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Fog computing is becoming a dynamic and sought-after computing prototype for Internet of �ings (IoT) application
deployments. It works in conjunction with the cloud computing environment. Load balancing, which is employed by IoT
applications when deciding, which fog or cloud computing nodes to use, is one of the most critical components for enhancing
resource e�ciency and avoiding problems like overloading or underloading. However, for IoT applications, ensuring that all
CPU nodes are evenly distributed in terms of latency and energy utilization remains a challenge. To solve these issues, this work
introduces Di�erential Grey Wolf (DGW) load balancing with stochastic Bellman deep reinforced resource optimization
(DGW-SBDR) in fog situations. A Di�erential Evolution-based GreyWolf Optimization algorithm based on load balancing has
been developed for optimal resource management. �e Grey Wolf Optimization algorithm, which employs di�erential
evolution, assigns jobs to virtual machines based on user demands (VMs). In the event of an overutilized VM pool, a grey wolf
optimization strategy based on di�erential evolution can detect both under and overutilized VMs, allowing for smooth transit
between fogs. �is step disables a number of virtual machines in order to reduce latency. In a Stochastic Gradient and Deep
Reinforcement Learning-based Resource Allocation Model, a stochastic gradient bellman optimality function and Deep
Reinforcement Learning are integrated for optimal resource allocation. According to the proposed method, QoS may be
supplied to end-users by reducing energy consumption and better managing cache resources utilizing stochastic gradient
bellman optimality.

1. Introduction

Fog computing, also known as edge computing, is a type of
distributed computing that connects numerous IoTsensors
or devices to a cloud. �is is due to the fact that many of
these IoTsensors or devices generate a large amount of raw
data. Rather than sending all of this data to cloud-based
servers for further processing, the concept behind it is to do
as much processing with it as possible to reduce bandwidth
costs and hence reduce latency between input and
response.

In [1] a strategy for load balancing in fog computing
environments called Dynamic Energy E�cient Resource
Allocation (DEERA) [2] was suggested. To begin, user tasks
were sent to the task manager to be completed. After that,
the resource information provider used Cloud Data Centers
to register the resources. After that, the information for both
tasks and resources was sent to the resource scheduler. �e
resource scheduler makes further arrangements for the
available resources based on their use.

Finally, tasks and resources from the resource scheduler
were assigned to resources according to an ordered list of
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tasks. 'e results of a successful job execution were sent to
the associated user via a resource engine, reducing both
energy usage and computing costs. 'e latency associated
with load balancing in fog computing environments was not
highlighted, despite improvements in both energy con-
sumption and compute cost. To address this issue, we
present the Differential Evolution-based Grey Wolf Opti-
mization algorithm [3, 4], which ensures optimal load
balancing with minimal latency through node update, re-
location, and migration [5].

'e Internet of 'ings (IoT) allows for the coordination
and balancing of a large number of Internet-connected
devices. However, due to processing congestion, an overload
on a network link connected to an IoTgateway may result in
inaccessibility in IoT applications. To solve these issues, [6]
provided a solution for the requirements to implement load
balancing for the Fog of 'ings via programmability via the
use of Software Defined Networks (SDN).

'e provision of processing, storage, and IoT services at
edge devices was ensured with a minimum response time
based on the FoTenvironment, as well as a better reduction in
the average time between requests. Despite the fact that re-
sponse time and storage were reduced, the energy utilized
throughout the operation was not targeted. 'e Stochastic
Bellman Gradient Deep Reinforcement Learning-based Re-
source Allocation algorithm was created to address this issue.
'e approach, which combines the Stochastic Bellman Gra-
dient optimality function with Deep Reinforcement Learning,
not only improves the makespan but also minimizes the
amount of energy used by the stochastic gradient function.

'e major goal of this study is to present a new load-
balanced resource allocation model in the fog that efficiently
accomplishes load balancing and resource allocation sepa-
rately. Because of its multi-factor, i.e., optimization and deep
learning model, this optimization model solves the short-
comings of previous load balancing methods in fog envi-
ronments. 'is paper’s contributions also include the
following:

To propose a unique Grey Wolf Optimization algorithm
[4, 5] based on differential evolution for minimizing a
composite objective function. Using a differential evolution
function, our approach can reduce the latency rate during
load balancing.

To create a new Stochastic Bellman Gradient Deep
Reinforcement Learning-based Resource Allocation method
based on the Stochastic Bellman Gradient function and a
deep learning model that assures improved optimal load
balancing and resource allocation in the fog. In a fog en-
vironment, the suggested DGW-SBDR technique enhanced
load balancing efficiency, makespan, latency, and energy
consumption as performance assessment measures.

'e remainder of the paper is structured as follows:
Section 2 discusses the various modern scheduling ap-
proaches that are available. In Section 3, we spoke about the
suggested Differential Grey Wolf load balancing and Sto-
chastic Bellman Deep Reinforced resource optimization
(DGW-SBDR) in a fog environment. Section 4 describes the
experimental setup and comparative analysis, followed by a
detailed explanation of the conclusions in Section 5.

2. Works That Are Related

Over the last several years, the number of IoT devices with
sensors has increased significantly. 'e data from these
sensors is obtained by these sensors. Following that, with the
help of the raw data gathered, aggregated information is
produced with the goal of making an automatic conclusion.
Overloaded fog servers, on the other hand, may be unable to
maintain Quality of Service (QoS), resulting in increased
delay.

In [7] an integrated fog-cloud environment was pro-
posed with the goal of lowering resource allocation costs and
minimizing latency. A cooperative three-layer fog-cloud
computing environment was built for this purpose. A unique
optimization model with a composite goal function was
created to decrease bandwidth costs while also ensuring
effective load balancing. A Dynamic and Resource Aware
Load-Balanced Scheduling Approach for Cloud Computing
[DRALBA] was developed in [8] with the goal of reducing
average response time while increasing throughput.

Despite significant infrastructure improvements, cloud
computing still faces a number of challenges when it comes
to load balancing. However, the majority of current tech-
niques analyze only a few QoS measures and overlook other
critical aspects. In [9] a load balancing technique called data
files type formatting (DFTF) was proposed, which combines
an enhanced version of cat swarm optimization (CSO) with
a support vector machine (SVM). 'is resulted in increased
throughput as well as a reduction in migration time.

'e Internet of 'ings (IoT) prototype has been viewed
as a critical management tool for implementing the smart
concept in a variety of areas for reasons of monitoring,
control, and management. However, overloaded networks
have resulted from the exponential increase in data traffic
caused by the rise in IoT-enabled devices.

In [10], a unique Effective Prediction and Resource
Allocation Methodology (EPRAM) for the Fog environment
was suggested, which is applicable for healthcare applica-
tions. Makespan was discovered to be reduced to a greater
extent with the help of reinforcement learning. To ensure
service quality, another method called Queuing theory-
based cuckoo search was developed in [11]. 'e fog com-
puting environment’s challenges and outstanding issues
based on reinforcement learning were discussed in [12].

Smart mobile gadgets have become increasingly im-
portant in our daily lives over the last few years. Despite the
advancements, numerous applications are still experiencing
energy consumption issues. Fog computing has recently
been presented as an alternative to traditional cloud com-
puting to address the conflict between resource-restricted
applications and devices. Fog computing ensures computing
potentialities with flexible computation and communication
services.

In [13], two alternative resource allocation strategies for
hybrid systems were developed. During the decision-making
process, the technique considered network load in addition
to resource allocation. 'e overall goal remained the allo-
cation of resources as well as the reduction of time spent in
the whole process. 'is was accomplished by allocating

2 Applied Computational Intelligence and Soft Computing



weights to each optimization criterion; previously, resource
allocation policies used predetermined weights; however, the
weights were identified in a dynamic way, resulting in in-
creased accuracy.

Fog computing was used to establish a collaborative
resource management policy for device communication in
[14]. In this study, each mobile end chooses whether to
offload through an edge server or through a third-party fog
node. With this architecture, an optimal solution algorithm
was devised utilizing mixed integer nonlinear programming
and based on branch-and-price, reducing computational
complexity to a greater extent.

While fog IoT applications are important, there is still a
gap in properly utilizing computing resources in a fog en-
vironment with increased Quality of Service (QoS) and
Quality of Experience (QoE) (QoE). [15] used the greedy
method, which not only ensured scalability but also achieved
optimality for multitasking applications in a fog environ-
ment. [16] used a modified Artificial Echo System-based
Optimization approach to solve the work scheduling
problem. Maximum makespan time and throughput were
supposed to be guaranteed with this configuration.

[17] suggested a dynamic optimization mechanism for
IoT fog environments, where offloading decisions are de-
termined in real-time. To be more explicit, a hybrid compute
offloading and radio resource allocation approach based on
Lyapunov optimization was presented with the goal of
minimizing latency and energy usage. However, because of
the fog node’s compute constraints and storage inefficiency,
offloading jobs must be done as efficiently as possible. To
achieve this goal, the Globally Optimal Multi-Objective
Optimization algorithm for Task Offloading (GOMOTO)
was used in conjunction with a network calculus theory [18]
for task offloading in a fog environment.

Another unique method, Energy-aware Fog Resource
Optimization (EFRO), was developed in [19] with the goal of
optimizing devices in a fog environment. To achieve this
goal, a heuristic algorithm was created, which lowered not
only the cost of energy but also the time it took to complete
the task. [20] suggested a fog scheduling strategy that took
into account multiple access download times, lowering the
average response time.

[21] proposed an integrated iterative optimization on
subcarrier that took into account power and trajectory to
arrive at the best option. Furthermore, a fairness optimi-
zation model was presented to enhance the minimum
transmit rate of IoT nodes, resulting in improved transit
performance. In [22], a polynomial mutation process based
on the Cauchy distribution was developed to solve multiple
objective problems, namely, maintaining a tradeoff between
makespan and energy consumption. [23] used the Oppo-
sition-based Chaotic Whale Optimization Algorithm to
examine two QoS criteria, optimizing time and energy usage.
[24] used a direct load control technique to ensure load
optimization and flexibility.

In response to the aforementioned challenges, a strategy
termed Differential GreyWolf load balancing and Stochastic
Bellman Deep Reinforced resource optimization (DGW-
SBDR) in a fog environment is proposed in this paper. 'e

next sections provide a more detailed discussion of the
suggested method.

3. Methodology

'e proposed approach is divided into two parts. 'e first
step is concerned with balancing the load between fog and
cloud networks. 'e second step, on the other hand, effi-
ciently allocates resources between virtual machines in the
cloud. 'e significance of the findings when a user request
service or user request task is sent to a cloud network is
determined by the IoT application in use. 'e traditional
cloud computing environment is becoming overcrowded,
resulting in concerns such as jitter and slowness. As a result,
the fog layer was created as a transitional layer between the
user and the cloud computing environment. As a result, the
first phase of our work will focus on balancing the load
between the fog layer and the cloud computing environment
using a Grey Wolf Optimization model based on differential
evolution.

'e second step, on the other hand, skips over the
optimization of cloud resource allocation for user-requested
tasks. 'e goal here is to apply a stochastic gradient bellman
function to reduce the amount of energy consumed during
the process of assigning resources across user-requested
tasks, resulting in optimal VM allocation based on deep
reinforcement learning. In a fog setting, a block diagram of
Differential Grey Wolf load balancing with Stochastic
Bellman Deep Reinforced resource optimization (DGW-
SBDR) is proposed (see Figure 1).

As shown in Figure 1, the proposed DGW-SBDR
method is split into two sections. 'ey are load balancing
using Differential Evolution-based Grey Wolf Optimization
model and resource allocation using Stochastic Gradient and
Deep Reinforcement Learning-based Resource Allocation
model. 'e detailed description of the proposed DGW-
SBDR method is detailed in the following sections.

3.1. Differential Evolution-Based Grey Wolf Optimized Load
Balancing Model. To balance load between fog and cloud
networks, a novel Differential Evolution-based Grey Wolf
Optimization model is designed. 'e Differential Evolution-
based Grey Wolf Optimization model detects overutilized
fogs, underutilized fogs, and finally performs migration in a
significant manner, therefore, balancing load between fog
and cloud networks. With this, the latency involved in
completing one user request task between source and des-
tination is said to be reduced. Figure 2 shows the block
diagram of Differential Evolution-based Grey Wolf Opti-
mization model.

'e wolf (i.e., the computing nodes in the fog) has a
strong potential to capture prey (i.e., ensuring load distri-
bution in the cloud environment). In order to mimic wolves’
internal leadership hierarchy, the wolves are split into four
distinct types, “alpha,”“beta,” “delta,” and “omega,” where
the best individual (i.e., the best computing nodes), second
best individual (i.e., the second best computing nodes), and
third best individual (i.e., the third best computing nodes)
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are considered as “alpha,” “beta,” and “delta” and the rest of
the individuals (i.e., the rest of the computing nodes) are
considered as “omega.” In the Differential Evolution-based
Grey Wolf Optimization, the optimal load balancing is
controlled by “alpha,” “beta,” and “delta.” 'ey assist other
wolves or the computing nodes in the fog incline to the
optimal load balancing to the best area in searching space
(i.e., the CC environment). 'e cloud data centers with “n”
numbers of servers “S” are placed as given below.

DC � DC1, DC2, . . . , DCn􏼈 􏼉, (1)

S � S1, S2, . . . , Sn􏼈 􏼉. (2)

'en, from the abovementioned placement Equations(1)
and (2), the fog network comprises distinct numbers of
virtual machines “VMs,” with “VMs” processing different
numbers of tasks “T” at a time instance “t,” mathematically
stated as given below.

Stochastic Gradient
Bellman function

Resource Allocator

Deep Reinforcement
learning

Cloud Computing Environment DE function

Fog Layer

Processed IoT generated data

IoT generated data Optimal
load

balance

Load balancing between fog and cloud

User Task 'T2'User Task 'T1' User Task 'Tn'

Figure 1: Block diagram of Differential Grey Wolf load balancing and Stochastic Bellman Deep Reinforced resource optimization
(DGW-SBDR) method.

Node Update

Under utilization

Over utilization

Migration

Differential Evolution 

Relocation 

Cloud

Fog Nodes

Dev1 Dev2 Dev3 Devn

IoT devices

Load Balancing

Figure 2: Block diagram of Differential Evolution-based Grey Wolf Optimization.
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VM � VM1, VM2, . . . , VMn􏼈 􏼉, (3)

T � T1, T2, . . . , Tn􏼈 􏼉. (4)

An overutilized fogs that are receiving too many user
requests at a time instance cannot serve all of them at a
specified time. As a result, this will accelerate or amplify the
response time of fog. To handle this issue and to identify the
overutilized fogs, we have employed three wolves, i.e., “alpha,”
“ beta,” “ delta.” Despite the fact that it does require trans-
posing the characteristics of continuous procedures to the
discontinuous procedures, by means of the differential evo-
lution, the scale factor is updated, therefore minimizing the
probability of falling into the local optimum policy. At this
juncture, overutilized fogs are determined. In the optimiza-
tion process, the positions of wolves or the computing nodes
in the fog are updated based on (5) and (6) as given below.

R
→

� Q
→

· Ap

�→
(t) − A

→
(t), (5)

A
→

(t + 1) � Ap

�→
(t) − P

→
· R
→

. (6)

From the abovementioned Equations (5) and (6), “t”
denotes the “t − th” iteration, “P

→
” and “Q

→
” representing the

coefficient vector of computing nodes in the fog, “Ap

�→
” denotes

the position vector of computing prey nodes in the fog and
“A
→
” denoting the computing node position. 'e vector “P

→
”

and “Q
→
” are then mathematically formulated as given below.

P
→

� 3a · Rnd1
����→

− a
→

, (7)

Q
→

� 3 · Rnd2.
�����→

(8)

From the abovementioned Equations (7) and (8), the
coefficient vector of computing nodes in the fog “a” de-
creases from “3” to “0” with the increasing iteration size of
user request tasks placed in the fog environment, “Rnd1

����→
” and

“Rnd2
����→

” denoting the random coefficient vector of computing
nodes in the fog. In the proposed Differential Evolution-
based Grey Wolf Optimization model, it is assumed that the
position of alpha, beta, and delta is probably to be the prey or
the optimum load-balanced computing node in fog.

On the other hand, when a fog does not receive several
user request tasks and hence the workload is low then it is
referred to as the underutilized fog. As far as energy
consumption is concerned, the same amount of energy is
said to be consumed in case of both the underutilized and
overutilized fogs. To address this issue, the virtual ma-
chines of these fogs are transferred to the other fogs and
are performed for all fogs and owing to this, both the active
fog frequency and the energy consumption are also said to
be reduced. Moreover, during the iteration searching
process, the first best individual, the second best indi-
vidual, and the third best individual are noted as “alpha,” “
beta,” “ delta.” However, other computing nodes repre-
sented as “omega” relocate their locations, therefore

detecting underutilized fogs by mathematically formu-
lating as given below.

Disα
����→

� Rnd1
����→

· Aα
�→

− A
→􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, (9)

Disβ
����→

� Rnd2
����→

· Aβ
�→

− A
→􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, (10)

Disc

���→
� Rnd3

����→
· Ac

�→
− A

→􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌. (11)

From the abovementioned Equations (9–11), “Aα
�→

,” “Aβ
�→

,”
and “Ac

�→
” denotes the position vector of computing nodes in

the fog for “alpha,” “ beta,” “ delta,” respectively, with “Rnd1
����→

,”
“Rnd2
����→

,” and “Rnd3
����→

” forming random coefficient vector of
computing nodes and “A

→
” denoting the position vector of

computing node, respectively. Equations (9–11) measure the
distance between the position of current computing nodes in
the fog and that of individual nodes (i.e., “alpha,” “ beta,” and
“delta”). So the final position vectors of the current individual
are mathematically obtained as given below.

A1
�→

� Aα
�→

− P1
�→

− Disα
���→

􏼒 􏼓, (12)

A2
�→

� Aβ
�→

− P2
�→

− Disβ
���→

􏼒 􏼓, (13)

A3
�→

� Ac

�→
− P3

�→
− Disc

���→
􏼒 􏼓. (14)

Finally, upon overutilization of the fog, migration between
VMs is done. 'e migration process is performed in such a
manner that a balance between the fogs is said to be ensured.
'is is done in our work by employing Differential Evolution
(DE) function. 'e most prominent feature of differential
evolution is mutation operation. During the migration be-
tween VM, two differences in weight are added to the indi-
vidual computing node to achieve its dissimilarity. 'e basic
difference element of DE is the dissimilarity vector of the
parents, and each vector comprises two distinct individual fog
nodes “(VMt

Rnd1
, VMt

Rnd2
)” and the dissimilar vector to

achieve migration between fog nodes is defined as follows:

DiffRnd12 � VM
t
Rnd1

− VM
t
Rnd2

. (15)

With the above handling of overutilization, underutili-
zation, and migration between virtual machines optimal
load balancing is said to be ensured. 'e pseudo-code
representation of Differential Evolution-based Grey Wolf
Optimization is given below.

As given in the abovementioned Differential Evolution-
based Grey Wolf Optimization algorithm with the objective
of reducing the latency involved during the load balancing
process, in this work is based on the principle of imitating
the behavior of grey wolves (i.e., the computing nodes in fog)
to hunt (i.e., ensuring load balance) in a cooperative (i.e.,
optimal manner). According to this principle, overutiliza-
tion based on node update, underutilization by means of
relocation, and migration using Differential Evolution
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function is adopted separately. With these three different
operations, latency-minimized optimal load balancing is
ensured.

3.2. Stochastic Gradient and Deep Reinforcement Learning-
Based Resource AllocationModel. With the discussion of the
abovementioned latency-minimized and optimal load bal-
ancing mechanism, the next step remains in ensuring
smooth and robust allocation of resources between com-
puting nodes in a fog environment.'is section introduces a
significant Stochastic Gradient and Deep Reinforcement
Learning-based resource allocation and task scheduling in a
fog environment. 'e proposed optimal resource allocation
problem is incorporated into a stochastic gradient model
with the objective of completing as many fog node users’
requested tasks as possible while reducing task completion
latency and energy consumption via state space, action
space, and reward function. Figure 3 shows the block dia-
gram of the Stochastic Gradient and Deep Reinforcement
Learning-based Resource Allocation model.

As shown in Figure 3, let us consider that an agent (i.e., the
resource allocator) interacts with the fog environment. 'en
at each time instance, the agent or the load balancer observes
the fog environment and acquires the following input from
the fog environment “Inp � DSi, WTi, QLi􏼈 􏼉.”'e elements
of the input are then mathematically described in detail as
given below.

DS
i

� DS
i
T,1, DS

i
T,2, . . . , DS

i
T,n􏽮 􏽯. (16)

From the abovementioned Equation (16), “DSi
T,n” de-

notes the vector of length “n” consisting of the data size “DS”
of the user requested tasks “T, 1” to be processed via the load
balancer or the agent.

WT
i

� WT
i
T,1, WT

i
T,2, . . . , WT

i
T,n􏽮 􏽯. (17)

From (17), “WTi
T,n” denotes the vector of length “n”

consisting of the waiting time “WT” of the user requested
tasks “T, 1” to be processed via the load balancer or the
agent.

QL
i

� QL
i
T,1, QL

i
T,2, . . . , QL

i
T,n􏽮 􏽯. (18)

Finally, from the abovementioned Equation (18),
“QLi

T,n” denotes the vector of length “n” denoting the queue
length “QL” of the buffer. After observing the current state
“S” at time instance “t”, appropriate action has to be taken
whether to offload the user-requested task or to execute it
locally. For the case scenario of offloading, the effective
execution either on host fog or neighbor fog has to be
identified.

Let us consider an action “A(t) � Yi
loc, YF

ij, YF
ijk, ∈􏽮

(0, 1)}.”If the user requested task generated by the end
device of fog node “Fi” is executed locally then “Yi

loc � 1”
otherwise “Yi

loc � 0.”On the other hand, if user requested a
task generated by the end device of fog node “Fi,” is executed
on host node then “YF

ij � 1” otherwise “YF
ij � 0”. On con-

trary, if user requested a task generated by end device of fog
node “Fi”, is executed by the neighbor “Fk”, then “YF

ijk � 1”
otherwise “YF

ijk � 0”.
Finally, the design of the reward function is made by the

load balancer or the agent by learning an optimal policy with
the objective of maximizing the earned reward. 'e reward
function is designed in such a manner that can reduce the
overall energy consumption.'en, at a time instance “t,” the
progressive reward is measured by totaling all the obtained
rewards by each agent or load balancer and is formulated as
given below.

R(t) � 􏽘
n

i�1
Ri(t) + αEi(t). (19)

From the abovementioned Equation (19), “R(t)” rep-
resents the received reward at “i − th” iteration on time
instance “t” and “α” denotes the assigned significance to
energy consumption “Ei”. 'e significance value to energy
consumption is derived based on the Stochastic Bellman
Gradient Optimality function as given below.

OA(S, A) � R St, At( 􏼁 + βMax OA St
′, At
′( 􏼁􏼂 􏼃. (20)

With the derived optimality function given above,
concentrating on the minimization of the energy

Input: Dataset “DS” task “T � T1, T2, . . . , Tn􏼈 􏼉,” fog nodes “F � F1, F2, . . . , Fn􏼈 􏼉”
Output: Latency-minimized optimal load balancing

(1) Initialize “Rnd1
����→

,” “Rnd2
����→

,” “a”
(2) Begin
(3) For each dataset “DS” with task “T” and fog nodes “F”
(4) Formulate cloud data centers with “n” numbers of servers “S” as in equations (1) and (2)
(5) Model “VMs” processing different numbers of tasks “T” as in equations (3) and (4)
(6) Update positions of wolves or the computing nodes by handling overutilization of fog as in equations (5) and (6)
(7) Handle under-utilized fog detection using equations (9–11)
(8) Estimate the final position vectors of the current individual as in equations (12–14)
(9) Handle migration between virtual machines as in equation (15)
(10) Return optimal load balancing fog computing nodes
(11) End for
(12) End

ALGORITHM 1: Differential Evolution-based Grey Wolf Optimization.
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consumption, resource allocation to the corresponding user-
requested tasks are made in a significant manner. 'e
pseudo-code representation of Stochastic Bellman Gradient
Deep Reinforcement Learning-based Resource Allocation is
given below.

As given in the above algorithm with the objective of
minimizing the energy consumption during resource allo-
cation between fog nodes by the load balancer, a novel Deep
Reinforcement Learning model is designed. First, the state
space representing the user requested task, time is obtained.
Second, the action space concerning the Task “T” generated
by fog node is acquired. Finally, the Stochastic Bellman

Gradient function is applied to the reward function for
ensuring optimal resources in an energy-efficient manner.

4. Experimental Evaluation and Results

'is section presents the simulation environment settings of
the proposed method and evaluates the efficiency of the
proposed optimal load-balanced-based resource allocation
method in comparison with other benchmark methods,
Dynamic Energy Efficient Resource Allocation (DEERA) [1]
and load balancing for FoT-Gateways [6] over different
performance metrics using Personal Cloud Dataset obtained

Input: Dataset “DS,” task “T � T1, T2, . . . , Tn􏼈 􏼉,” fog nodes “F � F1, F2, . . . , Fn􏼈 􏼉”
Output: Energy minimized optimal resource allocation

(1) Begin
(2) For each dataset “DS” with task “T” and fog nodes “F”

//State space
(3) Load balancer acquires the input from fog environment “Inp � DSi, WTi, QLi􏼈 􏼉”
(4) Mathematically formulate data size as in equation (16)
(5) Mathematically formulate waiting time as in equation (17)
(6) Mathematically formulate queue length as in equation (18)

//Action space
(7) For each action “A” with the consolidated state “S”
(8) If task “T” generated by fog node “Fi” is executed locally
(9) 'en “Yi

loc � 1”
(10) Else “Yi

loc � 0”
(11) End if
(12) If Task “T” generated by fog node “Fi” is executed on the host node
(13) 'en “YF

ij � 1”
(14) Else “YF

ij � 0”
(15) End if
(16) If Task “T” generated by fog node “Fi” is executed by neighbor
(17) 'en“YF

ijk � 1”
(18) Else “YF

ijk � 0”
(19) End if

//Reward function
(20) For each action “A” with the consolidated state “S” and task “T” generated by fog node “Fi”
(21) Total all the obtained rewards as in equation (19)
(22) Measure stochastic bellman gradient optimality function as in equation (20)
(23) End for
(24) End for
(25) End

ALGORITHM 2: Stochastic Bellman Gradient Deep Reinforcement Learning-based Resource Allocation.

State (S (t))
Stochastic Bellman Gradient

Reward (R (t))

Environment (Fog)

Action (A (t))

Agent (Resource allocator)

Figure 3: Block diagram of Stochastic Gradient and Deep Reinforcement Learning-based Resource Allocation model.
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from https://cloudspaces.eu/results/datasets [25]. Specifi-
cally, this section is divided into two subsections. 'e first
subsection contains information pertaining to the dataset
description. In addition, the second subsection discusses the
proposed methods analysis and key findings. For the sim-
ulation environment, Java Language and iFogSimsimulator
that ensures the modeling and to measure load balancing
and resource management across fog and cloud resources
under different scenarios are presented.

4.1. Simulation Environment and Dataset Description. 'e
iFogSimsimulator includes user interface structures, IoT
services, resources, and network applications. In an iFog-
Simsimulator, a number of user-requested tasks from the
edge layer are given to the optimal fog nodes for performing
task scheduling in a distributed fog environment using NEC
personal cloud trace.'eNEC dataset integrates two sources
of information, i.e., from the storage layer and sharing in-
teractions. 'e storage layer identifies and describe files
(size, extension), as well as the file owner and the container/
folder where it is stored. Next, the sharing interactions
contain log lines sharing interactions across users and in-
formation about shared files obtained from March 7th 2013
to September 9th 2015. Table 1 Storage Layer Description
given below lists the storage layer description and Table 2
given below lists the column field description.

4.2. Analysis and Findings

4.2.1. Performance Analysis of Load Balancing Efficiency and
Findings. 'e first and foremost parameter to be measured
for analyzing load balancing in fog is the load balancing
efficiency. To be more specific, load balancing efficiency
refers to the percentage ratio of user request tasks distributed
to fog nodes to the total number of user request tasks. 'is is
mathematically formulated as given below.

EffLB �
TDE

n
􏼢 􏼣∗ 100. (21)

From Equation (21), load balancing efficiency “EffLB” is
measured based on the requests distributed efficiently “TDE”
to the actual user requests “n” in the queue. 'e load bal-
ancing efficiency is measured in terms of percentage (%).'e
results for performance metrics of load balancing efficiency
are provided in Table 3. 'e simulation results demonstrate
that DGW-SBDRmethod improves the load balancing ef-
ficiency as compared to DEER [1] and load balancing for
FoT-Gateways [6].

Figure 4 displays the load balancing efficiency of three
separate user-requested activities supported by fog re-
sources. 'e x-axis shows the amount of user-requested
biosensor tasks to be processed, while the y-axis shows
their load balancing in percentage (percent). It displays
how different tasks utilize fog resources. DGW-SBDR
shows greater load balancing efficiency in the highlighted
environment than [1, 6]. 'e improvement was attributed
to using Differential Evolution-based Grey Wolf

Optimization to balance host use amongst fog nodes. By
employing the Differential Evolution function, this ap-
proach determines the genuine global solution (optimal
host utilization assuring load balancing) regardless of
cloud user request tasks, with quick convergence between
under and overutilization. DGW-SBDR enhanced load
balancing efficiency by 2% compared to [1] and 6%
compared to [6].

4.2.2. Performance Analysis of Makespan and Findings.
'e second factor of paramount during load balancing with
optimal resource allocation is the makespan. To be more
specific, makespan refers to the time consumed in sched-
uling the user-requested task in an optimal manner. 'is is
mathematically expressed as given below.

Ms � n∗ t[SOT]. (22)

From equation (22), makespan “Ms” refers to the
product of the user requested tasks in the queue “n” and the
time consumed in scheduling one user requested task
“t [SOT]”. It is measured in terms of milliseconds (ms). 'e
results for performance metrics of makespan are given in
Table 4. 'e simulation results infer that DGW-SBDRme-
thod reduces the makespan upon comparison with DEER [1]
and load balancing for FoT-Gateways [6].

Figure 5 Average makespan of various tasks given above
illustrates the evaluation of performance metrics of
underlined IoT-fog-cloud environment with respect to
makespan. 'e makespan metric is consisted as most critical
especially for load balancing with optimized resource allo-
cation in fog environment. 'e abovementioned metric is
evaluated in milliseconds. It shows that the time consumed
in scheduling user-requested tasks majorly contributes to
the total time of serving fog nodes. However, time con-
sumed in scheduling userrequests is playing a major role
in average response time. 'is is due to the forwarding of
user-requested tasks towards the nearest available fog.
From a performance point of view, lower values of all
abovementioned makespan metrics are preferred for
better service provisioning, and on the contrary higher
makespan may degrade the overall performance. 'e
makespan was found to be comparatively lesser using
DGW-SBDR than [1, 6]. 'e reason behind the im-
provement was owing to the application of three different
mechanisms, i.e., node update, relocation, and differential
evolution function for three distinct cases, i.e., under-
utilization, overutilization, and migration. As a result, the
makespan using the DGW-SBDR method is said to be
comparatively lesser by 18% compared to [1] and 30%
compared to [6], respectively.

4.2.3. Performance Analysis of Latency and Findings.
Latency refers to delays that specifically happen when any
user requested tasks and waits for another user to complete
the task. In other words, it is the time taken by the load
balancer to handle the user request. 'is is mathematically
stated as given below.
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L � 􏽘
n

i�1
n∗Time LB Ti( 􏼁􏼂 􏼃. (23)

From equation (23), latency factor “L” is measured
based on the number of user-requested tasks placed in
the queue “n” and the time is taken load balancer to
handle the user request “Time[LB(Ti)].” It is measured in
terms of milliseconds (ms). Table 5 given below lists the
latency rate using the three methods, DGW-SBDR,
DEER [1], and load balancing for FoT-Gateways [6],
respectively.

Figure 6 shows latency for 50000 user-requested tasks. X
denotes the number of tasks and y represents millisecond
latency (ms). According to the figure, increasing the number
of jobs causes the load balancer to focus on more nodes to
avoid underutilization, overutilization, or migration. Add-
ing tasks increases the delay in all three techniques. DGW-
SBDR improves significantly. Because of Differential Evo-
lution-based Grey Wolf Optimization. 'is model controls
optimal load balancing via load balancer using alpha, beta,
and delta. Differential Evolution updates scale factors from
underutilization to overutilization or between

Table 2: Column fields description.

S. No Features or attributes Description
1 Row_id Database row identifier
2 Account_id Personal cloud account
3 File_size Size of the uploaded file
4 Operation_time_start Starting time of the API call
5 Operation_time_end Ending time of the API call
6 Time_zone Time zone of a node
7 Operation_ID ID of API call
8 Operation_Type Type of API call
9 Bandwidth_Trace Time series trace
10 Node_ip IP address of node
11 Node_name Name of node
12 Quota_start Amount of data at the starting of API call
13 Quota_end Amount of data at the end of API call
14 Quota_total Total amount of data
15 Capped Capped or not
16 Failed Indicates if API has failed
17 Failure Available failure information

Table 1: Storage layer description.

S.
No Rows Description

1 Volume Considered as a directory with 3 types of volumes: (i) root/predefined, (ii) udf (user-defined folder), and (iii) share
(sub-volume of another user to which the current user has access).

2 Node A node is a file or a directory in the system.

3 Session Session is used to identify requests of a single user during session lifetime that do not expire automatically. 'e client
may disconnect, or server may go down, therefore resulting in the end of the session

4 Request
types 'ere are different request types. 'ey are storage, session, and rpc.

Table 3: Simulation results for load balancing efficiency.

Number of tasks
Load balancing efficiency (%)

DGW-SBDR DEER Load balancing for FoT-Gateways
5000 97.7 94.7 93.1
10000 96.35 93.15 91.85
15000 95.85 93 91
20000 94.25 92.75 89.95
25000 94.15 92.55 89.35
30000 93.85 92.15 89.15
35000 92.15 91 88.35
40000 91.35 90.35 86.25
45000 91 88.15 85.15
50000 90.25 86.35 83
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overutilization and migration, minimizing the likelihood of
falling into local optimal policy. DGW-SBDR reduces la-
tency by 26% compared to [1] and 34% compared to [6].

4.2.4. Performance Analysis of Energy Consumption and
Findings. Consuming energy ensures effective resource al-
location. It is the energy used to provide services (i.e.,

allocate resources) to end consumers. Energy saving leads to
more effective mechanisms, reducing waste.

EC � n∗EC(RA). (24)

From equation (24), energy consumption “EC” is
measured based on user-requested activities sitting in the
queue “n” and energy consumed for resource allocation “EC
(RA)” in joules “J.” Table 6 presents simulation findings of
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0 10000 20000 30000 40000 50000 60000

Load balancing efficiency (%)

Load balancing efficiency (%) DGW-SBDR
Load balancing efficiency (%) DEER
Load balancing efficiency (%) load balancing for FoT-Gateways

Figure 4: Average load balancing efficiency.

Table 4: Simulation results for makespan.

Number of tasks
Makespan (ms)

DGW-SBDR DEER Load balancing for FoT-Gateways
5000 12.5 15 17.5
10000 14.35 17.85 22.35
15000 16.15 21.45 25.15
20000 18.25 23.25 29
25000 21 25 31.35
30000 23.55 28.15 33
35000 25.25 31.35 35.45
40000 28.15 33.45 37
45000 30.45 35 41.35
50000 33.25 40.25 44

0
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0 10000 20000 30000 40000 50000 60000
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Makespan (ms) DEER
Makespan (ms) load balancing for FoT-Gateways

Figure 5: Average makespan of various tasks.
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energy usage using DGW-SBDR, DEER [1], and FoT-
Gateway load balancing [6].

Figure 7 depicts resource allocation and energy usage.
Energy usage is related to the number of tasks, as shown.
Adding tasks increase energy utilization and vice versa. With
5000 user-requested activities, DGW-SBDR used 25 J, [1]
30 J, and [6] 40 J. DGW-SBDR consumes less energy than

[1, 6] for efficient resource allocation. Stochastic Bellman
Gradient Deep Reinforcement Learning-based Resource

Allocation improved performance. 'is technique initially

obtains the user-requested state space. 'en, the fog created
the user-requested action space. Stochastic Bellman Gra-
dient was used to get the reward function for optimum
resources. 'is lowered DGW-SBDR energy usage by 12%
compared to [1] and 31% compared to [6].

Table 5: Simulation results for latency.

Number of tasks
Latency (ms)

DGW-SBDR DEER Load balancing for FoT-Gateways
5000 5250 6750 7750
10000 5535 7135 8250
15000 5815 8245 8835
20000 6025 8295 9515
25000 6135 8355 9735
30000 6245 8515 9915
35000 6535 8925 10155
40000 6915 9015 10235
45000 7025 9125 10535
50000 7345 10355 10825

0

2000

4000

6000

8000

10000

12000

0 10000 20000 30000 40000 50000 60000
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Latency (ms) DGW-SBDR
Latency (ms) DEER
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Figure 6: Average latency of various tasks.

Table 6: Simulation results for energy consumption.

Number of tasks
Energy consumption (J)

DGW-SBDR DEER Load balancing for FoT-Gateways
5000 25 30 40
10000 30 35 45
15000 30 35 50
20000 35 40 55
25000 40 45 55
30000 40 45 60
35000 45 50 65
40000 50 55 65
45000 55 60 70
50000 55 65 75
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4.2.5. Summary of Results. Table 7 shows findings are
measured in four categories: load balancing efficiency, La-
tency, makespan (the time it takes the load balancer to
handle a user request), the energy needed to offer services,
and the chart above compares these categories for DGW-
SBDR.

'e findings for load balancing effectiveness, latency
(ms), makespan (ms), and energy usage are displayed in the
above table (J). After comparing the aforementioned
findings to those of the DEER algorithm and FoT-
Gateways.

5. Conclusion

Cloud computing is nonideal for resource-optimized
apps due to high energy consumption and latency. Fog
computing uses resources near the network’s edge to
ensure speedy processing. Load balancing across fog
nodes reduces latency, energy consumption, and en-
sures quick data processing due to their limited com-
putation and storage capacities. In this study, we
propose DGW-SBDR for fog load balancing and

resource optimization. 'e load balancer is informed of
user-requested activities by processing sensor-gener-
ated data. After processing, a Differential Evolution-
based Grey Wolf Optimization technique is developed
to accomplish overutilization via node update, and
underutilization via relocation and migration. Using the
Stochastic Bellman Gradient Deep Reinforcement
Learning-based Resource Allocation technique, fog
nodes are allocated optimum and energy-efficient re-
sources. Simulations were used to test DGW-SBDR,
DEER, and FoT-Gateways load balancing. 'e suggested
DGW-SBD Methods beat DEER and FoT-Gateway load
balancing in terms of load balancing efficiency, make-
span, latency, and energy usage.

Data Availability

'e dataset used to support the findings of this study can be
accessed through the link Load and Transfer Test https://
ast-deim.urv.cat/pc_measurement/measurement_sugarsync_
load_transfer_pl.csv from https://cloudspaces.eu/results/
datasets.
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Figure 7: Average energy consumption of various tasks.

Table 7: Summary of results DGW-SBDR.

Number of tasks Load balancing efficiency (%) Latency (ms) Makespan (ms) Energy consumption
(J)

DGW-SBDR
5000 97.7 5250 12.5 25
10000 96.35 5535 14.35 30
15000 95.85 5815 16.15 30
20000 94.25 6025 18.25 35
25000 94.15 6135 21 40
30000 93.85 6245 23.55 40
35000 92.15 6535 25.25 45
40000 91.35 6915 28.15 50
45000 91 7025 30.45 55
50000 90.25 7345 33.25 55

Result Efficiency increased Latency reduced Time consumed in scheduling optimal manner Energy consumption
minimum
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