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Radio direction �nding system is a system that determines the direction or coordinates of radio signal sources. �e main function
of this system is to determine the direction of arrival (DOA) of an incident radio wave. DOA information plays an important role
in array signal processing and has many applications in communications, radar, seismic survey, etc. In this study, we propose a
method to estimate the DOA by using the simulated signal dataset obtained at the linear antenna array (ULA) and the suitable
Long Short-Term Memory (LSTM) network model. �e performance of the method is evaluated based on the root mean square
error (RMSE) parameter and then is compared with 2 other algorithms, multiple signal classi�cation (MUSIC) and deep neural
network (DNN) in di�erent cases such as deviation of incoming signals, variation of signal-to-noise ratio (SNR), and coherent
incoming signals. �e obtained results have shown that the proposed method has signi�cantly improved accuracy compared to
other methods.

1. Introduction

For a long time, the problem of determining DOA has been a
common problem in radio communication systems, radar
systems [1], and navigation systems in air and waterway
tra�c [2]. �ese systems often use antenna arrays such as
uniform linear antenna array (ULA), uniform circular an-
tenna array (UCA), and uniform rectangular antenna array
(URA) [3]. Many methods and algorithms have been
researched and deployed to calculate DOA such as MUSIC
[4–7], ESPRIT [8], total forward-backward matrix pencil
[9, 10], and acoustic vector sensor [11]. �ey are also
continuously developed to improve performance in DOA
estimation for accuracy, resolution, and adaptability in the
case of a limited number of snapshots, low signal-to-noise
ratio (SNR), signal-to-noise correlation, etc.

In recent years, the application of arti�cial intelligence
techniques in the DOA estimation problem has been con-
cerned. Network models have been applied to improve
accuracy and speed in DOA calculations [12, 13]. �e deep
learning methods do not need to calculate the signal

characteristics during the prediction process, so the real-
time estimation process will be shortened thereby providing
higher real-time applicability such as support vector re-
gression (SVR) [14, 15] and support vector machine (SVM)
[16, 17]. In deep neural network (DNN) [12, 18], convo-
lution neural network (CNN) [13, 19–21] and Adam optimal
function were used to estimate DOA with satisfactorily
accurate results. Also, radial basis function neural network
(RBFNN) [22] can estimate the DOA with good accuracy
under favorable environmental conditions.

�is study focuses on the research and development of a
simulation database of the signals received from the ULA
antenna array. From the obtained dataset, the suitable long-
short term memory (LSTM) algorithm is proposed to be
applied to calculate the DOA of incoming signals which are
coherent. �e received results will be evaluated and com-
pared with other typical methods to assess the performance
of the proposed method.

�e study is organized as follows. Section 2 introduces
the summary of research results on DOA calculation that
have been done previously. Section 3 presents the antenna
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array model, the method of simulating the signal received at
the antenna array, and the applied algorithm model. Section
4 shows the experimental results and gives evaluation for
each algorithm. Conclusions and future work are in Section
5.

2. Related Work

Table 1 summarizes several methods of estimating the DOA
based on the signal spectrum.(ese included both correlated
and uncorrelated signals. (ey are divided into two cate-
gories: using machine learning algorithms and using clas-
sical algorithms. (e classical algorithm based on
multisignal classification can predict accurately, but the
computational complexity is high. One of the most com-
monly used classical algorithms is MUSIC which was dis-
covered by independent studies of Schmidt [23] and
Bienvenu [24].(emusic algorithm has been shown to work
well when the signals are uncorrelated, the incoming signal
sources are far apart and the SNR is large enough. Specif-
ically, with the antenna array ULA, MUSIC can estimate the
DOA of 2 signals at − 5° and 5° with RMSE ≈ 0.7° for SNR �

− 10 dB and RMSE ≈ 0.05° SNR ≈ 10 dB [5]. However,
when the signal sources are correlated, the performance of
the MUSIC algorithm is not good. Since then, the improved
MUSIC algorithms have been studied to determine the DOA
of correlated incoming signals with the reduced number of
calculations, such as IMMUSIC and MMUSIC [4] or using
the covariance matrix with the transpose elements [5].
However, if there are more three correlated incoming sig-
nals, classical algorithms still need to improve and develop.
In addition, algorithms are often developed with the as-
sumption that the number of incoming sources is known
[5, 8, 9], which reduces the generality of the problem and is
no longer true when applied in practice because the signal
received at the antenna array is the total signal of many
unknown and unstable incoming sources.

Several recent publications have shown that machine
learning methods have gradually been applied to solve the
problem of DOA estimation. Usually, convolutional neural
network algorithms can extract the basic nonlinear struc-
tures of the input data. (erefore, CNN with a simple layer
structure can estimate the DOA of uncorrelated sources
[13, 19]. Because of its simple structure, the CNN network
performs DOA estimation with large bandwidth quickly and
efficiently, thereby the DOA information can be calculated
in real time.

CNNs are often trained with large amounts of data where
suitable data are fed into the network when they have almost
the same distributions, including both training and testing
data [25, 26]. In fact, besides DOA information, the received
signal model at the antenna array includes many unknown
parameters such as the number of incoming sources, fre-
quency, and signal-to-noise ratio. Signals received from the
antenna array will be preprocessed to reduce their distri-
bution divergence before becoming input data of the DNN
[12, 18]. (e output of a DNN network [18, 27] is usually as
an angular grid, corresponding to each position in the
angular grid representing the spectral value of the signal. If

the angle of incidence coincides with the angle present in the
mesh, then the DOA problem can be estimated correctly.
However, the angles present in the mesh cannot match the
actual DOA angle completely. (e authors in [19] describe
the construction of the network in 2 stages, in which the first
stage performs the estimation with the grid of angles. (e
second stage corrects the difference between the DOA and
the discrete angle in the nearest mesh, thus resolving the
disparity caused by the discrete angle. Specifically, this study
estimates 2 narrowband and uncorrelated incoming signals
at the ULA antenna array. (e number of antennas in the
array is 8 with the number of snapshots being 256.(e DOA
was estimated with RMSE ≈ 0.11° at SNR � 5 dB and
RMSE ≈ 0.05° at SNR � 10 dB. However, the research re-
sults of this study still need to be improved to be able to
estimate DOA in cases where there aremore than 2 incoming
signals as well as in cases correlated incoming signals.

Besides using RNNs for applications related to natural
language processing such as speech recognition, RNN
networks are also used for DOA estimation [28–30]. In [30],
the RNN is created based on bidirectional long-short term
memory (BiLSTM). RNNs do not directly estimate DOA but
classify them based on classes.

In those classes, the incident angles are in the range
[0°, 90°] with angular deviations of the incoming sources
being 10°, 5°, 2°, 1°, respectively. (is study for the esti-
mation of DOA has quite good results. However, similar to
the previously presented DNN algorithm, the RNN is de-
pendent on the angular grid for classification and the per-
formance of this method is still degraded at low SNR.

In [31], the LSTM network is also used to determine the
DOA.With LSTM networks, it is suitable for nonstationary
targets because it can be generalized to learn sequential
patterns. (e LSTM network is presented in more detail in
[32]. In the unknown multipath environment, it is nec-
essary to estimate the DOA for a moving target using the
LSTM-based “New Multi-frame Phase Enhancement”
technique, in which the recommended number of frames is
3, 5, and 7. In most cases, when conducting surveys under
the same environmental conditions, the larger the number
of frames, the better the accuracy. For example, the signal
received at the ULA antenna array-comprising 21 elements
with distanced d � 0.5λ, SNR � − 10 dB, and wavelength
λ � 1m, using the estimated network got RMSE values of
0.24°, 0.27°, and 0.32° which correspond to k� 7, 5, 3. (e
increase in frame weight increases the accuracy of DOA
estimation but reduces the performance of the problem.
(erefore, depending on the environmental conditions, the
system must choose the appropriate number of frames.
Although the results are quite good, the problem still
encounters obstacles when the incoming sources are cor-
related. To improve on the DOA problem when the in-
coming sources are correlated signals and the angular
deviations of the signal sources are small, this study pro-
poses an LSTM network with a simpler model consisting of
fully connected layers, excluding frame, to estimate the
direction of the incoming signal. (e obtained model will
be compared with DNN and LSTM algorithms through the
RMSE parameter presented in Section 3.
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3. Materials and Methods

3.1. Uniform Linear Antenna Array and Signal Model.
(is study uses a uniform linear antenna array (ULA) with
M elements. (e structure of the ULA antenna array is
shown in Figure 1.(e element in the antenna system acts as
an omnidirectional source. (ese antenna elements operate
in phase with each other to create a unique radiation di-
rection so that the signal sent to the processor is kept in
phase and amplitude in comparison with the incoming
signal. Furthermore, the ULA antenna array has several
advantages over other types of antenna arrays as shown in
[3, 9].

Assuming that the incoming signal is in the same azi-
muth plane as the antenna array, the signal transmitted to
the antenna array is illustrate as Figure 1.

(e antenna array (ULA) used in this study has M el-
ements, equally spaced with a distance of d. Assume that the
system has K incoming signal sources with wavelength λ.
(e received signal at each antenna element is the sum of all
incoming signals at the same time. (e mathematical rep-
resentation of the signal received at the mth antenna element
is described as in Equation.(1), where sk(t) and θk are the
complex amplitude and the DOA of the kth source
(k � 1, 2, . . . , K), respectively:

xm(t) � 􏽘
K

k�1
sk(t)e

− j(2π/λ)(m− 1)d sin θk + nm(t), (1)

where m � 1, 2, . . . , M and nm(t) is the noise received at the
mth antenna element of the array.

Define A is a matrix of size M × K including the ele-
ments represented as follows:

am,k � e
− j(2π/λ)(m− 1)d sin θk . (2)

(erefore, Equation (1) can be rewritten as

x(t) � As(t) + n(t), (3)

where x(t), n(t), and s(t) are defined by

x(t) � x1(t), x2(t), . . . , xM(t)􏼂 􏼃
T
,

s(t) � s1(t), s2(t), . . . , sK(t)􏼂 􏼃
T

,

n(t) � n1(t), n2(t), . . . , nM(t)􏼂 􏼃
T
,

(4)

where T is the transpose of the matrix.
In [16, 33], the signals received at the antenna array will

be passed through a preprocessor before being processed to
calculate DOA information. (erefore, the correlation
matrix of size M × M of the received signals at the antenna
array can be represented as follows:

Rxx � E x(t) x
H

(t)􏽨 􏽩 � ASAH
+ Rn, (5)

where E[·] and [·]H are the expectation and the Hermitian
transpose, respectively, and S and RN are correlation ma-
trices of size K × K of signal and noise, respectively, and are
represented as follows:

S � E s(t)s
H

(t)􏽨 􏽩, (6)

Rn � E n(t)n
H

(t)􏽨 􏽩. (7)

From there, Equation (2) can be rewritten as

Rxx � ASAH
+ σ2noiseI, (8)

Table 1: Methods of estimating the DOA based on the signal spectrum.

Author Method Objective Dataset
Yan Gao et al, 2014 MUSIC An improved music algorithm for DOA estimation of coherent signals N/A

Zhang-Meng Liu et al., 2018 DNN Direction-of-arrival estimation based on deep neural networks with
robustness to array imperfections

19800
samples

Wenli Zhu et al., 2019 CNN A deep learning architecture for broadband DOA estimation 144000
samples

Min Chen et al., 2020 DNN Deep neural network for estimation of direction of arrival with
antenna array

121000
samples

Georgios K. Papageorgiou et al., 2020 CNN Deep networks for direction-of-arrival estimation in low SNR 36300
samples

Van-Sang Doan, Dong-Seong Kim,
2020 MUSIC DOA estimation of multiple noncoherent and coherent signals using

element transposition of covariance matrix N/A

M.Wajid, B. Kumar, A. Goel, A. Kumar
and R. Bahl, 2020 RNN Direction of arrival estimation with uniform linear array based on

recurrent neural network N/A

Hyeonjin Chung et al., 2021 CNN &
DNN Off-grid DoA estimation via two-stage cascaded neural network 106800

samples

Houhong Xiang et al, 2021 LSTM Improved direction-of-arrival estimation method based on LSTM
neural networks with robustness to array imperfections

150000
samples

-θ +θ

0 1d

θ

i+1 M+1

wavefronts

d.sin
 (θ)

… …

Figure 1: Model of uniform linear antenna array.
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where I is an identity matrix of size M × M and σ2noise is the
noise power. (e correlation matrix is also called as the
Hermitian matrix. (is matrix is used as input for the DOA
estimation models.

3.2. DOA Estimation

3.2.1. Recurrent Neural Network. Deep learning has two
major models: convolutional neural network (CNN) for
problems with image input and recurrent neural network
(RNN) for sequence data problems.

Recurrent neural network is a model that uses memory
to store information from previous computation steps and
makes an accurate prediction for the current prediction step.
Consider the “many to many” RNN model, as shown in
Figure 2.

Figure 2 shows that the input xt will be combined with
the previously hidden layer ht− 1 using the function fw to
compute the hidden layer ht and the output yt. W is the set
of weights added to all activation functions. Loss functions
L1, L2, . . . , Lt are to calculate the difference in the output
from the actual value. (e smaller the value of the loss
function, the more accurate the result.

Recurrent means that the model will perform identical
calculations for each element of the input data series, and the
output will depend on the results of the previous calcula-
tions. Here, the RNN only uses a single neural network
(usually a layer) to calculate the output value in each time
step. (erefore, the outputs converted to inputs will be
multiplied by the same weight matrix (here, W as shown in
Figure 2). It is also why there is the word Recurrent in the
name of the RNN.

3.2.2. Long Short-Term Memory Networks. Long short-term
memory (LSTM) is an artificial recurrent neural network that
takes the form of a sequence of repeatingmodules and contains
feedback connections. (is network is often used in problems
where the input is a data string such as speech or video. Figure 3
shows the structure of multilayer LSTM networks.

With the network depicted in Figure 3, the LSTM
network nodes in the same layer connect in a chain form and
connect to the corresponding nodes in the next layer. An
LSTM unit consists of an input and an output port. (ey
have a 4-layer structure that interacts with each other in a
very specific way as depicted in Figure 4.

(e general parameters of the network model have been
described in [31]. Specifically, in the tth state of the LSTM
model, the classic LSTM module structure includes input
ct− 1, ht− 1 are the outputs in the (t − 1)th state, and xt is the
input in the tth state of the model. Output includes ct, ht,
where ct is called cell state and ht is hidden state at tth state:

ft � σ W
∗
fxt + W

∗
fht− 1 + bf􏼐 􏼑, (9)

it � σ W
∗
i xt + W

∗
i ht− 1 + bi( 􏼁, (10)

ot � σ W
∗
o xt + W

∗
o ht− 1 + bo( 􏼁, (11)

􏽥ct � tanh W
∗
c xt + W

∗
c ht− 1 + bc( 􏼁, (12)

ct � f
∗
t ct− 1 + i

∗
c 􏽥ct + bc, (13)

ht � o
∗
t tanh ct( 􏼁, (14)

where ft is the forget gate, 0< ft, it is input gate, ot is
output gate, ot < 1, bf, bi, bo are the bias coefficients, and W

is the weight matrix.
(is study proposes an LSTM model for the DOA

problem, as shown in Figure 5. (is network is designed
with one input layer, three LSTM layers, three fully con-
nected layers, and one output layer. Relu activation
function is used at the output of each layer fully connected.
In the output layer, we use the linear activation function.
(e signal received at the antenna array is processed at the
preprocessing unit to obtain the correlation vector. (at
correlation vector is the input to the LSTM network. (e
output layer with n elements is used to estimate the DOA. A
detailed description of the classes is shown in the following
section.

For the fully connected layer, the nodes in the former
layer are connected to all the nodes in the following layer
with their coefficients w. Each node has its bias coefficient b.
Each node in the fully connected, and output layer per-
forms two steps: linear summation and applying the ac-
tivation function, as shown in equations (15) and (16).
Assume the number of nodes in the fully connected ith is
l(i). (e matrix W(k) of size l(k− 1) × lk is the coefficient
matrix between layer (k − 1) and layer k, where w

(k)
ij is the

connection coefficient from the ith node of layer k − 1 to the
jth node of layer k. Vector b(k) of size lk × 1 is the bias
coefficient of the nodes in layer k, where b

(k)
i is the bias of

the ith node in layer k.

Step 1 (linear summation): this is the sum of all nodes
in the previous layer multiplied by the corresponding w

factor plus the bias b:

z
(k)
i � 􏽘

l(l− 1)

j�1
a

(l− 1)∗
j w

(l)
ji + b

(l)
i . (15)

Step 2: applying activation function,

a
(l)
i � h z

(l)
i􏼐 􏼑, (16)

where h is the activation function, vector z(k) of size l(k) × 1
is the value of nodes in layer k after the linear summation
step. Vector a(k) of sizel(k) × 1 is the value of nodes in layer k

after applying the activation function.

3.2.3. Data Preprocessing. (e LSTM network is trained
with a large amount of data. In order to reduce the input
bias and variation of the signal, the signal preprocessing is
carried out with the input signal received at the antenna
array and the output as a correlation matrix Rxx of size
M × M:
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Rxx �

r1,1 r1,2 · · · r1,M

r2,1 r2,2 · · · r2,M

⋮ ⋮ ⋱ ⋮

rM,1 rM,2 · · · rM,M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

Since Rxx is a Hermitanian matrix, the upper triangular
matrix and the lower triangular matrix carry the same in-
formation. According to the methods published in [12, 34],
the upper triangular matrix has enough information to
compute the DOA. (erefore, to reduce the amount of
information for the input of the network, this study only uses
the upper triangular matrix of Rxx and then transforms it
into a vector r of length M × (M − 1):

r � R r1,2􏼐 􏼑, R r1,3􏼐 􏼑 , . . . , R rM− 1,M􏼐 􏼑, I r1,2􏼐 􏼑,􏽨

I r1,3􏼐 􏼑 , . . . , I rM− 1,M􏼐 􏼑􏽩T,
(18)

where ri,j is the (i, j)th element in the matrix Rxx. Since ri,j is
a complex number, it cannot be put directly into the network
for calculation. (erefore, before putting into the training
network, each element ri,j will be represented into 2 com-
ponents, the real part R(.) and the imaginary part I(.).

3.2.4. Data Generation. In this section, a general method to
generate data for the training model for the case of multiple
incoming sources is proposed. Suppose there are K sources
to the M elements ULA antenna array-(K<M). (e angles
θ1 , θ2 , . . . , θK− 1, θK correspond toK incoming sources in the
range [θmin÷θmax]. (e values Δ1,Δ2, . . . ,ΔK− 1 are defined,
respectively, as the difference between the incoming sources,
where Δ1 is the difference between the first and the second
incoming signals, ΔK− 1 is the difference between the
(K − 1)th, and the Kth incoming signals with
θmin ≤ θ1 ≤ θmax − (Δ1 + · · · + ΔK− 1 ). (en, the DOA of the
first source is θ1 , then the DOA of 2nd source, 3rd. . . and
Kth, respectively, is θ2 � θ1 + Δ1, θ3 � θ1 + Δ1 + Δ2, . . . ,

θK � θ1 + Δ1 + Δ2 + · · · + ΔK− 1, and then the signal x(t)

received at the antenna array is calculated as in Equations (1)
and (4).

For data generation process, when the DOA of the first
signal θ1 is sampled in the range [θmin, θmax − (Δ1+
· · · + ΔK− 1 )] with a jump ofΔs°, the DOA of signal 2nd. . . and
Kth, respectively, are θ1 + Δ1... và θ1 + Δ1 + Δ2 + · · · + ΔK− 1.
From there, the total amount of generated data is calculated
by the following formula:

w w w w

…

…
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datasum �
θmax − Δ1 + · · · + ΔK− 1( 􏼁 − θmin( 􏼁

s°

Δ
+ 1. (19)

3.2.5. Data Labeling. (e input is defined as vector
r(θ1 , θ2 , . . . , θK) as Equation (18), where K is the number of
incoming signals, corresponding to the incoming signals at
the angles (θ1 , θ2 , . . . , θK).

In this study, a labeling method called one hot encoding
with multiple labels is used to label the data.
[y(θ1 , θ2 , . . . , θK )]label is the corresponding label of the
incoming signals. With 121 outputs corresponding to in-
coming angles in the range [− 60°÷60°] with a jump of 1°,
[y(θ1 , θ2 , . . . , θK )]label is defined as

y θ1, . . . , θK( 􏼁􏼂 􏼃label �
1, at θi with i � 1, . . . , K,

0, otherwise.
􏼨 (20)

(erefore, the output of the LSTM network corre-
sponding to the input y(θ1 , θ2 , . . . , θK) is y(θ1 , θ2 , . . . , θK)

3.2.6. Evaluation Parameters. To evaluate the accuracy of
two proposed models, this research uses two error functions:
MSE and RMSE.

(a) MSE function: to evaluate the model during training,
the network uses the mean square error loss (MSE)
function. MSE is defined as

MSE �
1
n

􏽘

n

i�1
yi − 􏽢yi( 􏼁

2
. (21)

(b) RMSE function: this study uses the root mean square
error function (RMSE) to evaluate the performance
of the model and algorithm:

RMSE �

�������������������

1
NK

􏽘

K

k�1
􏽘

N

n�1
θk − 􏽢θk,n􏼐 􏼑

2

􏽶
􏽴

, (22)

where K is the number of incident sources, N is the
number of trials, and θk and 􏽢θk,n are the incident
angle of the source kth and the estimated angle of kth
source at the nth trial.

4. Experiments and Results

In this section, the results obtained from the LSTM method
are presented in different cases and compared with some
other DOA methods, such as Music and DNN.

4.1. Simulation Establishment. (is study uses a 10-element
ULA antenna array with d � λ/2. (e incoming signal has a
frequency of 2GHz. (e received signals must be narrow-
band in both correlated and noncorrelated cases; simulation
data are generated according to Equation. (1) with SNR �

10 dB and snapshot � 400.
For the LSTM network, the size of each layer is shown in

Table 2. Assume that the incoming signals are in the range
[− 60°, 60°], with a jump of 1°. (erefore, the number of
nodes of the output layer will be 121. (e spatial spectrum is
constructed with a grid of 1°, so there is a total of 121 grids
with θ1 � − 60, θ2 � − 59, . . . , θ121 � 60. In this study, we use
the spectral reconstruction method according to [18].

(e training samples are generated by considering sig-
nals separated by Δθ. In this study, we assume that the
number of incoming signals is one, two, and three, re-
spectively. (e details are shown in Table 3. (e data
generation process is mentioned in Section 3.2.4.

For the case of two incoming signals, when the DOA of
the first signal is created by sampling in the range
[− 60°, 60° − Δ] with a jump of 1°, then the DOA of the
second signal will be θ + Δ. In the case of three incoming
signals, when the DOA of the first signal is created by
sampling in the range [− 60°, 60° − Δ1 − Δ2] with a jump of
1° , the DOA of the second signal and 3rd are θ + Δ1 and
θ + Δ1 + Δ2, respectively. In the last case, with an incoming
signal, the DOA of the signal is created by sampling in the
range [− 60°, 60°] with a jump of 1° . (e covariance vectors
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are computed from the samples as input to the LSTM
network according to Equation. (18) and the corresponding
labels, as in Equation. (20). (e SNR for incoming signals in
all cases is 10 dB. For the training process, the learning rate is
0.001, the batch size is 1024, and the number of Epochs is
400. During the training, the network parameters are
continuously updated to optimize the MSE loss function, as
mentioned in Equation. (21). In addition, the network uses
the ADAM optimization algorithm [35] to optimize the time
and predictability of the algorithm.

4.2. Simulation Results

4.2.1. Uncorrelated Signal. Inthefirst test,withSNR � 10 dB,
we assume that the incoming signals are uncorrelated.All three
algorithms with the same simulation setup conditions will be
executed. With the LSTM network, the results shown in Fig-
ure 6 include the cases of 1 source (DOA � 10°), two sources
(DOAof20° and26°), andthree incomingsources (DOAof30°,
36°, and42°). In theabovecases, theDOAcanbewell estimated.
Specifically, in Figure 6(a), it is easy to see that the signal
spectrum is quite simple because there is only one incoming
source,LSTMgives theresultMSE ≈ 0.0006°. In theremaining
two cases, when the angular distance is 6°, the LSTM network
can all estimate well with the signal spectrum separated by
RMSE ≈ 0.0458°. With the DNN network and the MUSIC
algorithms, it can be seen that the proposed LSTM network
estimates the DOAs more accurately than the other two al-
gorithms aswell as the previous studies (CNNandLSTM).(e
signal spectrum is shown in Figures 7 and 8. It shows that the
signal sources have not been separated.

In the next test, to evaluate the influence of SNRs on the
accuracy of the algorithm, we apply the LSTM model to
estimate the DOA when there are three incoming sources
with angular difference Δ θ � 10°. Considering 2 cases of
SNR � 0 dB and SNR � − 5 dB with 31 test samples, the

results are shown in Figure 9. At SNR � 0 dB, the estimated
angle is almost close to the actual angle. When
SNR � − 5 dB, although the estimated result differs slightly
from reality, the LSTM model still gives good results with
error <0.5°.

To clarify more clearly the influence of SNR on the per-
formance of the LSTM network model in the case of one
incoming signal, consider the SNR in the range [0 dB÷10 dB].
(e results are shown in Figure 10. It is easy to see that, in the
case of 1 source to the antenna array, LSTM still gives better
results than the other two methods with RMSE < 0.5°.

For the case of 2 incoming sources, consider the SNR in
the range [0 dB÷10 dB]. (e results are shown in Figure 11.
It can be seen that, with two incoming sources, the LSTM
method still gives better results than the DNN and MUSIC
networks.

When investigating the angle resolution of the proposed
algorithm, we consider the case that there are two uncor-
related incoming signals with SNR � 10 dB at
Δθ � [2°, 4°, 6°, 8°, 10°].(e results are shown in Tables 4–6,
respectively, with LSTM, DNN, and MUSIC algorithms.
From the results’ tables, we can see that the LSTMmodel still
works effectively and gives better results than the other two
methods in both cases, where the signals are close to each
other and far apart with RMSE < 0.06°.

4.2.2. Correlated Signal. With the correlated incoming
signals, the MUSIC algorithm no longer works correctly
[4, 5]. (erefore, the MUSIC-IMPROVE algorithm
(according to the covariance matrix transpose method) and
DNN are used to compare with the results obtained from the
LSTM algorithm.

Test on two incoming signals with the DOA of 0° and6° ,
the same with three incoming signals at the DOA of 0°, 6°,
and 12° (e results are presented in Figures 12–14 for
LSTM, MUSIC-IMPROVE, and DNN algorithms, respec-
tively. Since the signal spectrum conspicuous to the

Table 2: Number of nodes in each layer.

Class name Number of nodes
LSTM1 256
FC1 90
LSTM2 256
LSTM3 256
FC2 200
FC3 128
Output 128

Table 3: Incoming signal cases.

Number of incoming signals Cases Angular distance
One incoming signal

Two incoming signals Two correlated signals

Δθ � 2, 4, . . . , 10{ }

Two uncorrelated signals

(ree incoming signals
(ree correlated signals
Two correlated signals

(ree uncorrelated signals
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incoming signal is two correlated signals, all three algo-
rithms work well with a well-separated signal spectrum.
When the incoming signal is over two, both MUSIC-IM-
PROVE and DNN give worse results, while the LSTM al-
gorithm still works well.

To evaluate the resolution in this case, we assume that the
three correlated incoming signals differ by in turn amount

Δ1 � Δ2 � Δθ degrees. Simulation results are shown in Ta-
ble 7, while with two algorithms, MUSIC-IMPROVE and
DNN, the estimated results are shown in Tables 8 and 9.
(ose tables show that the LSTM model still correctly
predicts the DOA of many correlated incoming signals,
while the MUSIC algorithm proves to be less efficient in this
case. (is can also be seen in Figure 13. Some results
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Figure 6: (e signal spectrum of the incoming source is uncorrelated based on the LSTM method in the following cases: (a) 1 signal,
MSE � 0.0006°, (b) 2 signals, RMSE ≈ 0.0458°, and (c) 3 signals, RMSC � 0.0301°.
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published in [5] have also shown that some other improved
MUSIC methods also give poor results in the case of cor-
related incoming signals. For the DNN model, with the
difference among the incoming signals being small, the
DNN method also gives poor results. (e algorithm only
works better when the difference among the incoming
signals is large enough.

(e next experiment will evaluate the effect of SNRs on
the accuracy of the algorithm. In the case of two correlated
incoming signals, consider the SNR in the range of
[0 dB÷10 dB]; the results are shown in Figure 15. With the
three correlated incoming signals and the SNR in the range

of [− 5 dB÷5 dB], the result depicted in Figure 16 indicates
that, in both cases, the LSTM model gives the best results
compared to the other two methods (in the case of
SNR > 4 dB, RMSE ≈ 0).

Figure 17 shows the RMSE comparison results of the
algorithms at the DOA (20°, 30°, 40°s), with the SNR in the
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Figure 11: RMACTSE (degrees) of the proposed LSTM-based
DOA estimation algorithm, the standard MUSIC algorithm, and
the DNN method with different SNR values at the DOA of 20° and
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range of [− 5 dB÷5 dB] in the case that the first and second
signals are correlated, but they are uncorrelated with the
third signal. (e received results plotted in this figure shows
that the proposed method works better than the other
methods. From the above comparison cases, it is easy to see
that the LSTM model works effectively and gives good re-
sults in most cases, especially in the case of many correlated
incoming signals.

Figures 18 and 19 plot the results of the LSTM model in
two cases: all three incoming signals are correlated and the
case of 2 correlated signals with one uncorrelated signal at
SNR � 0 dB and SNR � 5 dB with 31 samples and
Δ1 � Δ2 � 10°. It can be easily seen that, in the case of
multiple incoming signals, the LSTM model still works well,
giving almost accurate results at different SNR values. (e
comparison results with theMUSIC IMPROVE algorithm in

Table 4: Result of LSTM algorithm (SNR� 10 dB).

Δθ Input (degree) Output (degree) RMSE (degree)

2° 30 32 29.97 32.06 0.05
4° 30 34 29.99 33.98 0.02
6° 30 36 30 35.98 0.02
8° 30 38 30 37.92 0.057
10° 30 40 30 40.01 0.007

Table 5: Result of MUSIC algorithm (SNR� 10 dB).

Δθ Input (degree) Output (degree) RMSE (degree)

2° 30 32 27.83 31.84 1.54
4° 30 34 27.83 33.84 1.54
6° 30 36 28.33 35.35 1.27
8° 30 38 28.33 37.85 1.19
10° 30 40 28.83 39.86 0.83

Table 6: Result of DNN algorithm (SNR� 10 dB).

Δθ Input (degree) Output (degree) RMSE (degree)

2° 30 32 29.76 32.43 0.348
4° 30 34 30.23 33.75 0.24
6° 30 36 29.95 35.77 0.166
8° 30 38 30.24 37.75 0.245
10° 30 40 29.98 39.94 0.045
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Figure 12: (e signal spectrum of the correlated incoming signal based on the LSTM method: (a) 2 signals and (b) 3 signals.
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Figure 14: (e signal spectrum of the correlated incoming signal based on the DNN method: (a) 2 signals and (b) 3 signals.

Table 7: Results of the LSTM algorithm (SNR � 10 dB).

Δθ Input (degree) Output (degree) Result

4 20 24 28 20.58 23.95 27.37 True
6 20 26 32 20.01 26 32.05 True
8 20 28 36 20 28 35.96 True
10 20 30 40 19.99 30 40 True

Table 8: Results of the MUSIC_IMPROVE algorithm
(SNR � 10 dB).

Δθ Input (degree) Output (degree) Result

4 20 24 28 − 30.33 19.08 27.33 False
6 20 26 32 − 27.82 21.31 28.83 False
8 20 28 36 − 56.46 − 4.76 26.32 False
10 20 30 40 − 51.40 17.29 26.32 False

Table 9: Results of the DNN algorithm (SNR � 10 dB).

Δθ Input (degree) Output (degree) Result

4 20 24 28 20.78 26.34 X False
6 20 26 32 20 32 X False
8 20 28 36 19.9 27.65 35.99 True
10 20 30 40 19.83 29.2 39.73 True
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Figure 13: (e signal spectrum of the correlated incoming signal based on the MUSIC IMPROVE method: (a) 2 signals and (b) 3 signals.
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the case of correlated signals are also summarized in
Table 10.

5. Conclusion

(is study proposed the modified LSTM network to es-
timate the DOA of coherent incoming signals with the
ULA antenna system. Two keys contributions of this work
are

(i) Create a simulation database of the signal received at
the ULA antenna array in the case of multiple in-
coming sources, which are narrowband signals, in
the two cases, where the incoming signals are cor-
related and uncorrelated

(ii) Propose to apply the modified LSTM algorithm with
an architecture that combines network nodes with
fully connected layers using Adam’s optimization
function in the DOA estimation problem in both
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Figure 18: (e estimated result of the LSTM method in the case of three correlated incoming signals with Δ1 � Δ2 � 10°.
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Figure 19: (e estimated results of the LSTM method in the case of 2 correlated signals with one uncorrelated signal at Δ1 � Δ2 � 10°.

Table 10: Comparison of MUSIC-IMPROVE algorithm and LSTM model.

Simulation cases LSTM MUSIC IMPROVE
Signal 1 and signal 2 are uncorrelated Yes Yes
Signal 1 is correlated with signal 2 Yes Yes
Signal 1 and signal 2 are correlated but they are uncorrelated with signal 3 Yes Yes
All three signals are correlated Yes No
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cases of uncorrelated and correlated incoming
signals

(e obtained simulation results show that the model
works more accurately than typical algorithms such as
MUSIC and DNN algorithms in cases of low SNR, multiple
incoming signals, and uncorrelated and correlated incoming
signals, as well as when the radiation source is quite close.
However, the LSTM algorithm is still limited, where the
deviation between the angles is not in the training set and the
error is still quite high. In the future, it can be developed to
work with other antenna systems, such as UCA, or increase
accuracy.
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