grows for most strategies.
Additionally, the proposed strategies OTACS, TTACS, and
APX2 achieved the lowest total cost among all strategies.
Tis is because OTACS, TTACS, and APX2 take into ac-
count facility and service costs. Additionally, OTACS and
TTACS use the k-means clustering approach and ant colony
approach with a ftness function that depends on mini-
mizing the facility and service cost together and APX2 uses a
relaxation-based approximation algorithm.

Figures 15(a)–15(c) show the average load balancing for
sever-user (avgLBSU) for epf/mobility, geolife trajectory,
and roma/taxi, respectively. As illustrated in Figures 15(a)–
15(c), avgLBSU is less afected as the number of users in-
creases for most strategies. Tis is because when the number
of users increases, the number of the activated servers are
less afected and the load balancing will be distributed
among them. Additionally, LBSU values of OTACS and
TTACS are lower than LBSU values of other strategies. Tis
is because OTACS and TTACS can distribute the server load
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Figure 8: Load balancing for server-data (LBSD) in terms of data types: (a) epf/mobility set, (b) geolife trajectory set, and (c) roma/taxi set.
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Figure 11: Load balancing for server-user (LBSU) in terms of candidate servers: (a) epf/mobility set, (b) geolife trajectory set, and (c) roma/
taxi set.
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Figure 12: Load balancing for server-data (LBSD) in terms of candidate servers: (a) epf/mobility set, (b) geolife trajectory set, and (c) roma/
taxi set.
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Figure 9: Number of activated servers in terms of candidate servers: (a) epf/mobility set, (b) geolife trajectory set, and (c) roma/taxi set.
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Figure 10: Total cost in terms of candidate servers: (a) epf/mobility set, (b) geolife trajectory set, and (c) roma/taxi set.
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Figure 14: Total cost in terms of candidate servers: (a) epf/mobility set, (b) geolife trajectory set, and (c) roma/taxi set.
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Figure 15: Load balancing for server-user (LBSU) in terms of users: (a) epf/mobility set, (b) geolife trajectory set, and (c) roma/taxi set.

0

1

2

3

4

5

6
N

um
be

r o
f a

ct
iv

e s
er

ve
rs

50 70 90 110 130 150 170 190 210 230 250 270
Number of users

TTACS
OTACS
LF
DIS

APX2
CMSA
Random

BBO_PSO

(a)

0

2
1

4
3

5

7
6

8

10
9

N
um

be
r o

f a
ct

iv
e s

er
ve

rs

50 70 90 110 130
Number of users

TTACS
OTACS
LF
DIS

APX2
CMSA
Random

BBO_PSO

(b)

0

2

1

4

3

5

6

N
um

be
r o

f a
ct

iv
e s

er
ve

rs

50 70 90 110 130
Number of users

TTACS
OTACS
LF
DIS

APX2
CMSA
Random

BBO_PSO

(c)

Figure 13: Number of activated servers in terms of users: (a) epf/mobility set, (b) geolife trajectory set, and (c) roma/taxi set.
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Figure 16: Load balancing for server-data (LBSD) in terms of users: (a) epf/mobility set, (b) geolife trajectory set, and (c) roma/taxi set.
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in terms of users by using the k-mean clustering and ant
colony approach.

Figures 16(a)–16(c) show the average load balancing for
sever-data (avgLBSD) for epf/mobility, geolife trajectory,
and roma/taxi, respectively. As illustrated in Figures 16(a)–
16(c), avgLBSD is less afected as the number of users grows
for most strategies. Tis is because when the number of
users increases, the number of activated servers is less
afected and the load balancing will be distributed among
them. Additionally, LBSU values of OTACS and TTACS
are lower than LBSU values of other strategies. Tis is
because OTACS and TTACS can distribute the server load
in terms of users by using the k-mean clustering and ant
colony approach.

In summary, the results of these conducted simula-
tions show that in the frst case “changing number of data
types,” the proposed methods OTACS and/or TTACS
outperform all existing methods in terms of total cost and
load balancing for server-user and server-data by which
they achieved lower values than existing methods. In the
second case “changing number of servers” and the third
case “changing number of users,” the proposed methods
OTACS and/or TTACS outperform all existing methods
in terms of total cost except APX2. However, they out-
perform all existing methods in terms of load balancing
for server-user and server-data by which they achieved
lower values than existing methods. So, the proposed
methods are better than APX2 because they can guarantee
the load balance among candidate servers but APX2
cannot.

4. Conclusion

In this paper, two edge-server location strategies are
proposed for minimizing the facility and service cost in
mobile crowdsensing. Tese two strategies are called one-
tier ant colony clustering-based strategy (OTACS) and
two-tier ant colony clustering-based strategy (TTACS).
Each proposed strategy uses a clustering method for di-
viding the set of mobile users with data items into clusters.
OTACS uses the ant colony approach in the frst tier to
select a mobile edge server for each data type in each
cluster. Ten, it merges all the selected sets of mobile edge
servers and uses a simple heuristic method in the second
tier to reallocate each data type to its appropriate mobile
edge server, while TTACS uses an ant colony approach in
the two tier to do the selection and reallocating processes.
Te proposed strategies were compared with six of the
existing strategies. Te conducted simulations were based
on widely used data sets in the real world: ep/mobility,
roma/taxi, and geolife trajectory. Te simulation results
show that the proposed strategies achieve better perfor-
mance than the existing methods in terms of service cost,
facility cost, and load balancing for server-user server-data
distribution. In the future work, new issues will be con-
sidered, such as the energy consumption by mobile users,
using diferent clustering algorithms and applying diferent
MCS scenarios.
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