
Research Article
Gaussian Pyramid for Nonlinear Support Vector Machine

Rawan Abo Zidan 1 and George Karraz1,2,3

1PhD Program, Syrian Virtual University, Damascus, Syria
2Faculty of Engineering, Al-Sham Private University, Damascus, Syria
3Faculty of Engineering, Damascus University, Damascus, Syria

Correspondence should be addressed to Rawan Abo Zidan; rawanaz.179@gmail.com

Received 19 March 2022; Revised 2 May 2022; Accepted 11 May 2022; Published 31 May 2022

Academic Editor: Manikandan Ramachandran

Copyright © 2022 Rawan Abo Zidan and George Karraz. �is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Support vector machine (SVM) is one of the most e�cient machine learning tools, and it is fast, simple to use, reliable, and
provides accurate classi�cation results. Despite its generalization capability, SVM is usually posed as a quadratic programming
(QP) problem to �nd a separation hyperplane in nonlinear cases. �is needs huge quantities of computational time and memory
for large datasets, even for moderately sized ones. SVM could be used for classi�cation tasks whose number of samples is limited
but does not scale well to large datasets. �e idea is to solve this problem by a smoothing technique to get a new smaller dataset
representing the original one. �is paper proposes a fast and less time and memory-consuming algorithm to solve the problems
represented by a nonlinear support vector machine tool, based on generating a Gaussian pyramid to minimize the size of the
dataset. �e reduce operation between dataset points and the Gaussian pyramid is reformulated to get a smoothed copy of the
original dataset. �e new dataset points after passing the Gaussian pyramid will be closed to each other, and this will minimize the
degree of nonlinearity in the dataset, and it will be 1/4 of the size of the original large dataset. �e experiments demonstrate that
our proposed techniques can reduce the classical SVM tool complexity, more accurately, and are applicable in real time.

1. Introduction

Support vector machine is used for classi�cation and re-
gression purposes. SVM o�ers very high accuracy, and it
aims to �nd the best hyperplane (also called decision
boundary) with the largest amount of margin. SVM �nds an
optimal hyperplane which helps in classifying new data
points. In other words, SVM allows for maximizing the
generalization ability of a model [1].

�e SVM algorithm was originally proposed to construct
a linear classi�er in 1963 by Vapnik [2]. At that time, the
algorithm was in its early stages, and the only possibility is to
draw hyperplanes for a linear classi�er.

An alternative use for SVM is the kernel trick for
nonlinear classi�ers, which was introduced In 1992, by
Boser et al. [3] which enables us to model higher di-
mensional space, and it converts nonlinear separable
problems to linear separable problems by adding more
dimensions to it.

�e classical way to incorporate nonlinearity into SVM is
to derive the dual formulation (quadratic programming
problem) and employ the kernel method [4]. Moreover, dual
problems are generally expensive to solve [5].

�e standard SVM faces some disadvantages such as
SVM for large datasets, due to its excessive computational
cost because the training kernel matrix grows in quadratic
form with the size of the dataset, which provokes that
training of SVM on large datasets is a very slow process [1].

�e training dataset may contain up to several thousands
of samples, and this implies that training time complexity
and space complexities are O(n3) and O(n2), where n is the
number of points in the dataset. It is thus computationally
infeasible on very large datasets.

Nowadays, the biggest challenge is to develop e�cient
and scalable learning algorithms to deal with “big data.” To
solve this challenge, try to reduce the problem size and
computations by considering fewer parameters or fewer
instances during each iteration of the learning algorithm [6].

Hindawi
Applied Computational Intelligence and So Computing
Volume 2022, Article ID 5255346, 9 pages
https://doi.org/10.1155/2022/5255346

mailto:rawanaz.179@gmail.com
https://orcid.org/0000-0002-2620-2810
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5255346

)e main aim of this paper is to apply the Gaussian
pyramid to nonlinear SVM to improve the training of weak
SVM classifiers.)e reason behind choosing the Gaussian
pyramid is that the core of the Gaussian pyramid is a
convolutional smoothing operation [7], which is used in
image processing that breaks down an image into succes-
sively smaller groups of pixels to blur it, but in our case, we
will use the Gaussian pyramid on the large dataset to smooth
it and make it smaller and then apply the linear SVM on it.
)e new technique reduces time and space complexities and
can handle much larger datasets than existing scale-up
methods.

)e outcome of the Gaussian pyramid algorithm
generates a linear separating surface that depends on 1/4 of
the original dataset size only, instead of the conventional
nonlinear kernel surface which would depend on the entire
points.)is is very important for large datasets such as
those used in fraud detection.

)e rest of this paper is organized as follows. We briefly
introduce the related work of SVM methods and different
learning models in Section 2, problem description in Section
3, followed by motivation and objective in Section 4.)en,
we explain the details of our proposed framework in Section
5, followed by comprehensively reporting the designed
experiments in Section 6. Conclusion is given in Section 7.
Finally, we discuss the future studies in Section 8.

2. Related Work

In this section, we review previous SVMmethods. Generally,
the state-of-the-art approaches address SVM classification
problems.

Platt [8] proposed sequential minimal optimization
(SMO) which is an algorithm for solving the quadratic
programming (QP) problem that appears in SVM.

While SMO has been shown to be effective on sparse
datasets and especially fast for linear SVMs, the algorithm
can be extremely slow on nonsparse datasets and on
problems that have many support vectors.

It also suffers from limitations in generalizing because it
depends on reducing the problem to smaller problems.

)e algorithm was applied to a database consisting of
32562 records as shown in Table 1.

Zareapoor et al. [9] presented a hybrid system where a
supervised deep belief network that has multiple hidden
layers is trained to select generic features and a kernel-based
SVM is trained from the features learned by the DBN.

In this hybrid model, the researchers substituted linear
kernels for nonlinear ones (due to a large number of
classes) without loss of accuracy, and this gives significant
gains on a real-world dataset with varying numbers of
dimensions and records, (from 500 to 10,000 records). To
evaluate the impact of data size on the performance, the
researchers used operating characteristic (ROC) curve and
the corresponding area under the curve (AUC) as shown in
Table 2.

)is model shows some drawbacks in terms of scalability
to the size of datasets, so different patterns of data led to a
decrease in performance.

As the previous table shows, the percentage of area under
the curve in the private database is low, which is the largest
among the databases in size.

Sadrfaridpour et al. [10] introduced novel methods of
multilevel frameworks for efficient and effective training of
nonlinear SVM classifiers, the framework inspired by the
algebraic multigrid.

)e proposed multilevel frameworks are particularly
effective on imbalanced datasets; this problem occurs when
the number of instances of one class (negative or majority
class) is substantially larger than the number of instances
that belong to the other class (positive or minority class).

)e computation time of the proposed multilevel
frameworks exhibits a significant improvement and can
generate several classifiers at different coarse-grained res-
olutions in one complete training iteration which also helps
to interpret these classifiers qualitatively.

Overall, the complexity of the entire framework is linear
in the number of data points.

Table 3 shows some of the experimental results of the
proposed model.

However, the model suffers from classification problems.
For example, on the ISOLET instance, the tool computes a
model that puts all data points on a single side [11], while the
purpose of the support vector machines is to separate the
data by a decision boundary.

Chen et al. [12] improved the projection twin support
vector machine (PTSVM) algorithm to a novel nonparallel
classifier, termed V-PTSVM.

V-PTSVM is equipped with a more theoretically sound
parameter V, which can be used to control the bounds of a
fraction of both support vectors and margin-error
instances.

As the researchers mentioned in their scientific paper that
the algorithm still suffers from problems with the increasing
number of data, the developed algorithm has proven effective
when applied to the NDC database as shown in Table 4.

Li et al. [13] proposed to overcome the defect of PSVM
on feature selection, and the purpose of PSVM is to generate
a pair of nonparallel hyperplanes for classification.

)e paper introduced ℓ0-norm regularization in PSVM
which enables PSVM to select important features and
remove redundant features simultaneously for classification.

)e effectiveness of ℓ0-PSVM to obtain sparse classifiers,
an alternating scheme based on DCA, is proposed by using a
nonconvex continuous function.

Table 1: Running times of different databases to train an SVM
using SMO.

#Samples of the database Test time (s)
2265 0.9
3185 1.8
4781 3.6
6414 5.5
11221 17.0
16101 35.3
22697 85.7
32562 163.6

2 Applied Computational Intelligence and Soft Computing

DCA is an efficient descent method with linear con-
vergence, which has been widely used in numerous non-
convex optimization problems [14].

Table 5 shows benchmark datasets used in experiments
and comparative results in terms of the average classification
accuracy, the average number of selected features, the av-
erage training time, and AUC.

)e paper observed that PSVM, sPSVM, and ℓ0-PSVM
are time-consuming classifiers since their training time
increases rapidly as the number of features increases.

Ma et al. [15] proposed a new robust loss function called
adaptive capped ℓθε-loss and proposed a new robust distance
metric induced by correntropy (CIM) that is based on the
Laplacian kernel.

)e researchers applied the ℓθε-loss and CIM to a twin
support vector machine (TWSVM) and developed an
adaptive robust learning framework, namely, adaptive ro-
bust twin support vector machine (ARTSVM).

)e proposed ARTSVM not only inherits the advantages
of TWSVM but also improves the robustness and accuracy
of classification problems.

All experiments on large-scale databases with 0% (without
noise), 10%, and 30% label noises are presented in Table 6.

)e proposed ARTSVM has shown good robustness to
feature noise and outliers in most cases, but from the
perspective of time consumption, ARTSVM is undoubtedly
inferior to the other algorithms in terms of learning time.

)is is because the ARTSVM algorithm requires a lot of
time to perform iterative calculations and needs to remove
outliers during the training process.

3. Problem Description

In nonlinear kernel enables us to model higher dimensional
space, for a given binary classification problem, If x ∈Rn is
an input point, let ϕ(x) be the corresponding feature point
with ϕ a mapping from Rn to certain space called feature
space.

)is is very computationally expensive, especially if the
mapping is to a high-dimensional space. But many works of
literature show that kernel function can be used to ac-
complish the same result efficiently.

)e kernel is a function k(xi.xj) that given two vectors in
input space returns the dot product of their images in feature
space.

k xi.xj � ϕ xi(· ϕ xj . (1)

By computing the dot product directly using a kernel
function, one avoids the mapping ϕ (x).

)is is desirable because Z has possibly infinite di-
mensions and ϕ(x) can be tricky or impossible to compute.
Using a kernel function, one does not need to explicitly
know what ϕ(x) is. By using a kernel function, an SVM that
operates in infinite-dimensional space can be constructed.
Also, the decision function will be

f(x) �
m

i�1
ai yiK xi .xj + b, (2)

where x� [x1, x2, . . ., xl] represent the input data, α is the
Lagrange multiplier, b is the offset, and yi is the output label.

But the kernel function still requires the inversion of the
n× n matrix, which needs huge quantities of computational
time and memory for large datasets; therefore, the training
complexity of SVM is highly dependent on the size of a
dataset.

Large datasets impose heavy computational time and
storage requirements during training, sometimes rendering
SVM even slower than ANN. For this reason, support vector
set cardinality may be a problem when online prediction
requires real-time performance on platforms with limited
computational and power supply capabilities, such as mobile
devices [16].

4. Motivation and Objective

)e motivation behind this model is to improve the con-
ventional SVM algorithm shortage by the following:

(1) Get rid of the process of processing large datasets,
and this drawback is essentially related to the ne-
cessity to store and manipulate large, dense, and
unstructured kernel matrices [17].

(2) Kernel SVM always brings additional parameters,
and one may need to pay lots of effort to tune the
parameters for better performance [18, 19]. Im-
proper setting of the hyperparameters often brings
overfitting or underfitting problems. Last but not
least, even though we can use kernel trick to project
the data into high-dimensional space, there is a

Table 2: Running times and AUC of databases using a hybrid
system.

Database #Samples Train time (s) Test time (s) AUC
OAR 2551 1, 04 10− 3 ×1, 6 %90, 5
HAR 10299 1, 12 10− 3 ×1, 5 %91, 9
Private database 398,690 1, 48 10− 2 ×1, 8 %80, 4

Table 3: Performance measures and computational time of da-
tabases using multilevel frameworks.

Databases #Samples Computational
time (s)

ACC
(%) SN SP

Advertisement 3 279 91 0.94 0.96 0.80
Buzz 140 707 957 0.94 0.96 0.87
Clean (Musk) 6 598 6 1.00 1.00 0.99
Cod-rna 59 535 92 0.94 0.97 0.95
ISOLET 6 919 64 0.99 1.00 0.85

Table 4: Computational results of V-PTSVM.

Database NDC Time (s) ACC (%)
(100× 32) 0.0402 80.59
(500× 32) 0.1046 82.84
(1k× 32) 5.6840 85.49
(3k× 32) 39.252 86.57
(5k× 32) 317.58 86.24
(5k× 32) 3628.4 85.97

Applied Computational Intelligence and Soft Computing 3

possibility it cannot be linearly separable after using
kernel trick. Specific kernel with specific hyper-
parameters may fail on some datasets [20].

(3) Fast and applicable in real-time, because we are
dealing with a huge volume of data we always need
less time-consuming methods.

5. Proposed Work

)is paper presents a new algorithm based on the Gaussian
pyramid to make large-scale training of SVM.

In the Gaussian pyramid, subsequent images of the
preceding level of the pyramid are weighted down by means
of Gaussian average (or Gaussian blur) and scaled down
[21].)e developed algorithm uses the same technique of
images but on the dataset and passes the Gaussian pyramid
once on the large dataset to shrink its size to make it linearly
separable. Furthermore, the shrinking technique of the
problem during the training of nonlinear SVM is found
particularly effective for large learning tasks.

We assume that (X, Y) the training patterns set, where X�

{x1, x2, . . ., xn} is the input dataset Y� {y1, y2, . . ., yn} is the
label set, labelyi∈ {− 1, 1}.)e main steps used to implement
the Gaussian pyramid algorithm are summarized as follows.

5.1. Overview. An overview of our algorithm is shown in
Algorithm 1. Our algorithm starts by preprocessing the data.
)en, we need to calculate the correlation matrix to calculate
the correlation among all the features.

)e next step is to generate a Gaussian pyramid whose
size is user input, but it must be an odd number to have a
central element.

Now we have the randomly generated Gaussian pyra-
mid, then we need to pass it on to the large dataset in
columns and rows, by multiplying each element from the
Gaussian pyramid to its corresponding element from the

dataset, and then sum all the multiplications and put it in the
new dataset.

)is new element represents the previous elements from
the large old dataset in which we smooth it bypassing the
Gaussian pyramid, and this is called the reduce operation.

To evaluate our algorithm, we need to see the distri-
bution of the new data by calculating the multivariate
Gaussian distribution; after that, we can apply linear SVM
and find the hyperplane to separate the data.

5.2. Data Preprocessing.)e following preprocessing has
been done to the data:

(1) Oversampling to provide class balancing.
(2) Missing values based on mean, median, or mode; it

calculates the imputation based on the other feature
values for that sample.

(3) One-hot encoding to convert categorical features to
numerical attribute.

5.3. Correlation Matrix.)e correlation matrix gives the
correlation coefficients among all the columns in a given
matrix.)e most familiar measure of dependence is Pear-
son’s correlation coefficient. It computes the correlation of
all the columns with themselves.

)e correlation matrix is a symmetrical matrix with all
diagonal elements equal to +1 because the correlation of a
variable with itself is 1, and the Pearson correlation coef-
ficient formula is

r �
 xi − x(yi − y(

�������������������

 xi − x(
2

 yi − y(
2

 , (3)

where r � correlation coefficient, xi � values of the x-variable
in a sample, x �mean of the values of the x-variable,
yi � values of the y-variable in a sample, and y �mean of the
values of the y-variable.

5.4. Gaussian Pyramid.)e algorithm generates a Gaussian
pyramid that has the following properties:

(1) Has an odd× odd 2D matrix, so it will have a central
element.

(2) Has randomly generated numbers between 0 and 1.

Table 5: Results for ℓ0-PSVM.

Database #Samples #Features #Features after selection Accuracy (%) Time AUC
WPBC 198 33 33 76.13 0.669 0.84
Ionosphere 351 34 34 83.13 0.856 0.71
Spambase 4601 57 57 62.43 0.031 0.73
Heart 270 13 12 86.29 0.466 0.86
Glass1 214 9 8 68.45 0.140 0.82
Vehicle1 846 18 17 77.70 0.343 0.80
Vehicle3 846 18 17 74.95 0.637 0.78

Table 6: Performance measures of ARTSVM.

Database R (%) (noise ratio) #Samples ACC
Spam 0 (4601× 57) 85.04
Abalone 0 (4177× 8) 86.11
Spam 10 (4601× 57) 83.26
Abalone 10 (4177× 8) 83.55
Spam 30 (4601× 57) 81.05
Abalone 30 (4177× 8) 80.19

4 Applied Computational Intelligence and Soft Computing

5.5. Reduce Operation.)e reduce operation in Gaussian
pyramids is done according to the relation given below.

gl(i.j) �
m

n

w(m.n)gl− 1(2i + m.2j + n), (4)

where l represents the level and w(m.n) is the generated
Gaussian pyramid; in reducing operation, we will reduce half
of width and height, bypassing the generated matrix of the
Gaussian pyramid on the large dataset.

)e newly generated dataset after performing the reduce
operation is 1/4 of the size of the previous dataset.

5.6. Multivariate Gaussian Distribution.)e multivariate
normal distribution is a generalization of the univariate
normal distribution to two or more variables. It is a dis-
tribution for random vectors of correlated variables, where
each vector element has a univariate normal distribution. A
vector-valued random variable X� [X1 · · · · · · Xn]T is said to
have a multivariate normal (or Gaussian) distribution if its
probability density function (pdf) is given by

y � f(x.μ.Σ) �
1

(2π)
(n/2)

|Σ|(1/2)
exp −

1
2
(x − μ)

TΣ− 1
(x − μ) ,

(5)

where μ is the mean vector and Σ is the covariance matrix.
Diagonal elements contain the variances for each variable,
and off-diagonal elements contain the covariance between
variables.

Before applying the standard linear SVM, we need to see
the distribution of the new data by calculating the multi-
variate Gaussian distribution; if the data have a narrow
Gaussian, this means it is linearly separable.

5.7. Linear SVM. Linear support vector machines (SVMs)
are originally formulated for binary classification. Given
training data and its corresponding labels (xn.yn), n � 1, . . .,
N, xn ∈ RD, tn ∈ − 1. + 1{ }, SVMs learning consists of the
following constrained optimization:

minw.ξn

1
2
w

T
w + C

N

n�1
ξn,

s.t.
w

T
xntn ≥ 1 − ξn, ∀n,

ξn ≥ 0, ∀n,

(6)

where ξn are slack variables which penalize data points that
violate the margin requirements.

6. Experimental Results

)is section presents the experimental results to research the
utility of our approach.

We used three different sizes of datasets:

(1) Spambase [22] from UCI machine learning reposi-
tory, with 4601 samples and 58 features.

(2) QSAR biodegradation [23] from UCI machine
learning repository, with 1055 samples and 42 features.

(3) Swarm behaviour [24] from Kaggle, with 23309
samples and 2401 features.

)e datasets have been split into 70% for training and the
remaining 30% for testing, and we will use all features
without any selection.

6.1. Accuracy Measure. Accuracy of results from the
Gaussian pyramid method is commonly measured by the
quantity of standard sensitivity, specificity, F1-score, and
overall accuracy defined by

Sensitivity (true positive rate): it refers to the probability
of a positive test, conditioned on truly being positive.

Sensitivity �
TP

(TP + FN)
. (7)

Specificity (true negative rate): it refers to the proba-
bility of a negative test, conditioned on truly being
negative.

Input: D: the training dataset (xi, yi), k: the size of the Gaussian pyramid must be an odd number
Output: find an optimal hyperplane
Start
Step 1: data preprocessing on D
Step 2: build the correlation matrix of D by equation:

r � ((xi − x)(yi − y)/
��������������������

 (xi − x)2 (yi − y)2

)

Step 3: randomly generate a Gaussian pyramid as a k× k matrix between 0 and 1
Step 4: reduce the size of D using K to produce Dnew, a new training dataset, by equation:
gl(i.j) � mnw(m.n)gl− 1(2i + m.2j + n)

Step 5: find the multivariate normal distribution of Dnew by the following probability density function:
y � f(x.μ.Σ) � (1/(2π)(n/2) |Σ|(1/2))exp(− (1/2)(x − μ)TΣ− 1(x − μ))

Step 6: classify Dnew to find an optimal hyperplane and build the model to classify new data points.
End

ALGORITHM 1: Overview.

Applied Computational Intelligence and Soft Computing 5

Specificity �
TN

(TN + FP)
. (8)

F-measure: it is a measure of a test’s accuracy.

F1 − score �
TP

TP +(1/2)(FP + FN)
. (9)

Accuracy: it indicates the proportion of correct clas-
sifications of the total records in the testing set.

Accuracy �
TP + TN

TP + TN + FP + FN
, (10)

where

(i) True positive (TP): anomaly instances correctly
classified as an anomaly.

(ii) False positive (FP): normal instances wrongly
classified as an anomaly.

(iii) True negative (TN): normal instances correctly
classified as normal.

(iv) False negative (FN): anomaly instances wrongly
classified as normal.

6.2. Gaussian Pyramid Performance Analysis. We imple-
mented the algorithm described in the previous section
using Python. Our code uses sklearn and matplotlib. All of
our experiments are executed on a machine with an Intel(R)
Core(TM) i5-5200U 2.20GHz processor and 8GB of RAM.

First, for computing the correlation coefficients among all
the features, we calculate the correlation matrix; in the pro-
posed algorithm, we took all the features without any selection;
this implies the ability to handle massive problems with a large
number of features without any elimination of them.

To evaluate the performance of the algorithm, we gen-
erate several Gaussian pyramid sizes and applied the ac-
curacy measures in equations (7)–(10) (see Tables 7–9).

From Table 8, the best prediction accuracy is 0.90%when
Gaussian the pyramid size is equal to 3× 3 and the worst
prediction pyramid size is 5× 5 with a prediction accuracy of
0.65%. However, the AUC for all Gaussian pyramid sizes
gives us good results.

As shown in Table 8, if the Gaussian pyramid has a small
odd number, it will be more accurate but more time-con-
suming than the bigger Gaussian pyramid size, so we need to
trade off between time and accuracy in choosing the
Gaussian pyramid size.

Table 9 predicted that the processing time of the
Gaussian pyramid increases as the data size increases. On the
other hand, the processing time of the new algorithm is
incomparably low compared to classical nonlinear SVM on
large datasets.

)e new algorithm is capable of classifying datasets with
thousands of samples even millions, and it is a computa-
tionally low method that requires nothing more complex
than the multiplication of the Gaussian pyramid matrix with
the input space, to smooth the dataset to minimize the
nonlinearity.

Table 7: Test results for Spambase dataset.

Kernel size Sensitivity Specificity F1-score Accuracy Training time (s) AUC
3× 3 0.85 0.98 0.89 0.90 334.62 0.95
5× 5 0.41 1.0 0.70 0.65 145.07 0.93
7× 7 0.95 0.61 0.73 0.81 92.46 0.93
9× 9 1.0 0.17 0.29 0.66 79.08 0.83
11× 11 0.91 0.85 0.87 0.88 53.17 0.96
13×13 0.54 1.0 0.74 0.72 45.06 0.95

Table 8: Test results for QSAR biodegradation dataset.

Kernel size Sensitivity Specificity F1-score Accuracy Training time (s) AUC
3× 3 0.86 0.85 0.82 0.85 93.99 0.93
5× 5 0.98 0.57 0.71 0.85 36.26 0.90
7× 7 0.92 0.95 0.92 0.93 26.29 0.97
9× 9 0.52 1.0 0.70 0.69 23.35 0.82
11× 11 0.53 0.91 0.67 0.67 36.71 0.77
13×13 0.88 0 0 0.6 26.36 0.77

Table 9: Test results for Swarm behaviour dataset.

Kernel size Sensitivity Specificity F1-score Accuracy Training time (s) AUC
3× 3 0.93 0.92 0.90 0.93 39376.87 0.98
5× 5 0.95 0.97 0.94 0.96 18270.78 0.98
7× 7 0.75 0.83 0.74 0.78 11076.68 0.87
9× 9 0.89 0.95 0.88 0.91 7747.42 0.98
11× 11 0.66 0.85 0.70 0.73 5810.51 0.84
13×13 0.79 0.90 0.79 0.83 4724.65 0.94

6 Applied Computational Intelligence and Soft Computing

6.3. Result of Applying Multivariate Gaussian Distribution.
A multivariate Gaussian model can capture the correlations
between variables from different dimensions by formulating
and calculating a covariance matrix [25].

)e result of applying multivariate Gaussian distribution
with different Gaussian pyramid sizes on the Spambase
dataset is shown in Figures 1–6.

As a result of applying different Gaussian pyramid sizes,
we get thin Gaussian after passing the pyramid, and this
implies that now we can separate the data linearly and find
the hyperplane using linear SVM.

)e limitations of the proposed study are it performs
better with a large number of features and data samples than
smaller datasets, like in the Swarm dataset we get better
accuracy and AUC results than QSAR biodegradation and
Spambase datasets, which is the largest number of features
and data samples in our experiment.

-0.5

1e13

0.0 0.5 1.0 1.5 2.0
1e-13

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en
sit
y

0

Figure 2: Probability of multivariate Gaussian with Gaussian
pyramid 5× 5.

-0.25

1e10

0.00 0.25 0.50 0.75 1.00 1.25
1e-10

0.0

0.5

1.0

1.5

2.0

2.5
D
en
sit
y

0

Figure 4: Probability of multivariate Gaussian with Gaussian
pyramid 9× 9.

1e-12
86420-2

1e11

0.0

0.5

1.0

1.5

2.0

2.5

D
en
sit
y

0

Figure 5: Probability of multivariate Gaussian with Gaussian
pyramid 11× 11.

-1

1e11

0 1 2 3
1e–11

0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
en
sit
y

Figure 1: Probability of multivariate Gaussian with Gaussian
pyramid 3× 3.

5
1e-14

43210-1

1e13

0

2

4

6

8

D
en
sit
y

0

Figure 3: Probability of multivariate Gaussian with Gaussian
pyramid 7× 7.

Applied Computational Intelligence and Soft Computing 7

7. Conclusion

In this paper, a Gaussian pyramid approach has been
proposed for the nonlinear support vector machine.)e
enhanced algorithm has been applied to different sizes of
datasets. Achieved results can be summarized as follows:

(1) We proposed a newmethod for solving the problems
represented by a nonlinear support vector machine
tool, by using a Gaussian pyramid in a large dataset.

(2) We performed an analysis of the proposed method.
We showed its good performance over the classical
nonlinear SVM.

(3))e new approach performs better with a large
number of samples and features like Swarm be-
haviour dataset versus smaller ones.

In contrast to previous approaches, our Gaussian pyramid
can shrink the input size to 1/4 size of the original dataset by
generating a Gaussian pyramid and passing it on the large
dataset and calculating themultivariate Gaussian distribution,
and the newly generated dataset after passing the pyramid
could be linearly separable using the standard linear SVM.

8. Future Studies

In futures studies, we need to

(1) Study the relation between the number of features
and samples of the dataset and the Gaussian pyramid
size.

(2) Apply the new Gaussian pyramid algorithm on
multiclass SVM.

Data Availability

No data were used to support this study.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

References

[1] J. Cervantes, F. Garcia-Lamont, L. Rodŕıguez-Mazahua, and
A. Lopez, “A comprehensive survey on support vector ma-
chine classification: applications, challenges and trends,”
Neurocomputing, vol. 408, pp. 189–215, 2020.

[2] V. Vapnik, “Pattern recognition using generalized portrait
method,” Automation and Remote Control, vol. 24, pp. 774–
780, 1963.

[3] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training
algorithm for optimal margin classifiers,” in Proceedings of the
Fifth Annual Workshop on Computational Learning =eory,
pp. 144–152, Pittsburgh, Pennsylvania, USA, July 1992.

[4] B. Scholkopf and A. J. Smola, Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and beyond,
MIT Press, Cambridge, MA, USA, 2018.

[5] V. Mácha, L. Adam, and V. Šmı́dl, “Nonlinear classifiers for
ranking problems based on Kernelized SVM,” 2020, https://
arxiv.org/abs/2002.11436.

[6] V. K. Chauhan, K. Dahiya, and A. Sharma, “Problem for-
mulations and solvers in Linear SVM: a review,” Artificial
Intelligence Review, vol. 52, pp. 803–855, 2019.

[7] Z. Lan, M. Lin, X. Li, A. G. Hauptmann, and B. Raj, “Beyond
Gaussian pyramid: multi-skip feature stacking for action
recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Boston, MA, USA,
June 2015.

[8] J. Platt, “Sequential minimal optimization: a fast algorithm for
training support vector machines,” 1998.

[9] M. Zareapoor, P. Shamsolmoali, D. K. Jain, H. Wang, and
J. Yang, “Kernelized support vector machine with deep
learning: an efficient approach for extrememulticlass dataset,”
Pattern Recognition Letters, vol. 115, pp. 4–13, 2018.

[10] E. Sadrfaridpour, T. Razzaghi, and I. Safro, “Engineering fast
multilevel support vector machines,” Machine Learning,
vol. 108, pp. 1879–1917, 2019.

[11] S. Schlag, M. Schmitt, and C. Schulz, “Faster support vector
machines,” Journal of Experimental Algorithmics, vol. 26,
pp. 1–21, 2021.

[12] W. J. Chen, Y. H. Shao, C. N. Li, M. Z. Liu, Z. Wang, and
N. Y. Deng, “v-projection twin support vector machine for
pattern classification,” Neurocomputing, vol. 376, pp. 10–24,
2020.

[13] G. Li, L. Yang, Z. Wu, and C. Wu, “DC programming for
sparse proximal support vector machines,” Information Sci-
ences, vol. 547, pp. 187–201, 2021.

[14] H. A. Le)i and T. P. Dinh, “DC programming and DCA:
thirty years of developments,” Mathematical Programming,
vol. 169, pp. 5–68, 2018.

[15] J. Ma, L. Yang, and Q. Sun, “Adaptive robust learning
framework for twin support vector machine classification,”
Knowledge-Based Systems, vol. 211, Article ID 106536, 2021.

[16] M. Awad and R. Khanna, “Support vector machines for
classification,” Efficient Learning Machines, vol. 65, pp. 39–66,
2015.

[17] S. Cipolla and J. Gondzio, “Training very large scale nonlinear
svms using alternating direction method of multipliers
coupled with the hierarchically semi-separable kernel ap-
proximations,” 2021, https://arxiv.org/abs/2108.04167.

[18] V. Sharma, D. Baruah, D. Chutia, P. L. N. Raju, and
D. K. Bhattacharya, “An assessment of support vector ma-
chine kernel parameters using remotely sensed satellite data,”
in Proceedings of the 2016 IEEE International Conference on

-0.5

1e9

0.0 0.5 1.0 1.5
1e-9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
en
sit
y

0

Figure 6: Probability of multivariate Gaussian with Gaussian
pyramid 13×13.

8 Applied Computational Intelligence and Soft Computing

https://arxiv.org/abs/2002.11436
https://arxiv.org/abs/2002.11436
https://arxiv.org/abs/2108.04167

Recent Trends in Electronics, Information & Communication
Technology (RTEICT), Bangalore, India, May 2016.

[19] K. H.)ung, C. Y. Wee, P. T. Yap, and D. Shen, “Identifi-
cation of progressive mild cognitive impairment patients
using incomplete longitudinal MRI scans,” Brain Structure
and Function, vol. 221, pp. 3979–3995, 2016.

[20] F. Nie, W. Zhu, and X. Li, “Decision tree SVM: an extension of
Linear SVM for non-linear classification,” Neurocomputing,
vol. 401, 2020.

[21] S. T. M. Ataky, J. de Matos, A. D. S. Britto, L. E. Oliveira, and
A. L. Koerich, “Data augmentation for histopathological
images based on Gaussian-Laplacian pyramid blending,” in
Proceedings of the 2020 International Joint Conference on
Neural Networks (IJCNN), Glasgow, UK, July 2020.

[22] “Spambase dataset,” https://archive.ics.uci.edu/ml/datasets/
Spambase.

[23] “QSAR biodegradation dataset,” https://archive.ics.uci.edu/
ml/datasets/QSAR+biodegradation.

[24] “Swarm behaviour dataset,” https://www.kaggle.com/
deepcontractor/swarm-behaviour-classification.

[25] Y. An and D. Liu, “Multivariate Gaussian-based false data
detection against cyber-attacks,” IEEE Access, vol. 7,
pp. 119804–119812, 2019.

Applied Computational Intelligence and Soft Computing 9

https://archive.ics.uci.edu/ml/datasets/Spambase
https://archive.ics.uci.edu/ml/datasets/Spambase
https://archive.ics.uci.edu/ml/datasets/QSAR+biodegradation
https://archive.ics.uci.edu/ml/datasets/QSAR+biodegradation
https://www.kaggle.com/deepcontractor/swarm-behaviour-classification
https://www.kaggle.com/deepcontractor/swarm-behaviour-classification

