
Research Article
Wireless Sensor Network Coverage Optimization: Comparison of
Local Search-Based Heuristics

Krzysztof Trojanowski and Artur Mikitiuk

Cardinal Stefan Wyszyński University in Warsaw, Wóycickiego 1/3, Warsaw 01-938, Poland

Correspondence should be addressed to Artur Mikitiuk; a.mikitiuk@uksw.edu.pl

Received 22 March 2022; Revised 25 July 2022; Accepted 16 August 2022; Published 12 November 2022

Academic Editor: Jun He

Copyright © 2022 Krzysztof Trojanowski and Artur Mikitiuk. Tis is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Te Maximum Lifetime Coverage Problem (MLCP) requires heuristic optimization methods due to its complexity. A real-world
problem model determines how a solution is represented and the operators applied in these heuristics. Our paper describes
adapting a local search scheme and its operators to MLCP optimization. Te operators originate from three local search al-
gorithms we proposed earlier: LSHMA, LSCAIA, and LSRFTA. Two steps of the LS scheme’s main loop can be executed in three
diferent ways each. Hence, nine versions of the LS approach can be obtained. In experimental research, we verifed their ef-
fectiveness. Test cases come from three benchmarks: SCP1, proposed and used in our earlier research on the three LS algorithms
mentioned above, and two others found in the literature. Te results obtained with SCP1 showed that the algorithm based on the
hypergraph model approach (HMA) is the most efective. Te remaining results of the other algorithms divide them into two
groups: efective ones and weak ones. However, other benchmarks showed that the more redundant the coverage of points of
interest (POIs) by sensors, the more efective the perturbation method from the approach inspired by cellular automata (CAIA).
Te fndings expose the strengths and weaknesses of the problem-specifc steps applied in the LS algorithms.

1. Introduction

Wireless sensor networks (WSNs) are essential parts of IT
solutions in many applications: military, like battlefeld
surveillance, and civil ones, including forecast systems,
environment observation, or habitat monitoring [1]. Sensors
can be integrated into numerous electronic devices and
machines. Moreover, due to the advances in semiconductor
and microelectromechanical technologies and the minia-
turization of computing and sensing technologies, sensors
and microcontrollers are tiny, consume low power, and are
inexpensive. Tus, WSNs may consist of large numbers of
small yet powerful devices cooperating in large areas. WSNs
aim to monitor a region or a set of targets for collecting
valuable information for modeling and forecasting situa-
tions in the area or controlling the usage of resources. In
WSNs consisting of miniature devices, monitoring quality
becomes an energy efciency issue due to limited battery
capacities.

WSN lifetime maximization techniques depend on two
main components of a problem model. Te frst is objective,
e.g., network lifetime optimization, coverage, connectivity,
or transmission parameters. Te second one represents
WSN design constraints, for example, communication
medium, resource limits, fault tolerance and self-organiza-
tion, QoS requirements, or mobility and deployment [2]. In
our research, we focus on the issues concerning network
lifetime maximization, that is, the maximization of an un-
interrupted interval when the network satisfes the level of
coverage above a certain threshold under some resource-
limited constraints. Our research concerns a simplifed
network model, where sensors remain immobile once
deployed, and their connectivity is always guaranteed. We
assume that individual sensor placement is infeasible due to
environmental conditions, such as monitoring a disaster
area or a battlefeld. Terefore, sensors are randomly scat-
tered over the monitored feld. Sensors have a fnite battery
capacity. Tus, after the drain, they should be replaced or

Hindawi
Applied Computational Intelligence and So Computing
Volume 2022, Article ID 3745358, 21 pages
https://doi.org/10.1155/2022/3745358

mailto:a.mikitiuk@uksw.edu.pl
https://orcid.org/0000-0001-9009-049X
https://orcid.org/0000-0001-5038-1196
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3745358

recharged. However, we assume that neither of these options
is applicable due to the operating conditions. So, once the
energy reserve is depleted, the sensor is regarded as irre-
trievably lost to the network. Te network is equipped with
an external solid computational unit responsible for opti-
mally scheduling and distributing tasks among the network
devices.

We assume that sensors have uniform batteries and
sensing ranges and have tomonitor a set of targets also called
points of interest (POIs). When the number of sensors is
extensive and their monitoring ranges overlap, some sensors
can be of while the required level of coverage is still satisfed.
In this case, the optimization aims to fnd a sensor activity
schedule with the longest makespan and guarantee a suf-
cient coverage level. Tis class of problems is called the
Maximum Lifetime Coverage Problem (MLCP). Te ap-
proaches to solving MLCP are based on diferent models of
real-world circumstances; thus, they have diferent struc-
tures of the solution and the complexity of the problem.

In this paper, we develop local search strategies enriched
by problem-specifc procedures originating from three al-
gorithms we proposed earlier: LSHMA, LSCAIA, and LSRFTA.
Te strategies share the same execution scheme. In the
beginning, they fnd a frst feasible schedule that becomes a
preliminary solution to the problem. Ten, iteratively, they
generate its neighbor and try to refne it. Te new solution
takes the place of its ancestor when we gain an improvement.
Te advantage of these strategies lies in the neighbor gen-
eration (so-called perturbation) and refnement procedures,
which take advantage of some model-specifc properties.

In recent years, many heuristic approaches have been
proposed; thus, quite naturally, an idea arose to verify the
efciency of hybrid heuristic algorithms composed of
components of various origins. Unfortunately, some ap-
proaches do not share the same model of the real-world
problem and the same set of constraints. Terefore, their
integration into one method is a nontrivial task and
sometimes even questionable. However, this is not the case
for LSHMA, LSCAIA, and LSRFTA, where the approaches share
the same model of the real-world problem and the structure
of the solution representation. Hence, one can easily use
selected problem-specifc steps as exchangeable building
blocks. Eventually, we constructed nine local search strat-
egies by swapping the two steps: perturbation and refne-
ment, from each of the three approaches.Ten, we evaluated
their performance experimentally.

Te main contribution of this paper lies in generating
nine heuristics, based on the building blocks originating
from three other existing approaches, and experimentally
verifying their efciency. We used three benchmarks for
testing the performance of the heuristics: SCP1, provided in
our earlier publications [3–6]; the benchmark from [7, 8];
and the benchmark from [9].

Te paper is organized as follows. Related work is briefy
discussed in Section 2. Section 3 formally defnes the
Maximum Lifetime Coverage Problem (MLCP). Te local
search approach is introduced in Section 4. Section 5 de-
scribes our experiments with LS algorithms for MLCP. Our
conclusions are given in Section 6.

2. Related Work

Te majority of MLCP solving methods are based on two-
stage approaches. In the frst stage, we solve the Target
Coverage Problem by fnding the maximum number of
sensor sets so that every set can perform the coverage task
individually. In the second stage, we solve the Set Coverage
Problem by fnding the optimal scheduling for the sets of
covers obtained in the frst stage. Te constraint for the sets
concerning full coverage of POIs proposed in the frst
publications, for example, in [10], was later relaxed in [11] by
introducing the required minimum percentage of coverage
constraint.

Te sets of covers are of minimum cardinality and can be
disjoint or non-disjoint. In the disjoint sets, every sensor can
be included in one of the sets of covers at most, whereas in
the non-disjoint sets, there is no such restriction. In [12], the
authors introduce the Disjoint Set Cover (DSC) problem,
that is, the problem of fnding the maximum number of
disjoint covers, where every cover is a set of sensors that
together monitor all the POIs, and prove its NP-com-
pleteness. Te complexity of the case with non-disjoint sets
of covers is analyzed in [13], where the Maximum Set Cover
(MSC) problem is defned. It is a problem of determining a
number of p non-disjoint covers to maximize the network
lifetime t1 + · · · + tp, where tj, j � 1, . . . , p, is the time in-
terval while the j-th cover is active.Te authors of [13] prove
that the MSC problem is also NP-complete.

Selected papers on MLCP optimization with Disjoint
and Non-Disjoint Set Cover based approaches are presented
in Table 1 (DSC) and Tables 2 and 3 (NDSC). For infor-
mation about sensor activity scheduling strategies for other
WSN lifetime optimization defnitions, the reader is referred
to surveys and monographs, for example, [1, 2, 35, 36].

3. Maximum Lifetime Coverage
Problem (MLCP)

3.1. Model of the Real-World Sensor Network. Te subject of
our research is a network of immobile homogenous sensors
monitoring a number of points of interest (POIs). Tese
sensors are randomly distributed over a monitored area.
Sensors’ batteries have limited capacity. For energy saving
purposes, some sensors can be turned of from time to time.
We propose a model of such a network activity where we
assume that time is discrete. During every time slot, a sensor
can be on or of. When a sensor is of, its energy con-
sumption is negligible. When a sensor is active, it consumes
one unit of energy during every time slot. Te number of
time slots when the sensor can be active, that is, the initial
battery load of a sensor, is denoted by Tbatt.

Te model of a sensor considered here is simplifed. In
real life, the working time of a battery depends on the
surrounding temperature and how the battery is used. When
we turn it on and of frequently, it discharges more than
when we keep it on and of for extended periods. We ignore
such problems in this research.

We assume that every POI can be covered by at least one
sensor. Some POIs can be within the sensing range of

2 Applied Computational Intelligence and Soft Computing

multiple sensors. Since an active sensor covers every POI in
its sensing range, this means that not all sensors must be
active all the time. Moreover, many applications do not need
to monitor all POIs all the time. It is often sufcient to
monitor 80 or 90% of them anytime. We call this value the
required level of coverage and denote it by cov ∈ [0, 1]. We
want to maintain this level of coverage all the time, but to
save sensor batteries, we want to keep the coverage level as
close to cov as possible. It should not exceed cov by more
than the tolerance factor δ (usually 2–5%).

In the real world, some sensors not needed for moni-
toring may be necessary to assure communication within the
network. Our simplifed model assumes steady sensor
connectivity over the network lifetime and negligible energy
spent on communication.

3.2. Formal Description. Let us formulate the network
makespan maximization regarding a scheduling problem as
proposed in [37]. We consider NS parallel machines which
represent sensors from S � s1, . . . , sNS

 and NP POIs from
P � p1, . . . , pNP

 . Each machine has assigned its task t(·)

consisting of a subset of POIs. Te i-th task contains POIs
located in the monitoring range of the i-th sensor:
t(si) � pk, . . . , pl . An m-th job Jm, where m ∈ 1, . . . , NJ ,
consists of some tasks scheduled for being executed si-
multaneously in a single time slot.Te tasks included in a job
are not chosen randomly. Tey identify a set of machines
active when this job is executed. Tat is, they are a set of
sensors for which the selection criterion is to cover the
requested number of POIs. Each slot has its duration time
sdtm; hence, the schedule makespan Msch is a sum of jobs’

duration times: Msch �
NJ

m�1 sdtm. In further consider-
ations, for simplicity, we assume that sdt equals a time unit,
and thus the schedule makespan is the same as the total
number of jobs in the schedule NJ.

In our experiments, a network activity schedule H is
represented as a 0–1 matrix with rows corresponding to
machines and columns corresponding to jobs. Te element
in row i and column m is equal to 1 (resp., 0) when the
machine i is on (resp., of) in job Jm.

Te required level of coverage constraint says that the
cardinality of the sum of POIs in tasks assigned to active
machines in the job Jm should be equal to or exceed the
cov · card(P); that is,t

cov · card(P)≤ card ∪
NS

i�1

t si(if H[i, m] � 1

∅ otherwise
 . (1)

Moreover, for all machines, the processing time should
not exceed the limit Tbatt:

NJ

m�1
H[i, m]≤Tbatt. (2)

Te objective is the maximization of the schedule
makespan Msch with the required level of coverage and
without exceeding the maximum processing time of ma-
chines Tbatt.

4. General Scheme of the Local Search

In our earlier papers [4–6], we proposed three heuristic
algorithms for solving MLCP. Tey all follow the general

Table 1: Selected papers on MLCP optimization with Disjoint Set Cover based approaches.

No. Reference Year Brief information about the approach and its optimization goal

1 S. Slijepcevic and
M. Potkonjak [10] 2001 Te most constrained–minimally constraining covering heuristic maximizes the cardinality of

the set of covers

2 M. Cardei and D. Z. Du [12] 2005
Te problem of set cover maximization converted into maximum-fow problem is modeled and
solved by mixed integer programming (MIP), and then a heuristic computes the covers based on

the solution returned by MIP

3 C.-C. Lai et al. [14] 2007
A genetic algorithm fnds the maximum number of covers using the idea of critical sensors (the
sensors covering the most sparsely covered POIs) to fnd an upper bound of the number of

covers

4 X.-M. Hu et al. [15] 2010
Te schedule transition hybrid genetic algorithm with the forward encoding scheme for the
representation of chromosomes and problem-specifc operators maximizes the number of

covers and schedules them for makespan maximization

5 N. Ahn and S. Park [16] 2011 a binary integer programming formulation and heuristics compute the maximum number of
covers

6 J.-M. Gil and Y.-H. Han [17] 2011
A genetic algorithm using a two-dimensional chromosome and problem-specifc operators fnds
and schedules a given number of covers for makespan maximization in directional sensor

networks

7 R. Cerulli et al. [18] 2012 A greedy heuristic and exact approach based on the column generation technique fnd the
maximum number of covers

8 Y. Lin et al. [19] 2012 An ant colony optimization-based approach fnds the maximum number of covers

9 M. E. Keskin et al. [20] 2014
Te period iteration heuristic and the sequential assignment heuristic maximize four design
issues: sensor locations, activity scheduling, data, and mobile sink routes integrated into an

integer linear programming model

10 L. Wang et al. [21] 2017 Whale group algorithm optimizes the cover in terms of overall network performance: coverage,
node utilization, and energy consumption

11 S. Balaji et al. [22] 2020 a cuckoo search algorithm fnds the maximum number of covers

Applied Computational Intelligence and Soft Computing 3

approach of local search presented in Algorithm 1. Each of
them uses diferent methods in the three steps of local
search: initialization (Step #1: line 1), perturbation (Step #2:
line 3), and refnement (Step #3: line 4).

Te methods used at the stage of initialization of the
proposed algorithms have the following names: the random
and fne-tuning approach (RFTA), the cellular automata
inspired approach (CAIA), and the hypergraph model

Table 2: Selected papers on MLCP optimization with Non-Disjoint Set Cover based approaches—Part I.

No. Reference Year Brief information about the approach and its optimization goal

1 P. Berman et al. [23] 2004 For a given series of covers, the method maximizes the sum of activation times of the covers by
formulating the problem as a packing linear program

2 M. Cardei et al. [13] 2005

(1) Te problem of set cover maximization is modeled and solved by the mixed integer
programming (MIP), and then a linear programming based heuristic computes the covers based
on the solution returned by MIP. (2) A greedy heuristic solves the problem of set cover

maximization

3 D. Zorbas et al. [24] 2010
A greedy heuristic reinforced by the idea of critical targets (POIs with small neighbor-sensor
sets) fnds the maximum number of covers which is equal to the schedule makespan since sets

provide coverage for the same unit of time

4 K. Deschinkel [25] 2011 Te column generation based heuristic fnds covers and maximizes the sum of activation times
of the covers for the problem modeled with a linear programming formulation

5 Manju and A. K. Pujari [26] 2011
High-energy-frst heuristic fnds covers using the highest remaining battery states; the selection
priorities change after every execution of the selected set, hence the variety of sets over the

network lifetime

6 H. Mohamadi et al. [27] 2013 Tree learning automata-based scheduling algorithms fnd both disjoint and non-disjoint
covers and then optimize their cardinality

7 A. Tretyakova and
F. Seredynski [28] 2013

Two approaches—genetic algorithm and memetic algorithm with a two-dimensional
representation of schedules (columns: covers; rows: sensors)—maximize the number of feasible

covers satisfying the battery capacity restriction in the rows

8 F. Castaño et al. [29] 2014
Te problem of set cover maximization is solved by the column generation based framework

having embedded the greedy randomized adaptive search procedure and the variable
neighborhood search

9 A. Tretyakova and
F. Seredynski [7] 2015

Simulated annealing with a two-dimensional representation of schedules (columns: covers;
rows: sensors) maximizes the number of feasible covers satisfying the battery capacity

restriction in the rows

10 Y. E. E. Ahmed et al. [30] 2016 A genetic algorithm maximizes the number of covers and schedules them for makespan
maximization

11 Y. E. E. Ahmed et al. [31] 2016 A genetic algorithm with problem-specifc operators maximizes the number of covers and
schedules them for makespan maximization

12 A. Tretyakova et al. [8] 2016
Graph cellular automata approach for cover generation and makespan maximization where
cells correspond to sensors, and the neighborhood relation between cells maps the existence of

targets or areas commonly monitored by these sensors

13 K. Trojanowski et al. [4] 2017 Local search-based approach with problem-specifc perturbation operators (LSRFTA) for cover
generation and makespan maximization

Table 3: Selected papers on MLCP optimization with Non-Disjoint Set Cover based approaches—Part II.

No. Reference Year Brief information about the approach and its optimization goal

14 K. Trojanowski et al. [5] 2017 Local search-based approach with a hypergraph model of the WSN and problem-specifc
perturbation operators (LSHMA) for cover generation and makespan maximization

15 J. Roselin et al. [32] 2017 Heuristic for cover generation and makespan maximization where the sensor priority
depends on its sensing coverage/connectivity and its remaining energy

16 Manju et al. [9] 2017 Minimal heuristic fnds covers and maximizes the makespan

17 A. Tretyakova et al. [33] 2017
Stochastic greedy heuristic and simulated annealing algorithm maximize the number of
feasible covers and optimize their execution times in the way satisfying the battery capacity

restriction in the rows

18 K. Trojanowski et al. [6] 2018 Local search-based approach with perturbation operator inspired by cellular automata
(LSCAIA) for cover generation and makespan maximization

19 Y. E. E. Ahmed et al. [34] 2018 An exact method of cover generation based on the sensor coverage relation matrix and using
the integer linear programming model

20 Te approach presented in this
publication 2022

Local search-based approaches with the neighbor generation (so-called perturbation) and
refnement procedures taking advantage of some model-specifc properties and originating

from LSHMA, LSCAIA, and LSRFTA for cover generation and makespan maximization

4 Applied Computational Intelligence and Soft Computing

approach (HMA). Tus, we denote the LS algorithms pro-
posed in the corresponding papers, respectively, by LSRFTA,
LSCAIA, and LSHMA. Tis notation appeared for the frst time
in [3], not in original papers [4–6]. In all initialization step
methods, we start with an empty schedule and add to it new
slots, one by one. Just the methods used to obtain a new slot
are diferent. Adding a new slot to a schedule decreases the
battery levels of the sensors active in this slot.

When the initialization step terminates (Step #1 in Al-
gorithm 1), some sensors are usually left with non-empty
batteries. However, turning on even all these sensors does
not guarantee a sufcient coverage level. Tus, we cannot
regard this set as a confguration for yet another slot. Tese
sensors contribute to the perturbation and refnement steps
(Steps #2 and #3 in Algorithm 1). In the perturbation step, we
either remove some slots or modify sets of active sensors in
some slots, adding sensors from the set mentioned above and
removing others. When we remove an entire slot from the
schedule or turn of one or more sensors in a slot, we recover
energy. Tis way, the set of sensors with non-empty batteries
grows, and we hope to obtain one or more new slots from this
set. In the refnement step, we employ one of themethods used
in the initialization step to create new slots and add them to the
modifed schedule. If the new schedule is longer than the initial
one, it replaces the initial one.Teperturbationandrefnement
steps are repeated until some termination condition is met.

Removing some slots from the schedule in the pertur-
bation step can be done in two ways. In [4], such slots are
selected randomly. In [6], frst, we try to turn of every active
sensor in every slot. Te decision to turn it of is made with a
low probability threshold. Next, if removing an active sensor
from a slotmakes this slot unfeasible, the whole slot is deleted.
Our experiments show that more than one slot is removed
even for a very low probability, such as 0.0005. Tus, this
method of perturbation is stronger than the former.

In [5], we used a completely diferent perturbation
approach. We add the sensors from the set with non-empty
batteries to randomly selected slots but only when adding an
additional sensor increases the coverage level. If this is not
the case, we must choose another slot for this sensor. When
we use up all the sensors, we attempt to remove from the
modifed slots other sensors to make their coverage level as
close to cov as possible.

Tus, foreachof thethreestepsof local search,wehavethree
diferent methods of proceeding. By selecting one of these

methods at every step, we get 27 diferent variants.We will call
these algorithms using the names of every step’s origins. For
example, [HMA,RFTA,CAIA]denotesanalgorithmwhere the
initialization procedure from the LSHMA algorithm generates
the initial schedule, the perturbation step originates from
LSRFTA,andtherefnementsteporiginates fromLSCAIA. [RFTA,
RFTA,RFTA] is identicalwith theLSRFTA algorithmbecause all
three problem-specifc steps come from this algorithm.

5. Experiments

To assess the performance of new algorithms, we conducted
experiments with some of them. We decided to always use
the same method to generate an initial schedule. Tis way,
the set of 27 algorithms described in Section 4 has been
reduced to 9 because our algorithms difer only in the steps
of the main loop in Algorithm 1. For the initialization step, a
method producing schedules of moderate quality would be
appropriate. It should give the main loop more room to
improve these schedules and thus highlight performance
diferences between algorithms. Since HMA usually gen-
erates the most extended schedules, which are often hard to
improve, we chose between the remaining two method-
s—RFTA and CAIA. We decided to use CAIA, and this
choice was somewhat arbitrary. Eventually, we compared
experimentally nine versions of LS algorithms of the form
[CAIA,∗,∗] where ∗ stands for one of HMA, CAIA, and
RFTA. Consequently, for a problem instance, all versions of
the main loop start with the same initial schedule. Te
termination condition of the loop is a limit of 500 iterations.

Fromnowon, we skip the initial CAIA in notation given at
the end of Section 4 and refer to tested algorithms giving only
theoriginsof theperturbationstepand the refnement step.Te
compared nine algorithms are [HMA, HMA], [HMA, RFTA],
[HMA, CAIA], [RFTA, HMA], [RFTA, RFTA], [RFTA,
CAIA], [CAIA, HMA], [CAIA, RFTA], and [CAIA, CAIA].

In the experimental part, we used the benchmark SCP1
proposed in our earlier publications but also did tests with
two external benchmarks: one from [7, 8] and the other from
[9], selected due to compatible problem defnitions and
optimization criteria but diferently defned test cases.

Experiments were conducted on HPWorkstation Z2 G4
SFF with Intel® Core™ i7-8700 CPU @ 3.20GHz and 16GB
RAM andWindows 10 Pro. Application for simulations was
implemented in MS Visual Studio C++.

5.1. Measurement Methodology. Te best measure of the
efciency of our LS algorithms would be a comparison of the
obtained problem solution with an optimal solution. In this
case,wewould compare the lengthof the schedule returnedby
an LS algorithmwith the length of an optimal schedule for the
given problem instance. Unfortunately, we do not know
optimal solutions because it is impossible to compute them in
a reasonable time due to the problem’s computational com-
plexity.Terefore, we decided to compare our solutions to the
best-obtained suboptimal solution of the problem instance.
Tese best-obtained suboptimal solutions were produced by
LS algorithms usingHMA to get initial schedules. Since initial
schedules produced by HMA are longer than those obtained

(1) Initialize x ∈ D ⊳ step #1
(2) Repeat
(3) x′ � perturbation(x) ⊳ step #2
(4) x′′ � refinement(x′) ⊳ step #3
(5) If F(x′′)>F(x)then
(6) x � x′′ ⊳ x is replaced by its neighbor
(7) End if
(8) Until termination condition met
(9) Return x

ALGORITHM 1: Local search (for the schedule maximization
context).

Applied Computational Intelligence and Soft Computing 5

by other approaches, we hope the resulting schedules are
genuinely close to optimal after applying LS to improve them.
Te lengths of best-obtained suboptimal schedules were used
as reference values to evaluate the percentage quality of the
schedules produced by our nine LS algorithms.

Moreover, we measured the mean percentage im-
provement of the initial schedule’s length, obtained in the
main loop of Algorithm 1. It was calculated by subtracting
the length of the initial schedule from the length of the fnal
schedule and dividing the diference by the length of the
initial schedule. For every class of problems, the obtained
values were averaged over the number of problem
instances.

5.2. Performance Comparisons Using Benchmark SCP1. In
our frst group of experiments, we used the benchmark SCP1
(Sensor Coverage Problem, Set No. 1) introduced in our
earlier publications [3–6].

5.2.1. Benchmark SCP1. SCP1 consists of eight classes of
problems. Tere are 2000 sensors with the sensing range of
one abstract unit in all of them. Te monitored area is a
square. Its side size varies from 13 to 28 abstract units
(possible values: 13, 16, 19, 22, 25, and 28). POIs are placed in
nodes of a rectangular or a triangular grid. Since the distance
between grid nodes grows together with the area side size,
the number of nodes is similar for all classes of SCP1.
However, only about 80% of grid nodes have a POI. A POI is
located in the node only if a randomly generated number
between 0 and 1 is less than 0.8.

Consequently, instances of the same test case can have
diferent numbers of POIs. For the triangular grid, this
number is between 199 and 240, while for the rectangular
grid, it is between 166 and 221. Coordinates of sensor
locations are obtained using either a random generator or a
Halton generator. Eventually, the test classes have the
following confgurations: 1.[13 × 13,ΔR], 2.[13 × 13,◇Η],
3.[16 × 16,ΔH], 4.[19 × 19,◇R], 5.[19 × 19,ΔR], 6.[22×

22,ΔH], 7.[25 × 25,ΔR], 8.[28 × 28,ΔH], where Δ means
a triangular grid of POI locations, ◇ means a rectangular
grid, andH andRmean a Halton and a random generator
of sensor locations. We generated 40 instances of every
class.

Figure 1 depicts boxplots (minimum, lower quartile, me-
dian, upper quartile, andmaximum) ofMaximum–Minimum
Distance (MMD) [38] values for the sensors and POIs in the
instances sets. Precisely, the boxplots show the MMD of the
evenness measure and are calculated as follows:

MMD � max
x∈S

min
v∈V

(d(x, v)) , (3)

where d(x, v) is an Euclidean distance between x and v, S is
the set of sensors’ locations, and V is the set of vertices in
the Voronoi polygons for the set of POIs locations. Te
values in the diagram grow as the side size of the monitored
area grows, which is reasonable. Moreover, for the areas of
the same side size, values for the cases where POIs are
located on the nodes of the triangular grid are smaller than

those for the cases applying a rectangular grid for the POI
distribution.

Figure 2 shows the mean numbers of sensors covering
0, 1, 2, 3, 4, 5, and more than 5 POIs for the eight test cases
of SCP1. One can see that the number of sensors covering
a more signifcant number of POIs decreases as the side
size of the monitored area grows. When the side sizes
increase, the overlapping sections of neighbor sensor
monitoring areas shrink, and some even disappear, so the

0.5

1

1.5

2

2.5

3

3.5

4

2 3 4 5 6 7 81
class of problems

Figure 1: Boxplots of MMD values (minimum, lower quartile,
median, upper quartile, maximum, and outliers) for the sets of 40
instances for the eight classes of SCP1.

1
2

3
4

5
6

7
8

012345>5
0

200
400
600
800

1000
1200
1400

class o
f problemsnum of covered POI 0

200

400

600

800

1000

1200

1400

1600

Figure 2: Mean numbers of sensors covering 0, 1, 2, 3, 4, 5, and
more than 5 POIs for the eight test cases of SCP1.

6 Applied Computational Intelligence and Soft Computing

numbers of shared POIs decrease. In the last class of
problems, almost 75% of the sensors cover only one POI.

In our experiments, we assumed the required level of
coverage cov as either 80 or 90%, while the tolerance factor δ
was 5%. Te same set of experiments was repeated for fve
diferent values of Tbatt—10, 15, 20, 25, and 30.

5.2.2. Mean Normalized Lengths of Schedules and Percentage
Quality of Schedules. Te lengths of the schedules returned
by the LS algorithms in question are the natural outcome of
our experiments. However, the average length returned for
all problem instances from a particular class may not
measure the algorithm quality well. Te optimal schedule
lengths may difer for subsequent instances and values of
Tbatt. For the purpose of compatibility of output values, we
normalized the schedule lengths. We assumed that the
lifetime of batteries is the same, but diferent numbers of
sensor activity intervals represented by Tbatt can be available
for scheduling. We assumed that, for Tbatt � 30, the battery
lifetime is divided into 30 intervals and a slot takes one unit.
Tus, the schedule makespan equals exactly the number of
slots in a schedule. Consequently, for Tbatt � 10, one slot
takes three time units; for Tbatt � 15, two units; for

Tbatt � 20, 1.5 units; and for Tbatt � 25, 1.2 units. Eventually,
normalized lengths of schedules represent the schedule
makespans, that is, the total number of slots multiplied by
the number of time units per slot.

Another measure is to compute for every result its
percentage quality with respect to the best-known subop-
timal schedule and then average these percentages over all
the problem instances in a class.

Table 4 presents the mean makespans of schedules for
particular classes of test cases. Te mean makespan is
computed as the sum of the makespans obtained for all
instances and all values of Tbatt divided by 40 × 5 (the
number of instances for a class of problemsmultiplied by the
number of diferent values of Tbatt). Table 5 shows, for each
of the eight classes of SCP1, the mean percentage qualities of
the best-found schedules returned by the LS algorithms (the
top table). It also shows the mean percentage improvement
of the lengths of schedules returned by the LS phase with
respect to the lengths of schedules returned by the initial-
ization phase (the bottom table). Tables 4 and 5 present
results for cov � 80%. Tables 6 and 7 show the same types of
results as Tables 4 and 5 but assuming cov � 90%.

One can see from these results that [HMA, HMA] is
usually the best version of LS. Tree other LS algorithms,

Table 4: Meanmakespans of schedules returned by the LS algorithms for the SCP1 benchmark with cov � 80%. Codes in column headers: C:
CAIA, H: HMA, R: RFTA; e.g., HR represents the version [HMA, RFTA].

No. HH HR CH HC RH CR RR CC RC
1 1076.95 1013.42 1064.47 992.50 630.75 645.21 623.29 627.43 623.02
2 1123.49 1049.56 1115.98 1030.01 653.39 670.46 644.69 649.18 644.50
3 741.78 706.81 739.25 698.68 428.38 429.47 419.91 421.79 419.72
4 490.89 493.20 456.59 483.83 282.14 273.80 268.23 269.27 268.05
5 524.84 520.62 498.60 514.87 300.56 295.96 290.57 291.67 290.32
6 423.40 418.12 412.82 415.20 241.59 233.57 230.17 231.02 229.92
7 308.84 311.64 291.18 308.24 183.09 175.99 172.92 173.57 172.67
8 272.86 273.61 263.97 272.79 161.22 152.76 150.51 150.94 150.24

Table 5: Mean percentage qualities of the best-found schedules returned by the LS algorithms (the top table) and mean percentage
improvement of the lengths of schedules returned by the LS phase with respect to the lengths of schedules returned by the initialization
phase (the bottom table) for each of the eight classes of SCP1 with cov � 80%.

No. HH HR CH HC RH CR RR CC RC
1 97.29 91.55 96.16 89.66 56.98 58.29 56.30 56.68 56.28
2 97.23 90.83 96.58 89.14 56.55 58.02 55.80 56.18 55.78
3 97.45 92.85 97.12 91.79 56.28 56.42 55.16 55.41 55.14
4 95.01 95.45 88.37 93.64 54.61 52.99 51.91 52.12 51.88
5 96.65 95.87 91.82 94.82 55.35 54.50 53.51 53.71 53.46
6 98.34 97.11 95.89 96.44 56.12 54.25 53.46 53.66 53.41
7 94.24 95.09 88.86 94.06 55.88 53.71 52.77 52.97 52.69
8 97.36 97.63 94.18 97.33 57.53 54.50 53.71 53.86 53.61
No. HH HR CH HC RH CR RR CC RC
1 73.45 63.22 71.42 59.85 1.58 3.91 0.38 1.04 0.33
2 74.93 63.42 73.75 60.37 1.73 4.39 0.38 1.07 0.35
3 77.63 69.26 77.01 67.31 2.58 2.83 0.54 0.99 0.50
4 84.53 85.41 71.64 81.88 6.07 2.93 0.83 1.23 0.77
5 82.07 80.61 72.96 78.62 4.27 2.67 0.80 1.18 0.71
6 85.75 83.43 81.10 82.15 5.99 2.46 0.97 1.34 0.86
7 81.05 82.69 70.70 80.69 7.35 3.17 1.37 1.76 1.23
8 84.04 84.54 78.04 83.99 8.75 3.03 1.52 1.81 1.33

Applied Computational Intelligence and Soft Computing 7

[HMA, RFTA], [CAIA, HMA], and [HMA, CAIA], are also
efective, while the remaining fve LS versions give much
worse results—we will call them weak approaches. However,
for cov � 90%, [RFTA, HMA] is better than the other weak
approaches but not so good as efective ones. Tus, all LS
algorithms with the perturbation method from LSHMA
produce a relatively good schedule, no matter what way is
used to refne the schedule obtained after the perturbation.

However, our results also show that [HMA, HMA] is not
always the best method. In Table 4, in three cases, the values
for [HMA, RFTA] are slightly better than those for [HMA,
HMA]. Moreover, in the frst three lines of Tables 4 and 5,
the values for [CAIA, HMA] are better than the corre-
sponding values for [HMA, RFTA]. In Tables 6 and 7, the
values for [HMA, CAIA] are always better than those for
[CAIA, HMA] and, in three cases, better than the corre-
sponding values for [HMA, HMA]. Moreover, for the last
fve classes of SCP1, the values for [HMA, RFTA] are better
than those for [HMA, HMA]. From these observations, we
can only say that one group of algorithms is better than the
other group, but we cannot claim that one specifc algorithm
is always better than another one.

Comparing the results produced by [CAIA, HMA] and
[RFTA, HMA], one could ask why the frst approach belongs
to the group of efective ones, whereas the second one can be

weak. A possible explanation is that the perturbationmethod
from LSCAIA is much stronger than the one from LSRFTA in
terms of the number of slots deleted from the original
schedule. Tus, in the case of [CAIA, HMA], the refnement
step begins with higher energy levels in the batteries of
available sensors. Tis allows an efcient HMA method to
improve a shorter input schedule much more than in the
case of a more extended input schedule but less energy in the
batteries of available sensors.

Figures 3 and 4 present boxplots of makespans of
schedules returned by the four good LS algorithms for the
SCP1 benchmark with cov of 80% and 90%, respectively.
Tese graphs show that all statistical parameter values
(minimum, lower quartile, median, upper quartile, maxi-
mum) for [HMA, HMA] are usually better than the cor-
responding values for the three other algorithms.

In Figure 3, only for class 7, the values of minimum,
maximum, and quartiles for [HMA, RFTA] are better than
the ones for [HMA, HMA]. For class 8, the values of the
minimum, the lower quartile, and the median for [HMA,
RFTA] are better than the ones for [HMA, HMA], while the
values of the upper quartile and the maximum are equal. For
class 4, the median and the upper quartile for [HMA, RFTA]
are better than the ones for [HMA, HMA], but the mini-
mum, the lower quartile, and the maximum are equal. Tus,

Table 6: Mean makespans of schedules returned by the LS algorithms for the SCP1 benchmark with cov � 90%.

No. HH HR CH HC RH CR RR CC RC
1 905.12 887.02 814.68 862.19 678.27 456.90 432.13 434.15 431.50
2 975.69 946.18 861.55 905.32 746.50 480.18 450.46 452.91 449.92
3 636.98 626.42 576.43 605.41 523.98 305.81 293.27 294.35 292.79
4 365.33 371.18 322.44 366.09 302.65 191.88 181.82 181.75 180.70
5 418.08 420.40 372.41 414.85 358.20 208.96 200.04 200.36 199.42
6 356.69 358.54 331.46 352.69 317.19 168.57 162.84 163.17 162.12
7 236.60 239.14 214.89 237.34 182.97 125.54 120.13 119.72 119.12
8 228.63 230.24 213.71 229.33 201.44 112.21 108.55 108.24 107.75

Table 7: Mean percentage qualities of the best-found schedules returned by the LS algorithms (the top table) and mean percentage
improvement of the lengths of schedules returned by the LS phase with respect to the lengths of schedules returned by the initialization
phase (the bottom table) for each of the eight classes of SCP1 with cov � 90%.

No. HH HR CH HC RH CR RR CC RC
1 96.83 94.89 87.16 92.24 72.59 48.88 46.23 46.45 46.16
2 97.74 94.78 86.31 90.69 74.80 48.10 45.12 45.37 45.07
3 97.41 95.79 88.16 92.57 80.16 46.76 44.85 45.01 44.77
4 92.81 94.30 81.93 93.00 76.92 48.74 46.20 46.18 45.91
5 94.03 94.55 83.77 93.30 80.60 47.00 45.00 45.07 44.86
6 97.26 97.77 90.39 96.17 86.52 45.97 44.41 44.50 44.21
7 92.81 93.81 84.30 93.10 71.80 49.24 47.13 46.96 46.73
8 95.58 96.25 89.34 95.87 84.23 46.91 45.38 45.25 45.05
No. HH HR CH HC RH CR RR CC RC
1 110.97 106.77 89.87 100.98 58.14 6.49 0.71 1.19 0.57
2 118.13 111.54 92.58 102.40 66.91 7.35 0.70 1.25 0.58
3 119.27 115.65 98.41 108.41 80.41 5.27 0.95 1.32 0.79
4 104.58 107.86 80.58 105.01 69.47 7.48 1.83 1.79 1.20
5 112.08 113.26 88.92 110.44 81.73 6.00 1.48 1.64 1.17
6 122.97 124.13 107.21 120.47 98.32 5.38 1.79 2.00 1.34
7 102.55 104.72 83.97 103.18 56.63 7.49 2.86 2.50 1.99
8 116.57 118.09 102.43 117.23 90.86 6.28 2.83 2.53 2.07

8 Applied Computational Intelligence and Soft Computing

900

950

1000

1050

1100

1150

1200

H
H H
R

CH H
C

class 1

900

950

1000

1050

1100

1150

1200

H
H H
R

CH H
C

class 2

660

680

700

720

740

760

780

800

H
H H
R

CH H
C

class 3

400

420

440

460

480

500

520

540

H
H H
R

CH H
C

class 4

460

480

500

520

540

H
H H
R

CH H
C

class 5

360

380

400

420

440

H
H H
R

CH H
C

class 6

260

280

300

320

340

H
H H
R

CH H
C

class 7

250

260

270

280

290

300

H
H H
R

CH H
C

class 8

Figure 3: Boxplots of makespans of schedules (minimum, lower quartile, median, upper quartile, maximum, and outliers) returned by the
LS algorithms for the SCP1 classes nos. 1, 2, 3, and 4 (top fgures) and classes nos. 5, 6, 7, and 8 (bottom fgures) with cov � 80%.

750

800

850

900

950

1000

1050

H
H H
R

CH H
C

class 1

750

800

850

900

950

1000

1050

H
H H
R

CH H
C

class 2

500

550

600

650

700

H
H H
R

CH H
C

class 3

260

280

300

320

340

360

380

400

H
H H
R

CH H
C

class 4

300

350

400

450

500

H
H H
R

CH H
C

class 5

300

320

340

360

380

400

H
H H
R

CH H
C

class 6

160

180

200

220

240

260

280

300

H
H H
R

CH H
C

class 7

200

210

220

230

240

250

H
H H
R

CH H
C

class 8

Figure 4: Boxplots of makespans of schedules (minimum, lower quartile, median, upper quartile, maximum, and outliers) returned by the
LS algorithms for the SCP1 classes nos. 1, 2, 3, and 4 (top fgures) and classes nos. 5, 6, 7, and 8 (bottom fgures) with cov � 90%.

Applied Computational Intelligence and Soft Computing 9

Table 8: Mean lengths of schedules returned by the LS algorithms for each of the four classes of the benchmark given in [7, 8] with
cov � 90%.

No. HH HR CH HC RH CR RR CC RC
#1 165.97 153.47 134.63 147.07 110.20 104.40 101.10 102.07 100.23
#2 337.97 297.37 284.47 272.10 219.80 200.87 191.20 193.53 190.00
#3 510.53 423.50 441.43 373.33 319.07 301.10 282.20 287.87 281.07
#4 157.00 145.03 127.60 139.17 104.63 100.97 98.63 99.53 97.63

Table 9: Mean percentage qualities of the best-found schedules returned by the LS algorithms (the top table) and mean percentage
improvements of the lengths of schedules returned by the LS phase with respect to the lengths of schedules returned by the initialization
phase (the bottom table) for each of the four classes of the benchmark given in [7, 8] with cov � 90%.

No. HH HR CH HC RH CR RR CC RC
#1 97.06 89.75 78.73 86.00 64.44 61.05 59.12 59.69 58.62
#2 98.53 86.70 82.93 79.33 64.08 58.56 55.74 56.42 55.39
#3 99.13 82.23 85.72 72.49 61.95 58.47 54.80 55.90 54.58
#4 98.13 90.65 79.75 86.98 65.40 63.10 61.65 62.21 61.02
No. HH HR CH HC RH CR RR CC RC
#1 71.35 58.47 39.03 51.87 13.77 7.78 4.36 5.35 3.46
#2 80.85 59.12 52.22 45.59 17.64 7.47 2.29 3.55 1.64
#3 83.94 52.57 59.03 34.48 14.98 8.47 1.66 3.71 1.25
#4 65.95 53.35 34.88 47.12 10.63 6.71 4.24 5.18 3.18

Table 10: Mean lengths of schedules returned by the LS algorithms for the benchmark given in [7, 8] with cov � 80%.

No. HH HR CH HC RH CR RR CC RC
#1 193.90 166.07 168.80 162.27 141.03 141.33 138.77 140.03 138.10
#2 388.53 308.73 355.70 290.93 271.33 276.40 267.37 271.00 267.03
#3 573.10 443.87 553.23 425.07 402.53 413.93 397.50 402.23 397.10
#4 183.30 160.37 163.17 155.40 138.50 139.00 136.40 137.27 135.77

Table 11: Mean percentage qualities of the best-found schedules returned by the LS algorithms (the top table) and mean percentage
improvements of the lengths of schedules returned by the LS phase with respect to the lengths of schedules returned by the initialization
phase (the bottom table) for each of the four classes of the benchmark given in [7, 8] with cov � 80%.

No. HH HR CH HC RH CR RR CC RC
#1 95.99 82.21 83.56 80.33 69.82 69.97 68.70 69.32 68.37
#2 96.89 76.99 88.70 72.55 67.66 68.93 66.67 67.58 66.59
#3 95.68 74.10 92.36 70.96 67.20 69.10 66.36 67.15 66.29
#4 94.48 82.66 84.11 80.10 71.39 71.65 70.31 70.76 69.98
No. HH HR CH HC RH CR RR CC RC
#1 43.00 22.46 24.46 19.67 3.99 4.21 2.32 3.25 1.82
#2 47.13 16.90 34.68 10.16 2.73 4.65 1.23 2.60 1.10
#3 45.24 12.48 40.21 7.73 2.01 4.90 0.74 1.94 0.63
#4 37.58 20.37 22.46 16.62 3.94 4.32 2.36 3.01 1.88

100

110

120

130

140

150

160

170

180

H
H H
R

CH H
C

#1

200

220

240

260

280

300

320

340

H
H H
R

CH H
C

#2

300

350

400

450

500

550

H
H H
R

CH H
C

#3

100

110

120

130

140

150

160

170

180

H
H H
R

CH H
C

#4

Figure 5: Boxplots of lengths of schedules (minimum, lower quartile, median, upper quartile, maximum, and outliers) returned by the LS
algorithms for the benchmark given in [7, 8] with cov � 90%.

10 Applied Computational Intelligence and Soft Computing

120

140

160

180

200

220

H
H H
R

CH H
C

#1

250

300

350

400

450

H
H H
R

CH H
C

#2

350

400

450

500

550

600

650

H
H H
R

CH H
C

#3

120

140

160

180

200

220

H
H H
R

CH H
C

#4

Figure 6: Boxplots of lengths of schedules (minimum, lower quartile, median, upper quartile, maximum, and outliers) returned by the LS
algorithms for the benchmark given in [7, 8] with cov � 80%.

Table 12: Mean lengths of schedules returned by the LS algorithms for the benchmark given in [9] with cov � 100%.

No. HH HR CH HC RH CR RR CC RC
1.1 548.27 506.38 487.45 406.88 392.13 452.05 374.50 435.50 370.63
1.2 1189.92 925.00 983.15 759.95 775.80 892.48 744.90 848.02 741.75
1.3 1756.40 1328.17 1444.80 1099.90 1125.38 1299.63 1088.63 1222.15 1085.40
1.4 2509.07 1730.05 1979.03 1487.80 1516.35 1763.38 1476.35 1651.33 1473.05
1.5 3100.28 2009.63 2495.50 1861.13 1892.33 2212.93 1854.70 2059.82 1850.70
2.1 2121.10 1711.03 1787.53 1442.90 1459.33 1655.03 1437.53 1583.55 1434.22
2.2 1984.28 1513.63 1637.90 1271.30 1282.83 1481.33 1264.70 1410.90 1259.92
2.3 1808.70 1405.95 1558.40 1196.83 1207.88 1403.97 1186.65 1328.50 1182.95
2.4 1829.63 1311.08 1520.03 1154.17 1173.42 1362.00 1143.47 1284.97 1140.05
2.5 1850.97 1317.22 1487.13 1128.25 1144.10 1331.42 1116.95 1256.55 1113.05

Table 13: Mean percentage qualities of the best-found schedules returned by the LS algorithms (the top table) and mean percentage
improvements of the lengths of schedules returned by the LS phase with respect to the lengths of schedules returned by the initialization
phase (the bottom table) for each of the ten classes of the benchmark given in [9] with cov � 100%.

No. HH HR CH HC RH CR RR CC RC
1.1 78.44 72.44 69.74 58.21 56.10 64.67 53.58 62.30 53.02
1.2 85.36 66.36 70.53 54.52 55.65 64.02 53.44 60.83 53.21
1.3 84.40 63.82 69.43 52.85 54.08 62.45 52.31 58.73 52.16
1.4 89.23 61.52 70.38 52.91 53.92 62.71 52.50 58.72 52.38
1.5 87.80 56.91 70.67 52.71 53.59 62.67 52.53 58.34 52.41
2.1 81.96 66.11 69.07 55.75 56.39 63.95 55.55 61.19 55.42
2.2 84.33 64.33 69.61 54.03 54.52 62.95 53.75 59.96 53.55
2.3 85.88 66.76 74.00 56.83 57.35 66.67 56.35 63.08 56.17
2.4 83.32 59.70 69.22 52.56 53.43 62.02 52.07 58.51 51.91
2.5 86.25 61.38 69.30 52.57 53.31 62.04 52.05 58.55 51.87
No. HH HR CH HC RH CR RR CC RC
1.1 51.17 40.23 34.22 12.63 8.12 24.50 3.17 19.99 2.05
1.2 62.11 26.78 33.67 3.41 5.55 21.40 1.29 15.35 0.86
1.3 62.90 23.99 33.89 1.93 4.30 20.46 0.88 13.28 0.58
1.4 71.34 18.66 35.03 1.53 3.51 20.37 0.75 12.69 0.52
1.5 68.14 9.27 35.25 0.86 2.58 19.95 0.51 11.62 0.29
2.1 48.76 20.38 25.38 0.98 2.15 16.03 0.60 10.98 0.36
2.2 58.57 21.10 30.72 1.40 2.34 18.21 0.86 12.56 0.46
2.3 54.23 19.63 32.42 1.68 2.61 19.33 0.82 12.90 0.50
2.4 61.92 16.08 34.06 1.86 3.58 20.19 0.89 13.38 0.58
2.5 67.54 19.56 34.42 2.01 3.43 20.39 0.96 13.60 0.61

Applied Computational Intelligence and Soft Computing 11

Table 14: Mean lengths of schedules returned by the LS algorithms for the benchmark given in [9] with cov � 90%.

No. HH HR CH HC RH CR RR CC RC
1.1 755.92 728.50 826.48 724.63 725.30 802.63 723.38 786.83 722.48
1.2 1490.42 1469.13 1664.13 1464.28 1465.50 1599.30 1463.42 1559.72 1462.22
1.3 2206.97 2140.10 2444.95 2137.32 2139.20 2325.25 2136.70 2267.32 2135.47
1.4 2976.40 2921.50 3361.13 2920.65 2921.30 3181.55 2919.97 3095.38 2918.68
1.5 3743.65 3654.90 4226.15 3651.30 3652.18 3977.00 3650.05 3860.32 3649.28
2.1 2523.25 2338.20 2584.65 2305.63 2308.55 2480.97 2303.38 2422.95 2301.88
2.2 2293.40 2230.90 2521.25 2214.82 2215.18 2399.50 2213.63 2344.30 2212.05
2.3 2253.45 2197.20 2508.68 2195.40 2197.35 2388.50 2194.78 2332.57 2193.78
2.4 2259.72 2195.90 2512.95 2192.75 2194.93 2382.68 2192.40 2327.03 2191.45
2.5 2242.60 2191.82 2508.32 2190.00 2191.20 2388.40 2188.88 2321.75 2187.60

Table 15: Mean percentage qualities of the best-found schedules returned by the LS algorithms (the top table) and mean percentage
improvements of the lengths of schedules returned by the LS phase with respect to the lengths of schedules returned by the initialization
phase (the bottom table) for each of the ten classes of the benchmark given in [9] with cov � 90%.

No. HH HR CH HC RH CR RR CC RC
1.1 78.91 76.04 86.27 75.64 75.71 83.78 75.51 82.13 75.41
1.2 80.30 79.16 89.66 78.89 78.96 86.17 78.85 84.04 78.78
1.3 81.86 79.38 90.69 79.28 79.35 86.25 79.25 84.10 79.21
1.4 80.25 78.77 90.62 78.74 78.76 85.78 78.73 83.46 78.69
1.5 81.05 79.13 91.49 79.05 79.07 86.10 79.02 83.57 79.01
2.1 72.74 67.40 74.51 66.46 66.55 71.52 66.40 69.85 66.36
2.2 78.33 76.19 86.11 75.64 75.65 81.95 75.60 80.06 75.55
2.3 78.60 76.64 87.50 76.57 76.64 83.31 76.55 81.36 76.52
2.4 77.04 74.87 85.68 74.76 74.84 81.24 74.75 79.34 74.72
2.5 78.39 76.61 87.67 76.55 76.59 83.48 76.51 81.15 76.46
No. HH HR CH HC RH CR RR CC RC
1.1 5.57 1.50 15.27 0.91 1.01 11.89 0.73 0.73 0.61
1.2 2.27 0.79 14.28 0.45 0.53 9.81 0.39 0.39 0.31
1.3 3.79 0.41 14.82 0.27 0.36 9.15 0.24 0.24 0.18
1.4 2.24 0.20 15.38 0.17 0.19 9.19 0.15 0.15 0.10
1.5 2.87 0.27 16.02 0.16 0.18 9.15 0.12 0.12 0.10
2.1 10.29 1.86 12.73 0.36 0.49 8.12 0.26 0.26 0.19
2.2 3.80 1.00 14.27 0.27 0.29 8.70 0.22 0.22 0.15
2.3 2.91 0.32 14.64 0.23 0.33 9.11 0.21 0.21 0.16
2.4 3.32 0.37 14.96 0.23 0.33 8.96 0.21 0.21 0.17
2.5 2.79 0.37 14.97 0.28 0.34 9.43 0.23 0.23 0.17

Table 16: Mean lengths of schedules returned by the LS algorithms for the benchmark given in [9] with cov � 80%.

No. HH HR CH HC RH CR RR CC RC
1.1 973.10 969.85 1030.22 968.80 968.67 1020.33 968.08 1009.98 967.63
1.2 1969.78 1968.40 2083.75 1967.95 1967.92 2056.05 1967.60 2032.17 1966.92
1.3 2890.60 2886.07 3059.93 2885.40 2885.35 3009.22 2884.97 2971.97 2884.50
1.4 3938.82 3934.85 4197.38 3934.70 3934.40 4110.50 3934.45 4051.63 3933.53
1.5 4931.93 4930.52 5277.35 4930.23 4930.88 5149.18 4930.25 5072.93 4929.88
2.1 3062.82 3039.93 3205.32 3038.50 3039.25 3155.60 3038.45 3120.10 3037.85
2.2 2963.93 2961.72 3136.97 2960.53 2960.65 3086.78 2960.82 3050.03 2959.80
2.3 2980.10 2978.78 3161.28 2977.65 2976.97 3102.93 2977.10 3067.32 2976.32
2.4 2961.70 2959.60 3140.32 2958.55 2958.30 3086.32 2958.10 3047.95 2957.43
2.5 2968.40 2966.47 3145.07 2965.95 2965.97 3093.15 2966.03 3055.30 2965.28

12 Applied Computational Intelligence and Soft Computing

none of these two algorithms can produce a schedule longer
than the best schedule given by the other, but [HMA, RFTA]
more often returns better results. For classes 1–3, the
maximum for [CAIA, HMA] is better than themaximum for
[HMA, HMA], but the other boxplot parameters for [CAIA,
HMA] are worse than those for [HMA, HMA]. [CAIA,
HMA] has a more extensive interquartile range and dis-
tribution of the results. Tis is due to the properties of the
perturbation method from LSCAIA which is more random
than the method used by LSHMA. Hence sometimes, it can
produce better usage of the sensors than the more systematic
approach of LSHMA.

In Figure 4, for classes 4–8, the values of minimum,
maximum, and quartiles for [HMA, RFTA] are better than
the ones for [HMA, HMA]. Moreover, for classes 4 and 8,
the values of almost all parameters for [HMA, CAIA] are
better than the ones for [HMA, HMA] (the only exception is
the maximum in class 8). For class 8, [HMA, CAIA] has
smaller interquartile range than [HMA, HMA]. For class 7,
the values of the corresponding parameters for [HMA,
CAIA] and [HMA, HMA] are almost equal. Tus, boxplot
graphs confrm conclusions from mean values.

5.3. Performance Comparisons Using TwoOther Benchmarks.
To validate our fndings from Section 5.2, we decided to
conduct additional experiments using benchmarks provided
by other authors. We selected the same two benchmarks we
used for experiments with our original algorithms LS HMA,
LS CAIA, and LS RFTA [3].

5.3.1. Te Benchmark Proposed by Tretyakova et al. in [7, 8].
We selected four classes of problems proposed in [7, 8]. In all
cases, the monitored area is a square with a side size of 100

abstract units. In three classes from [8], there are 100 POIs
while the number of sensors is 100, 200, and 300 (cases #1, #2,
and #3). In the class from [7], we have 400 POIs and 100
sensors (case #4). Te remaining parameters have also the
same values as in [7, 8]; that is, cov � 90%, the sensing range
is 20 abstract units, and Tbatt � 20. Table 8 presents the mean
measured lengths of schedules. Table 9 shows the mean
percentage qualities of the best-found schedules returned by
our LS algorithms (the top table) and mean percentage
improvements of the lengths of schedules returned by the LS
phase with respect to the lengths of schedules returned by
the initialization phase (the bottom table) for each of the
four classes of the benchmark in question, assuming
cov � 90%.

Tis set of experiment results are similar to our earlier
results with the benchmark SCP1. [HMA, HMA] always
gives the most extended schedules. Algorithms [HMA,
RFTA], [CAIA, HMA], and [HMA, CAIA] are worse than
[HMA, HMA] but signifcantly better than the remaining
fve approaches.

Since in experiments with SCP1, we performed com-
putations for two values of cov, 80% and 90%, we did the
same for the test cases from [7, 8]. Tables 10 and 11 show the
set of results similar to the ones in Tables 8 and 9 but ob-
tained for cov � 80%.

For this set of benchmarks, lowering cov from 90% to
80% has not changed the relative performance of the three
groups of our LS algorithms. However, the relative per-
formance of the three efective algorithms has changed.

Figures 5 and 6 show boxplots of lengths of schedules
returned by the four good LS algorithms for the benchmark
proposed in [7, 8] with cov of 90% and 80%, respectively. In
Figure 5, one can see that the minimum for [HMA, HMA] is
always greater than or equal to the maximum for the other

Table 17: Mean percentage qualities of the best-found schedules returned by the LS algorithms (the top table) and mean percentage
improvements of the lengths of schedules returned by the LS phase with respect to the lengths of schedules returned by the initialization
phase (the bottom table) for each of the ten classes of the benchmark given in [9] with cov � 80%.

No. HH HR CH HC RH CR RR CC RC
1.1 82.05 81.77 86.87 81.69 81.68 86.03 81.63 85.16 81.59
1.2 85.57 85.51 90.52 85.49 85.49 89.32 85.47 88.28 85.44
1.3 82.47 82.34 87.30 82.32 82.32 85.86 82.31 84.79 82.30
1.4 83.73 83.65 89.23 83.65 83.64 87.38 83.64 86.13 83.62
1.5 84.71 84.69 90.64 84.68 84.69 88.44 84.68 87.13 84.68
2.1 81.26 80.66 85.04 80.62 80.64 83.73 80.62 82.78 80.60
2.2 86.94 86.88 92.02 86.84 86.85 90.55 86.85 89.47 86.82
2.3 86.38 86.34 91.63 86.31 86.29 89.94 86.29 88.91 86.27
2.4 86.75 86.69 91.98 86.66 86.65 90.40 86.65 89.28 86.63
2.5 83.20 83.14 88.15 83.13 83.13 86.69 83.13 85.63 83.11
No. HH HR CH HC RH CR RR CC RC
1.1 0.96 0.61 6.98 0.50 0.48 5.93 0.42 4.86 0.37
1.2 0.29 0.22 6.17 0.19 0.19 4.74 0.18 3.51 0.14
1.3 0.34 0.18 6.28 0.15 0.15 4.50 0.14 3.20 0.12
1.4 0.22 0.11 6.84 0.11 0.10 4.62 0.10 3.11 0.08
1.5 0.09 0.06 7.16 0.06 0.07 4.53 0.06 2.98 0.05
2.1 0.98 0.17 5.78 0.12 0.15 4.09 0.12 2.89 0.10
2.2 0.25 0.18 6.18 0.14 0.14 4.46 0.15 3.20 0.11
2.3 0.25 0.20 6.39 0.16 0.14 4.41 0.15 3.21 0.12
2.4 0.27 0.20 6.38 0.16 0.16 4.54 0.15 3.23 0.13
2.5 0.20 0.13 6.21 0.11 0.11 4.45 0.11 3.16 0.09

Applied Computational Intelligence and Soft Computing 13

three algorithms. Moreover, the results for [HMA, HMA]
have a much smaller interquartile range than those for the
other algorithms. Te schedules’ lengths are less dispersed,
proving the higher stability of the [HMA, HMA] variant for
cov � 90%. In Figure 6, the values of all parameters for
[HMA, HMA] are better than those of the corresponding
parameters for the other algorithms. However, for three out
of four classes of the benchmark, the results for [CAIA,
HMA] have the smallest interquartile range. Less dispersed
schedules’ lengths prove the higher stability of the [CAIA,
HMA] variant for cov � 80%. Again, boxplot graphs con-
frm conclusions from mean values.

5.3.2. Te Benchmark Proposed by Manju et al. in [9].
Te authors of the minimal-heuristic approach [9] proposed
the following set of benchmarks for experiments with

algorithms solving MLCP. Te monitored area is a square
with a side size of 150 abstract units. POIs and sensors are
distributed randomly over this area. In the frst fve test cases
(1.1–1.5), we have 100 POIs while the sensors’ numbers are
50, 100, 150, 200, and 250, respectively. In the next fve test
cases (2.1–2.5), there are 150 sensors, while the numbers of
POIs are 20, 40, 60, 80, and 100. As in [9], the sensing range
is 70 abstract units and cov � 100%. Requiring full coverage
is reasonable because this set of benchmarks gives much
more redundant coverage of POIs by sensors; that is, larger
numbers of sensors cover individual POIs than in SCP1 and
the benchmark from [7, 8] (see the next subsection for
details). We used Tbatt � 40.

Table 12 gives the results of our LS strategies for the
benchmarks from [9]. Te top part of Table 13 shows the
mean percentage qualities of the best-found schedules
returned by the LS algorithms. In the bottom part of

300

350

400

450

500

550

600

650

700

H
H H
R

CH H
C

class 1.1

600

700

800

900

1000

1100

1200

1300

1400

H
H H
R

CH H
C

class 1.2

1000

1200

1400

1600

1800

2000

H
H H
R

CH H
C

class 1.3

1400

1600

1800

2000

2200

2400

2600

2800

H
H H
R

CH H
C

class 1.4

2000

2500

3000

3500

H
H H
R

CH H
C

class 1.5

1200

1400

1600

1800

2000

2200

2400

2600

H
H H
R

CH H
C

class 2.1

1200

1400

1600

1800

2000

2200

2400

H
H H
R

CH H
C

class 2.2

1000

1200

1400

1600

1800

2000

2200
H

H H
R

CH H
C

class 2.3

1000

1200

1400

1600

1800

2000

2200

H
H H
R

CH H
C

class 2.4

1000

1200

1400

1600

1800

2000

2200

H
H H
R

CH H
C

class 2.5

Figure 7: Boxplots of lengths of schedules (minimum, lower quartile, median, upper quartile, maximum, and outliers) returned by the LS
algorithms for the benchmark given in [9] with cov � 100%.

14 Applied Computational Intelligence and Soft Computing

Table 13, we present mean percentage improvements of the
lengths of schedules produced by the LS phase with respect
to the lengths of schedules returned by the initialization
phase.

One can see from these results that [HMA, HMA] is still
the winner. [CAIA, HMA] is the second best LS approach in
9 out of 10 cases. As the number of sensors grows (which
means that the redundancy of coverage also increases),
[CAIA, RFTA] becomes better than [HMA, RFTA].

Since in our experiments with the benchmark set SCP1
and with the benchmarks from [7, 8] we used cov equal to
80% and 90%, we also performed tests with the data sets
from [9] using the same values of cov. For these test cases,
the number of alternative sensor activity confgurations
satisfying coverage level is relatively high due to high re-
dundancy in POI coverage. Lowering cov makes the number

of these confgurations even greater. Te results for cov �

90% are given in Tables 14 and 15 while the results for cov �

80% are provided in Tables 16 and 17.
In this set of experiments, [CAIA, HMA] is the best LS

algorithm in all cases. For cov � 90%, [HMA, HMA] is the
second best in test Case 2.1. In all other test cases, for both cov
equal to 80% and that equal to 90%, the second best is [CAIA,
RFTA]. Te third is [CAIA, CAIA]. Tus, for cov equal to
80% or 90%, the perturbation method used in CAIA always
gives results better than the other twomethods. Interestingly,
for cov � 80%, the remaining six LS algorithms (including
[HMA, HMA]) give a relative improvement of less than 1%.

Figures 7, 8, and 9 show boxplots of lengths of schedules
returned by the four good LS algorithms for the benchmark
proposed in [9] with cov of 100%, 90%, and 80%, respectively.
In Figure 7 [HMA, HMA] always gives the largest values of

550

600

650

700

750

800

850

900

950

1000

H
H H
R

CH H
C

class 1.1

1200

1300

1400

1500

1600

1700

1800

1900

H
H H
R

CH H
C

class 1.2

1800

2000

2200

2400

2600

H
H H
R

CH H
C

class 1.3

2400

2600

2800

3000

3200

3400

3600

3800

H
H H
R

CH H
C

class 1.4

3000

3200

3400

3600

3800

4000

4200

4400

4600

H
H H
R

CH H
C

class 1.5

1800

2000

2200

2400

2600

2800

3000

3200

3400

H
H H
R

CH H
C

class 2.1

2000

2200

2400

2600

2800

3000

H
H H
R

CH H
C

class 2.2

2000

2200

2400

2600

2800

3000
H

H H
R

CH H
C

class 2.3

2000

2200

2400

2600

2800

3000

H
H H
R

CH H
C

class 2.4

1800

2000

2200

2400

2600

2800

H
H H
R

CH H
C

class 2.5

Figure 8: Boxplots of lengths of schedules (minimum, lower quartile, median, upper quartile, maximum, and outliers) returned by the LS
algorithms for the benchmark given in [9] with cov � 90%.

Applied Computational Intelligence and Soft Computing 15

minimum, maximum, and quartiles. [CAIA, HMA] and
[HMA, CAIA] have usually smaller interquartile ranges than
[HMA, HMA] and [HMA, RFTA]. Te small value of the
interquartile range for [HMA, CAIA] with the mean value
lower than the mean values of the results returned by other
algorithmsmeans that [HMA,CAIA] never gives good results
for this benchmark and cov � 100%. In Figure 8, [CAIA,
HMA] not only has the highest values of all parameters but
also almost always has the smallest interquartile range (only
for class 1.1, [HMA, RFTA] has a smaller interquartile range).
Decreasing cov from 100 to 90% changed the winner—more
random perturbation method from LSCAIA turned out to be
better in this case. Finally, inFigure 9, [CAIA,HMA]againhas
the highest values of all parameters and often has the smallest
interquartile range.However, in this case, interquartile ranges

for all four algorithms are close to each other. Onemore time,
boxplot graphs confrm conclusions from mean values.

5.4. What Afects Algorithms’ Efectiveness?

5.4.1. Te Redundancy in Coverage of POIs by Sensors in the
Benchmarks. To explain diferences in the relative perfor-
mance of our nine LS approaches on various benchmarks,
we investigated the numbers of sensors able to control
particular POIs in SCP1 and the benchmarks from [7–9].
Our fndings are presented in Figures 10–12.

Figures10and12showthat in the test cases fromSCP1and
from [7, 8], every POI can be monitored by not more than 50
sensors and, in some of these cases, even by not more than 20

750

800

850

900

950

1000

1050

1100

1150

1200

H
H H
R

CH H
C

class 1.1

1600

1700

1800

1900

2000

2100

2200

2300

2400

H
H H
R

CH H
C

class 1.2

2600

2800

3000

3200

3400

3600

H
H H
R

CH H
C

class 1.3

3400

3600

3800

4000

4200

4400

4600

4800

H
H H
R

CH H
C

class 1.4

4400

4600

4800

5000

5200

5400

5600

5800

H
H H
R

CH H
C

class 1.5

2600

2800

3000

3200

3400

3600

3800

H
H H
R

CH H
C

class 2.1

2600

2800

3000

3200

3400

H
H H
R

CH H
C

class 2.2

2600

2800

3000

3200

3400

H
H H
R

CH H
C

class 2.3

2600

2800

3000

3200

3400

H
H H
R

CH H
C

class 2.4

2600

2800

3000

3200

3400

3600

H
H H
R

CH H
C

class 2.5

Figure 9: Boxplots of lengths of schedules (minimum, lower quartile, median, upper quartile, maximum, and outliers) returned by the LS
algorithms for the benchmark given in [9] with cov � 80%.

16 Applied Computational Intelligence and Soft Computing

sensors. On the other hand, Figure 11 shows that in the test
cases from [9],manyPOIs canbemonitoredbymore than 100
sensors. Tis high monitoring redundancy makes fnding a
cover for POIsmuchmoremanageable, even for cov � 100%.

We conclude from the above considerations that the
perturbation method used in LS CAIA works better than the
other two methods when there are many possibilities of
forming a required cover for a given set of POIs. When the
number of such options decreases due to a higher value of
cov or a smaller number of sensors, the perturbation method
from LSHMA becomes better. Te advantage of the pertur-
bation method from LSCAIA over the one from LSHMA when
there is much redundancy in coverage of POIs is probably
that the former removes more slots from the original
schedule than the latter. When the number of similar legal

covers becomes large, there are many possibilities of creating
a valid schedule. Removing more slots and restoring more
power to sensor batteries gives the refnement method more
space to show its efectiveness and improve the original
schedule. On the other hand, when the redundancy in
coverage of POIs decreases, a more systematic approach of
HMA works better.

Let us also notice that too much redundancy in coverage
of POIs by sensors is not desirable in real life due to in-
creased costs. Of course, the ultimate redundancy level
depends mainly on a specifc application.

5.4.2. Strengths and Weaknesses of the Perturbation
Operators. Te good performance of the perturbation

#1
#2

20 30 40 50 60 7010
0
2
4
6
8

10
12
14
16
18

pe
rc

. o
f p

oi
s

#3
#4

20 30 40 50 60 7010
0
2
4
6
8

10
12
14
16
18

pe
rc

. o
f p

oi
s

#5
#6

20 30 40 50 60 7010
0

5

10

15

20

25

pe
rc

. o
f p

oi
s

#7
#8

20 30 40 50 60 7010
0
5

10
15
20
25
30

pe
rc

. o
f p

oi
s

Figure 10: Percentage numbers of POIs covered by diferent numbers of sensors for SCP1.

Applied Computational Intelligence and Soft Computing 17

method from LSHMA comes from the fact that this method
does not remove a single slot from the original schedule.
Instead, the method only changes sets of active sensors in
selected slots. Consequently, the set of sensors with non-

empty batteries changes too. It opens up new possibilities for
producing one additional slot in the refnement step, which
is sufcient to obtain a more extended schedule. On the
other hand, the perturbation methods from LSRFTA and

#1.1
#1.2

100 150 20050
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

pe
rc

. o
f p

oi
s

#1.3
#1.4

100 150 20050
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

pe
rc

. o
f p

oi
s

#1.5
#2.1

100 150 20050
0

0.5
1

1.5
2

2.5
3

pe
rc

. o
f p

oi
s

#2.2
#2.3

100 150 20050
0

0.5

1

1.5

2

2.5

pe
rc

. o
f p

oi
s

#2.4
#2.5

100 150 20050
0

0.5

1

1.5

2

pe
rc

. o
f p

oi
s

Figure 11: Percentage numbers of POIs covered by diferent numbers of sensors for the benchmark given in [9].

18 Applied Computational Intelligence and Soft Computing

LSCAIA delete slots from the initial schedule. It means that
during the refnement step, the minimum goal is to create at
least as many new slots as were removed during the per-
turbation. When we succeed, we can go further and try to
generate more slots to make the new schedule longer. It can
happen, nevertheless, that we are not able to get as many
additional slots as we removed. Despite the refnement step
execution, we get a shorter schedule. Slots or sensors in slots
are selected for removal randomly, so our success depends
on luck. As we mentioned above, when there is much re-
dundancy in coverage of POIs by sensors and we remove
many slots from the original schedule, the chances of re-
moving the right slots and eventually getting a more ex-
tended schedule grow.

6. Conclusions

In this paper, we proposed 27 local search algorithms
solving MLCP and studied the relative performance of 9 of
them. Te starting point in this research was three LS al-
gorithms presented in our earlier papers: LSHMA, LSCAIA,
and LSRFTA.

Te local search approach consists of two major steps:
generating an initial solution to the problem and looking for
its neighbor. Te second step can be divided into two
substeps executed iteratively: perturbation of the original
solution and refnement of the perturbation’s result. Tis
way, we have three problem-specifc steps in our LS algo-
rithms for MLCP. By swapping these three steps between
three basic algorithms, we can get 27 diferent versions of LS
solving MLCP.

Our research studied the relative performance of just
nine of these versions—the initial problem solution was
always generated using CAIA. For experimental research, we
used the benchmark SCP1 (proposed in our earlier papers)
and the benchmarks proposed in [7–9].

We computed the mean lengths of schedules returned by
the LS algorithms, mean percentage qualities of the best-
found schedules returned by the LS algorithms, and mean
percentage improvements of the lengths of schedules pro-
duced by the LS phase with respect to the lengths of
schedules returned by the initialization phase. Moreover, we
analyzed boxplots of lengths of schedules returned by the
four best LS algorithms.

Te results of our experiments show that for the SCP1
benchmark and the benchmarks from [7, 8], the best pair of
perturbation and refnement methods is usually the one used
in LSHMA, i.e., [HMA, HMA]. Approaches [HMA, RFTA],
[CAIA, HMA], and [HMA, CAIA] are also efective, while
the remaining combinations give much worse results.
However, experiments with the benchmarks from [9] gave
diferent results. When we assume cov � 100%, [HMA,
HMA] is still the best approach, but for cov equal to 80% or
90%, the perturbation method used in LSCAIA gives better
results. We conclude that the more redundant the coverage
of POIs by sensors and the lower the value of cov, the more
efective the perturbation method from LSCAIA. When this
redundancy is lower or cov is higher, the perturbation
method used in LSHMA becomes better. One could ask about
a threshold value of cov for which the perturbation method
from LSCAIA becomes better than the method from LSHMA.
Te results show that this value is problem-dependent. It
depends on the redundancy in coverage of POIs by sensors.
However, no rule defning this threshold value can be de-
termined based on the presented experiments. It can be
fgured out only by conducting experiments with a given
class of problems.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

#3
#4

20 30 40 50 60 7010
0
2
4
6
8

10
12
14
16
18

pe
rc

. o
f p

oi
s

#1
#2

20 30 40 50 60 7010
0
2
4
6
8

10
12
14
16
18

pe
rc

. o
f p

oi
s

Figure 12: Percentage numbers of POIs covered by diferent numbers of sensors for the benchmark given in [7, 8].

Applied Computational Intelligence and Soft Computing 19

Conflicts of Interest

Te authors declare that there are no conficts of interest
regarding the publication of this article.

References

[1] W. Dargie and C. Poellabauer, Fundamentals of Wireless
Sensor Networks: Teory and Practice, Wiley, Hoboken NY,
USA, 2010.

[2] H. Yetgin, T. K. Cheung, M. El-Hajjar, and L. Hanzo, “A
survey of network lifetime maximization techniques in
wireless sensor networks,” IEEE Communications Surveys and
Tutorials, vol. 19, no. 2, pp. 828–854, 2017.

[3] A. Mikitiuk and K. Trojanowski, “Maximization of the sensor
network lifetime by activity schedule heuristic optimization,”
Ad Hoc Networks, vol. 96, Article ID 101994, 2020.

[4] K. Trojanowski, A. Mikitiuk, F. Guinand, and M. Wypych,
“Heuristic optimization of a sensor network lifetime under
coverage constraint,” in Proceedings of the Computational
Collective Intelligence: 9th International Conference, Springer
International Publishing, Nicosia, Cyprus, 2017.

[5] K. Trojanowski, A. Mikitiuk, and M. Kowalczyk, “Sensor
network coverage problem: a hypergraphmodel approach,” in
Proceedings of the Computational Collective Intelligence: 9th
International Conference, Springer International Publishing,
Nicosia, Cyprus, 2017.

[6] K. Trojanowski, A. Mikitiuk, and K. J. M. Napiorkowski,
“Application of local search with perturbation inspired by
cellular automata for heuristic optimization of sensor network
coverage problem,” in Proceedings of the Parallel Processing
and Applied Mathematics, Springer International Publishing,
Berlin, Germany, 2018.

[7] A. Tretyakova and F. Seredynski, “Simulated annealing ap-
plication to maximum lifetime coverage problem in wireless
sensor networks,” Global Conference on Artifcial Intelligence
GCAI, vol. 36, pp. 296–311, 2015.

[8] A. Tretyakova, F. Seredynski, and P. Bouvry, “Graph cellular
automata approach to the maximum lifetime coverage
problem in wireless sensor networks,” Simulation, vol. 92,
no. 2, pp. 153–164, 2016.

[9] Manju, D. Singh, S. Chand, and B. Kumar, “Target coverage
heuristics in wireless sensor networks,” Advanced Computing
and Communication Technologies Proceedings of the 10th
ICACCT, vol. 562, pp. 265–273, 2016.

[10] S. Slijepcevic and M. Potkonjak, “Power efcient organization
of wireless sensor networks,” in Proceedings of the IEEE In-
ternational Conference on Communications, IEEE, Helsinki,
Finland, 2001.

[11] Z Abrams, A. Goel, and S. Plotkin, “Set k-cover algorithms for
energy efcient monitoring in wireless sensor networks,” in
Proceedings of the Tird International Symposium on Infor-
mation Processing in Sensor Networks, ACM Press, New York,
NY, USA, 2004.

[12] M. Cardei and D.-Z. Du, “Improving wireless sensor network
lifetime through power aware organization,” Wireless Net-
works, vol. 11, no. 3, pp. 333–340, 2005.

[13] M. Cardei, M. T. Tai, Y. Li, and W. Wu, “Energy-efcient
target coverage in wireless sensor networks,” in Proceedings of
the INFOCOM 2005. 24th Annual Joint Conference of the IEEE
Computer and Communications Societies, Miami, FL, USA,
2005.

[14] C.-C. Lai, C.-K. Ting, and R.-S. Ko, “An efective genetic
algorithm to improve wireless sensor network lifetime for

large-scale surveillance applications,” in Proceedings of the
IEEE Congress on Evolutionary Computation, IEEE, Singa-
pore, 2007.

[15] X.-M. Hu, J. Zhang, Y. Yu et al., “Hybrid genetic algorithm
using a forward encoding scheme for lifetimemaximization of
wireless sensor networks,” IEEE Transactions on Evolutionary
Computation, vol. 14, no. 5, pp. 766–781, 2010.

[16] N. Ahn and S. Park, “A new mathematical formulation and a
heuristic for the maximum disjoint set covers problem to
improve the lifetime of the wireless sensor network,” Ad Hoc
and Sensor Wireless Networks, vol. 13, no. 3-4, 2011.

[17] J. M. Gil and Y. H. Han, “A target coverage scheduling scheme
based on genetic algorithms in directional sensor networks,”
Sensors, vol. 11, no. 2, pp. 1888–1906, 2011.

[18] R. Cerulli, R. De Donato, and A. Raiconi, “Exact and heuristic
methods to maximize network lifetime in wireless sensor
networks with adjustable sensing ranges,” European Journal of
Operational Research, vol. 220, no. 1, pp. 58–66, 2012.

[19] Y. Lin, J. Zhang, H. S.-H. Chung,W. H. Ip, Y. Li, and Y. H. Shi,
“An ant colony optimization approach for maximizing the
lifetime of heterogeneous wireless sensor networks,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Ap-
plications and Reviews), vol. 42, no. 3, pp. 408–420, 2012.

[20] M. E. Keskin, İ. K. Altınel, N. Aras, and C. Ersoy, “Wireless
sensor network lifetime maximization by optimal sensor
deployment, activity scheduling, data routing and sink mo-
bility,” Ad Hoc Networks, vol. 17, no. 18–36, 2014.

[21] L. Wang, W. Wu, J. Qi, and Z. Jia, “Wireless sensor network
coverage optimization based on whale group algorithm,”
Computer Science and Information Systems, vol. 15, no. 3,
pp. 569–583, 2018.

[22] S. Balaji, M. Anitha, D. Rekha, and D. Arivudainambi,
“Energy efcient target coverage for a wireless sensor net-
work,” Measurement, vol. 165, Article ID 108167, 2020.

[23] P. Berman, G. Calinescu, C. Shah, and A. Zelikovsky, “Power
efcient monitoring management in sensor networks,” in
Proceedings of the IEEE Wireless Communications and Net-
working Conference IEEE Cat. No.04TH8733, IEEE, Atlanta,
GA, USA, 2004.

[24] D. Zorbas, D. Glynos, P. Kotzanikolaou, and C. Douligeris,
“Solving coverage problems in wireless sensor networks using
cover sets,” Ad Hoc Networks, vol. 8, no. 4, pp. 400–415, 2010.

[25] K. Deschinkel, “A column generation based heuristic for
maximum lifetime coverage in wireless sensor networks,” in
Proceedings of the SENSORCOMM 2011: Te Fifth Interna-
tional Conference on Sensor Technologies and Applications,
Curran Associates, Inc, Red Hook, NY, USA, 2011.

[26] Manju and A. K Pujari, “High-energy-frst (HEF) heuristic for
energy-efcient target coverage problem,” International
Journal of Ad hoc, Sensor & Ubiquitous Computing, vol. 2,
no. 1, pp. 45–58, 2011.

[27] H. Mohamadi, A. S. Ismail, and S. Salleh, “Solving target
coverage problem using cover sets in wireless sensor networks
based on learning automata,” Wireless Personal Communi-
cations, vol. 75, no. 1, pp. 447–463, 2013.

[28] A. Tretyakova and F. Seredynski, “Application of evolutionary
algorithms to maximum lifetime coverage problem in wireless
sensor networks,” in Proceedings of the IEEE International
Symposium on Parallel & Distributed Processing, Workshops,
IEEE, Cambridge, MA, USA, 2013.

[29] F. Castaño, A. Rossi, M. Sevaux, and N. Velasco, “A column
generation approach to extend lifetime in wireless sensor
networks with coverage and connectivity constraints,”

20 Applied Computational Intelligence and Soft Computing

Computers & Operations Research, vol. 52, pp. 220–230, dec
2014.

[30] Y. E. E. Ahmed, K. H. Adjallah, and S. F. Babikier, “Non
disjoint set covers approach for wireless sensor networks
lifetime optimization,” in Proceedings of the International
Symposium on Wireless Systems within the Conferences on
Intelligent Data Acquisition and Advanced Computing Systems
(IDAACS-SWS), IEEE, Ofenburg, Germany, 2016.

[31] Y. E. E. Ahmed, K. H. Adjallah, R. Stock, and S. F. Babikier,
“Wireless sensor network lifespan optimization with simple,
rotated, order and modifed partially matched crossover ge-
netic algorithms,” IFAC-PapersOnLine, vol. 49, no. 25,
pp. 182–187, 2016.

[32] J. Roselin, P. Latha, and S. Benitta, “Maximizing the wireless
sensor networks lifetime through energy efcient connected
coverage,” Ad Hoc Networks, vol. 62, no. 1–10, pp. 1–10, 2017.

[33] A. Tretyakova, F. Seredynski, and F. Guinand, “Heuristic and
meta-heuristic approaches for energy-efcient coverage-
preserving protocols in wireless sensor networks,” in Pro-
ceedings of the 13th ACM Symposium on QoS and Security for
Wireless and Mobile Networks - Q2SWinet, ACM Press, New
York, NY, USA, 2017.

[34] Y. E. E. Ahmed, K. H. Adjallah, R. Stock, I. Kacem, and
S. F. Babiker, “NDSC based methods for maximizing the
lifespan of randomly deployed wireless sensor networks for
infrastructures monitoring,” Computers & Industrial Engi-
neering, vol. 115, no. 17–25, 2018.

[35] M. Cardei, “Coverage problems in sensor networks,”
Springer, Berlin, Germany, 2013.

[36] B. Wang, Coverage Control In Sensor Networks. Computer
Communications and Networks, Springer, Berlin, Germany,
2010.

[37] Y. E. E. Ahmed, Modeling, Scheduling and Optimization of
Wireless Sensor Networks Lifetime, Université de Lorraine,
Nancy, France, 2016.

[38] X. Shen, “Evenness evaluation in ad-hoc sensor networks,” in
Proceedings of the First International Conference on Net-
working and Distributed Computing, IEEE, Hangzhou, China,
2010.

Applied Computational Intelligence and Soft Computing 21

