
Research Article
Effective Fuzzy Soft Set Theory and Its Applications

Shawkat Alkhazaleh

Shawkat Alkhazaleh Department of Mathematics, Faculty of Science and Information Technology, Jadara University,
Irbid, Jordan

Correspondence should be addressed to Shawkat Alkhazaleh; shmk79@gmail.com

Received 18 October 2021; Revised 23 December 2021; Accepted 15 February 2022; Published 15 April 2022

Academic Editor: Shyi-Ming Chen

Copyright © 2022 Shawkat Alkhazaleh. .is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Fuzzy soft set is the most powerful and effective extension of soft sets which deals with parameterized values of the alternative. It is
an extended model of soft set and a new mathematical tool that has great advantages in dealing with uncertain information and is
proposed by combining soft sets and fuzzy sets. Many fuzzy decision making algorithms based on fuzzy soft sets were given.
However, these do not consider the external effective on the decision it depends on the parameters without considering any
external effective. In order to solve these problems, in this paper, we introduce the concept of effective fuzzy soft set and its
operation and study some of its properties. We also give an application of this concept in decision making (DM) problem. Finally,
we give an application of this theory to medical diagnosis (MD) and exhibit the technique with a hypothetical case study.

1. Introduction

Currently, many researchers try to find suitable solutions to
some uncertainty in mathematics that the classical methods
cannot solve it since the classical methods cannot solve all
the uncertainty decision making problems in economy,
engineering, medicine, and others. Fuzzy set is one of these
solutions defined by Zadeh as new mathematical tool [1]
which was published in 1965. Molodtsove [2] defined one of
the most important solutions as a general mathematical tool
for dealing with uncertain, fuzzy, not clearly defined objects
which is a soft set theory where Maji et al. [3] went deep into
the study of this theory through defining some operations
such as AND, OR, union, and intersection. .en, Maji and
Roy [4] apply a soft sets theory to find a solution for some
decision making problems using rough mathematics. In
2008, Majumdar and Samanta [5] proposed some similarity
measures between soft sets and gave an application of these
similarities to solve DM problems, and then Kharal and
Ahmad [6] defined new definitions and applications on the
similarity measure between soft sets. In 2001, as a combi-
nation between fuzzy and soft sets, Maji et al. [7] proposed a
theory of fuzzy soft set and many researchers have studied
this concept and its properties with applications such as Roy

and Maji [8], in 2007, and Feng et al. [9]. Chaudhuri and De
[10] gave an attention on soft relation and fuzzy soft relation
and they used these concepts to solve some of the decision
making problems. On the other hand, Majumdar and
Samanta [11] in 2010 presented generalised fuzzy soft sets
theory and studied some of its properties and their appli-
cations in DM problems and MD problems. Çaǧman et al.
[12] proposed a new DM method by using a theory of fuzzy
parameterized fuzzy soft sets and they also in 2011 [13]
proposed a DM method based on fuzzy parameterized-soft
sets theory. Alkhazaleh et al. [14] and as a combination
between soft multiset [15] and fuzzy set defined the concept
of fuzzy soft multiset with its application in DM. .ey also
generalised the concepts of fuzzy parameterized fuzzy soft
set (FPFSS) to fuzzy parameterized interval-valued fuzzy soft
set (FPIVFSS) [16] and FPFSS to possibility fuzzy soft set
[17] and gave some applications in DM and MD problems.
One of the most important concepts related to soft set is soft
expert set defined by Alkhazaleh and Salleh [18] which is
generalised later by the same authors to fuzzy soft expert set
theory [19] and they also presented the applications of these
two theories in DM and MD problems. Certainty and
coverage of a parameter defined by Renukadevi and San-
geetha in 2020 [20] as a new concept are related to the soft set
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and they presented a new approach using the certainty of a
parameter to solve a DM problem over the soft universe.
Debnath in his paper in 2021 [21] proposed a fuzzy hypersoft
set as a combination between fuzzy set and hypersoft set..e
adaptability of this hypothesis is to handle the parameterized
issues of instability as more as compared to fuzzy soft set. In
2021, Phaengtan et. al. [22] defined partial averages of fuzzy
soft sets and presented a new algorithm for solving someDM
problems based on partial averages. Furthermore, they also
showed that this algorithm is practical for solving DM
problems. Močkoř and Hurt́ık in 2021 [23] defined fuzzy soft
relations and introduced the fuzzy soft approximation of
fuzzy soft sets related to this relation. .ey also used fuzzy
soft approximations in selective color segmentation prob-
lem, where authoritative and fully automated methods do
not yet exist. .ey proposed three novel hybrid models and
presented some properties of these models and defined
multi-(Q, N)−soft rough approximation operators in terms
of multi-(Q, N)−soft relations. For more information, see
[24, 25].

When studying soft sets and their applications, all re-
searchers deal with the parameters and the universal set,
ignoring external effective that may affect their decisions. In
this research, we will study for the first time the extent of the
effect of external effectiveness on soft sets and on the out-
come of decisions issued by these sets. Firstly, we define the
concept of effective fuzzy soft set (EFRSS) and some defi-
nitions related to this concept are given and we use these
definitions to solve DM problems by giving a new algorithm.
A medical diagnosis method (MD) is established for EFSS
setting using similarity measures. Lastly, a numerical ex-
ample is given to demonstrate the possible application of
similarity measures in (MD).

2. Preliminary

In this section, we review some definitions relevant to this
work. .e soft set defined by Molodtsov can be expressed as
the following: let U be a set of universe, E be a set of pa-
rameters, and P(U) denote the power set of U and A⊆E.

Definition 1 (see [2]). A pair (F, A) is called a soft set over U,
where F is a mapping

F: A⟶ P(U). (1)

Reference [7] generalised soft set of [2] to fuzzy soft set.
In this section, we will review some definitions and prop-
erties related to fuzzy soft set theory, which we will use in our
work. .e following definitions and propositions are due to
[7].

Definition 2. Let U be an initial universal set, E be a set of
parameters, and IU be the power set of fuzzy set of U. Let
A⊆E and (F, E) is a pair called a fuzzy soft set over U where
F is a mapping given by

F: A⟶ I
U

. (2)

Definition 3. .e union of two fuzzy soft sets (F, A) and
(G, B) over a common universe U is the fuzzy soft set (H, C)

where C � A∪B, and ∀ε ∈ C,

H(ε) �

F(ε), if ε ∈ A − B,

G(ε), if ε ∈ B − A,

(F(ε), G(ε)), if ε ∈ A∩B,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where s is any s-norm.

Definition 4. .e intersection of two fuzzy soft sets (F, A)

and (G, B) over a common universe U is the fuzzy soft set
(H, C) where C � A∪B, and ∀ε ∈ C,

H(ε) �

F(ε), if ε ∈ A − B,

G(ε), if ε ∈ B − A,

t(F(ε), G(ε)), if ε ∈ A∩B,

⎧⎪⎪⎨

⎪⎪⎩
(4)

where t is any t-norm.

3. Effective Fuzzy Soft Set (EFSS)

In this section, we generalise the concept of fuzzy soft sets as
introduced by Maji et al. [7]. In our generalisation of fuzzy
soft set, an effective set is applied with the parameterization
of fuzzy sets while defining a fuzzy soft set. Let us start with
definitions of effective set and effect scale, respectively,
which are introduced for the first time.

Definition 5. An effective set is a fuzzy set Λ in a universe of
discourse A where Λ is a function Λ: A⟶ [0, 1]. A is the
set of effective parameters that may change the membership
values by making positive effect (or no effect) on values of
memberships after applying it and defined as follows:

Λ � 〈a, δΛ(a)〉: a ∈ A . (5)

Definition 6. Let U be an initial universal set, E be a set of
parameters, A be a set of effective parameters, and Λ be the
effective set over A. Let IU denote all fuzzy subsets of U; a
pair (F, E)Λ is called an effective fuzzy soft set (EFSS in
short) over U where F is a mapping given by

F: E⟶ I
U

, (6)

defined as follows:

F ei( Λ �
xj

μU xj Λ

: xj ∈ U, ei ∈ E
⎧⎨

⎩

⎫⎬

⎭, (7)

where ∀ak ∈ A,
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μU xj Λ �

μU xj  +
1 − μU xj  kδΛxj

ak( 

|A|

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, if μU xj  ∈ (0, 1),

μU xj , O.W.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)

Example 1. Let U � x1, x2, x3  be a set of universe. Let
E � e1, e2, e3, e4, e5, e6  be a set of parameters and let A �

a1, a2, a3, a4  be a set of effective parameters. Suppose
that the effective set over A for all x1, x2, x3  is given by
expert as follows:

Λ x1(  �
a1

0.8
,
a2

1
,
a3

0
,

a4

0.2
 ,

Λ x2(  �
a1

0.4
,

a2

0.5
,
a3

0
,

a4

0.8
 ,

Λ x3(  �
a1

1
,
a2

1
,

a3

0.7
,

a4

0.6
 .

(9)

Let the fuzzy soft set F be defined as follows:

F e1(  �
x1

0.3
,

x2

0.7
,

x3

0.5
 ,

F e2(  �
x1

0.5
,

x2

0.6
,

x3

0.6
 ,

F e3(  �
x1

0.7
,

x2

0.6
,

x3

0.5
 ,

F e4(  �
x1

0.8
,

x2

0.4
,

x3

0.4
 ,

F e5(  �
x1

0.6
,

x2

0.9
,

x3

0.3
 ,

F e6(  �
x1

0.2
,

x2

0.4
,

x3

0.7
 .

(10)

After applying Definition 6 on F, we obtain the
following:

FΛ e1(  �
x1

0.3 + 0.7[(0.8 + 1 + 0 + 0.2)/4]
,

x2

0.7 + 0.3[(4 + 0.5 + 0 + 0.8)/4]
,

x3

0.5 + 0.5[(1 + 1 + 0.7 + 0.6)/4]
 . (11)

.en, we have FΛ(e1) � x1/0.65, x2/0.83, x3/0.91 . By using the same method, we get the following EFSS:

FΛ, E(  � e1,
x1

0.65
,

x2

0.83
,

x3

0.91
  , e2,

x1

0.75
,

x2

0.77
,

x3

0.93
  , e3,

x1

0.85
,

x2

0.77
,

x3

0.91
  , e4,

x1

0.9
,

x2

0.66
,

x3

0.9
  ,

e5,
x1

0.8
,

x2

0.94
,

x3

0.88
  , e6,

x1

0.6
,

x2

0.66
,

x3

0.95
  .

(12)

Definition 7. .e union and intersection of two effective sets
Λ′ and Λ′′ over the set of effective parameters A is the
effective set Λs and Λt, respectively, where s is any s-norm
and t is any t-norm.

Definition 8. .e complement of effective set Λ over the set
of effective parameters A is the effective set Λc where c is any
fuzzy complement.
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Definition 9. .e Λcomplement of the EFSS (FΛ, E) is the EFSS
(FΛc , E), where Λc is any fuzzy complement of Λ.

Here, we keep the fuzzy soft set F as is and find the fuzzy
complement of the effective set Λ, and then we apply
equation (6) to get a new EFSS.

Definition 10. .e Softcomplement of the EFSS (FΛ, E) is the
EFSS (Fc

Λ, E), where Fc is the fuzzy soft complement of F.

Here, we find the fuzzy soft complement of F which is Fc

and keep the effective set Λ as is, then we apply equation (6)
to get a new EFSS.

Definition 11. .e Totalcomplement of the EFSS (FΛ, E) is the
EFSS (Fc

Λc , E), where Fc is the fuzzy soft complement of F

and Λc is any fuzzy complement of Λ.

Here, we find the fuzzy soft complement of F which is Fc

and the fuzzy complement of the effective set Λ which is Λc,
then we apply Definition 6 to get a new EFSS.

Example 2. Consider Example 1. Let

Λ x1(  �
a1

0.8
,
a2

1
,
a3

0
,

a4

0.2
 ,

Λ x2(  �
a1

0.4
,

a2

0.5
,
a3

0
,

a4

0.8
 ,

Λ x3(  �
a1

1
,
a2

1
,

a3

0.7
,

a4

0.6
 .

(13)

By using the basic fuzzy complement of effective set Λ,
we get the following effective set Λc:

Λc
x1(  �

a1

0.2
,
a2

0
,
a3

1
,

a4

0.8
 ,

Λc
x2(  �

a1

0.6
,

a2

0.5
,
a3

1
,

a4

0.2
 ,

Λc
x3(  �

a1

0
,
a2

0
,

a3

0.3
,

a4

0.4
 .

(14)

Also, let

F e1(  �
x1

0.3
,

x2

0.7
,

x3

0.5
 ,

F e2(  �
x1

0.5
,

x2

0.6
,

x3

0.6
 ,

F e3(  �
x1

0.7
,

x2

0.6
,

x3

0.5
 ,

F e4(  �
x1

0.8
,

x2

0.4
,

x3

0.4
 ,

F e5(  �
x1

0.6
,

x2

0.9
,

x3

0.3
 ,

F e6(  �
x1

0.2
,

x2

0.4
,

x3

0.7
 ,

(15)

be the fuzzy soft set, and by using the fuzzy soft complement
over F, we have the following fuzzy soft set:

F
c

e1(  �
x1

0.7
,

x2

0.3
,

x3

0.5
 ,

F
c

e2(  �
x1

0.5
,

x2

0.4
,

x3

0.4
 ,

F
c

e3(  �
x1

0.3
,

x2

0.6
,

x3

0.5
 ,

F
c

e4(  �
x1

0.2
,

x2

0.6
,

x3

0.6
 ,

F
c

e5(  �
x1

0.6
,

x2

0.9
,

x3

0.3
 ,

F
c

e6(  �
x1

0.2
,

x2

0.6
,

x3

0.6
 .

(16)

By using Definitions 9, 10, and 11 with applying Defi-
nition 6, we obtain the following Totalcomplement, Λcomplement,
and Softcomplement, respectively:

F
c
Λc , E(  � e1,

x1

0.85
,

x2

0.7
,

x3

0.59
  , e2,

x1

0.75
,

x2

0.75
,

x3

0.5
  , e3,

x1

0.65
,

x2

0.63
,

x3

0.59
  , e4,

x1

0.6
,

x2

0.83
,

x3

0.67
  ,

e5,
x1

0.8
,

x2

0.95
,

x3

0.43
  , e6,

x1

0.6
,

x2

0.83
,

x3

0.47
  ,

FΛc , E(  � e1,
x1

0.65
,

x2

0.87
,

x3

0.59
  , e2,

x1

0.75
,

x2

0.83
,

x3

0.67
  , e3,

x1

0.85
,

x2

0.83
,

x3

0.59
  , e4,

x1

0.9
,

x2

0.75
,

x3

0.5
  ,

e5,
x1

0.8
,

x2

0.96
,

x3

0.43
  , e6,

x1

0.6
,

x2

0.75
,

x3

0.75
  .

(17)

Definition 12. .e union of two EFSSs (FΛ′ , E1) and
(GΛ′′ , E2) over a common universe U is the EFSS (HΛs

, E)

where E � E1 ∪E2 and ∀υ ∈ E,
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HΛs
(υ) �

FΛs
(υ), if υ ∈ E1 − E2,

GΛs
(υ), if υ ∈ E2 − E1,

(F∪G)Λs
(υ), if υ ∈ E1 ∩E2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(18)

where s is any s-norm and H is the fuzzy soft union between
F and G.

.e idea of this union is to create a new effective set Λs

resulting from the union ofΛ′ andΛ′′ and then apply this set
to the fuzzy soft set H, resulting from the union of F and G

by using Definition 6.

Example 3. Consider Example 1. Let

Λ′ x1(  �
a1

0.8
,
a2

1
,
a3

0
,

a4

0.2
 ,

Λ′ x2(  �
a1

0.4
,

a2

0.5
,
a3

0
,

a4

0.8
 ,

Λ′ x3(  �
a1

1
,
a2

1
,

a3

0.7
,

a4

0.6
 ,

Λ″ x1(  �
a1

0.7
,

a2

0.8
,

a3

0.2
,

a4

0.2
 ,

Λ″ x2(  �
a1

0.4
,

a2

0.6
,

a3

0.1
,

a4

0.8
 ,

Λ″ x3(  �
a1

0.9
,

a2

0.8
,

a3

0.8
,

a4

0.7
 ,

(19)

be any two effective sets given by two different experts. Also,
let

F, E1(  � e1,
x1

0.8
,

x2

0.6
,

x3

0.9
  , e3,

x1

0.5
,

x2

0.7
,

x3

0.8
  , e4,

x1

0.6
,

x2

0.7
,

x3

0.8
  , e6,

x1

0.6
,

x2

0.6
,

x3

0.9
   , (20)

be a fuzzy soft set over E1 ⊂ E, and let

G, E2(  � e1,
x1

0.7
,

x2

0.7
,

x3

0.8
  , e2,

x1

0.8
,

x2

0.6
,

x3

0.4
  , e3,

x1

0.5
,

x2

0.7
,

x3

0.8
  , e4,

x1

0.7
,

x2

0.6
,

x3

0.9
  , e5,

x1

0.4
,

x2

0.5
,

x3

0.7
   , (21)

be a fuzzy soft set over E2 ⊂ E.
By using the basic fuzzy union (max), we have the

following effective set:

Λs x1(  �
a1

0.8
,
a2

1
,

a3

0.2
,

a4

0.2
 ,

Λs x2(  �
a1

0.4
,

a2

0.6
,

a3

0.1
,

a4

0.8
 ,

Λs x3(  �
a1

1
,
a2

1
,

a3

0.8
,

a4

0.7
 .

(22)

Also, by using the basic fuzzy soft union, we have the
following fuzzy soft set (H, E) (in this example E � E1 ∪E2):
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(H, E) � e1,
x1

0.8
,

x2

0.7
,

x3

0.9
  , e2,

x1

0.8
,

x2

0.6
,

x3

0.4
  , e3,

x1

0.5
,

x2

0.7
,

x3

0.8
  , e4,

x1

0.7
,

x2

0.7
,

x3

0.9
  ,

e5,
x1

0.4
,

x2

0.5
,

x3

0.7
  , e6,

x1

0.6
,

x2

0.6
,

x3

0.9
  .

(23)

.en, by using Definitions 12 and 6, we obtain the
following EFSS (HΛs

, E):

HΛs
, E  � e1,

x1

0.99
,

x2

0.9
,

x3

0.99
  , e2,

x1

0.99
,

x2

0.88
,

x3

0.93
  , e3,

x1

0.78
,

x2

0.91
,

x3

0.98
  , e4,

x1

0.87
,

x2

0.9
,

x3

0.99
  ,

e5,
x1

0.77
,

x2

0.85
,

x3

0.96
  , e6,

x1

0.82
,

x2

0.88
,

x3

0.99
  .

(24)

Definition 13. .e intersection of two EFSSs (FΛ′ , E1) and
(GΛ′′ , E2) over a common universe U is the EFSS (KΛt

, E)

where E � E1 ∪E2 and ∀υ ∈ E,

KΛs
(υ) �

FΛt
(υ), if υ ∈ E1 − E2,

GΛt
(υ), if υ ∈ E2 − E1,

(F∩G)Λt
(υ), if υ ∈ E1 ∩E2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25)

where t is any t-norm; K is the fuzzy soft intersection be-
tween F and G.

.e idea of this intersection is to create a new effective set
Λt resulting from the intersection of Λ′ and Λ′′ and then
apply this set to the fuzzy soft set K resulting from the
intersection of F and G by using Definition 6.

Example 4. Consider Example 3.
By using the basic fuzzy intersection (min), we have the

following effective set:

Λt x1(  �
a1

0.7
,

a2

0.8
,
a3

0
,

a4

0.2
 ,

Λt x2(  �
a1

0.4
,

a2

0.5
,
a3

0
,

a4

0.8
 ,

Λt x3(  �
a1

0.9
,

a2

0.8
,

a3

0.7
,

a4

0.6
 .

(26)

Also, by using the basic fuzzy soft intersection, we have
the following fuzzy soft set (H, E) (in this example
E � E1 ∪E2):

(K, E) � e1,
x1

0.7
,

x2

0.6
,

x3

0.8
  , e2,

x1

0.8
,

x2

0.6
,

x3

0.4
  , e3,

x1

0.5
,

x2

0.7
,

x3

0.8
  , e4,

x1

0.6
,

x2

0.6
,

x3

0.8
  , e5,

x1

0.4
,

x2

0.5
,

x3

0.7
  ,

e6,
x1

0.6
,

x2

0.6
,

x3

0.9
  .

(27)

.en, by using Definitions 13 and 6, we obtain the
following EFSS (KΛt

, E):

KΛt
, E  � e1,

x1

0.83
,

x2

0.77
,

x3

0.95
  , e2,

x1

0.87
,

x2

0.77
,

x3

0.85
  , e3,

x1

0.72
,

x2

0.83
,

x3

0.95
  , e4,

x1

0.77
,

x2

0.77
,

x3

0.95
  ,

e5,
x1

0.66
,

x2

0.72
,

x3

0.93
  , e6,

x1

0.77
,

x2

0.77
,

x3

0.98
  .

(28)

4. An Effective Fuzzy Soft Set Theoretic
Approach to Decision Making Problems

In this section, we give an effective fuzzy soft set the-
oretic approach to get a solution of decision making
problem.

Definition 14 (see [8]). A comparison table is a square table
with an equal number of rows and columns, both labelled by
the object names o1, o2, o3, . . . , on of the universe, and the
entries are cij, i, j � 1, 2, . . . , n, given by cij � the number of
parameters for which the membership value of oi exceeds or
is equal to the membership value of oj.
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4.1. Algorithm. Here, we give an algorithm as a modification
of the algorithm given by Maji and Roy [8]. .en, we will
compare between the original algorithm and the modified
algorithm. Firstly, we present the algorithm given by Maji
and Roy as follows: let (F, A), (G, B), and (H, C) be three
fuzzy soft sets.

(1) Input (F, A), (G, B), and (H, C).
(2) Input the set of parameters P as observed by the

observer.
(3) Compute the corresponding resultant fuzzy soft set

(S, P) from (F, A), (G, B), and ((H, C) and place it
in tabular form.

(4) Construct the comparison table of the fuzzy soft set
(S, P) and compute ri and ti for oi,∀i.

(5) Compute the score of oi,∀i.
(6) .e decision is Sk if Sk � maxiSi.
(7) If k has more than one value, then any one of ok may

be chosen.

.en, we give our algorithm as follows:

(1) Input the fuzzy soft sets (F, A) and (G, B).
(2) Input the effective sets of parameters A.
(3) Input the effective sets ΛF and ΛG over A for the

fuzzy soft sets (F, A) and (G, B), respectively.
(4) Compute the corresponding resultant EFSS FΛF

and
GΛG

.
(5) Compute the corresponding resultant EFSS HΛ from

the EFFSs FΛF
and GΛG

and place it in tabular form.
(6) Construct the comparison table of the EFSS HΛ and

compute ri and ti for oi,∀i.
(7) Compute the score of oi,∀i.
(8) .e decision is Sk if Sk � maxiSi.

4.2. Application in a Decision Making Problem. Let
U � x1, x2, x3, x4, x5, x6  be a set of cars with the same
model. .is type of car is manufactured in four
countries, and one of these factories is the main factory.
Let E � e1, e2, e3, e4, e5, e6  be a set of parameters where

e1 � safety, e2 � affordable, e3 � maintenance, e4 � com-
fortable, e5 � performance, and e6 � reliable. Let
A � a1, a2, a3, a4  be a set of effective parameters where
a1 � all of its parts are made in the original factory, a2 � it
reassembled at the original factory, a3 � never worked under
car Apps, and a4 � it was not owned by more than one
person. Let the effective set over A,∀xi ∈ U given by experts
be as follows:

Λ′ x1(  �
a1

0.8
,
a2

1
,
a3

0
,

a4

0.2
 ,

Λ′ x2(  �
a1

0.6
,
a2

1
,

a3

0.5
,

a4

0.4
 ,

Λ′ x3(  �
a1

0.2
,

a2

0.3
,
a3

0
,

a4

0.3
 ,

Λ′ x4(  �
a1

0.5
,

a2

0.4
,

a3

0.3
,

a4

0.4
 ,

Λ′ x5(  �
a1

0.7
,

a2

0.7
,

a3

0.5
,

a4

0.8
 ,

Λ′ x6(  �
a1

1
,
a2

1
,

a3

0.7
,

a4

0.6
 ,

Λ″ x1(  �
a1

0.6
,
a2

1
,

a3

0.1
,

a4

0.3
 ,

Λ″ x2(  �
a1

0.5
,
a2

1
,

a3

0.7
,

a4

0.5
 ,

Λ″ x3(  �
a1

0.3
,

a2

0.4
,
a3

0
,

a4

0.4
 ,

Λ″ x4(  �
a1

0.6
,

a2

0.6
,

a3

0.5
,

a4

0.5
 ,

Λ″ x5(  �
a1

0.7
,

a2

0.8
,

a3

0.4
,

a4

0.6
 ,

Λ″ x6(  �
a1

0.9
,

a2

0.8
,

a3

0.7
,

a4

0.6
 .

(29)

Also, let

F, E1(  � e1,
x1

0.8
,

x2

0.6
,

x3

0.9
,

x4

0.4
,

x5

0.8
,

x6

0.3
  , e3,

x1

0.5
,

x2

0.7
,

x3

0.8
,

x4

0.6
,

x5

0.7
,

x6

0.8
  , e4,

x1

0.6
,

x2

0.7
,

x3

0.8
,

x4

0.6
,

x5

0.2
,

x6

0.3
,  ,

· e6,
x1

0.6
,

x2

0.6
,

x3

0.9
,

x4

0.7
,

x5

0.6
,

x6

0.5
  ,

(30)

be a fuzzy soft set over E1 ⊂ E, and let
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G, E2(  � e1,
x1

0.6
,

x2

0.5
,

x3

0.8
,

x4

0.3
,

x5

0.7
,

x6

0.4
  , e2,

x1

0.4
,

x2

0.5
,

x3

0.7
,

x4

0.4
,

x5

0.5
,

x6

0.5
  , e3,

x1

0.6
,

x2

0.8
,

x3

0.9
,

x4

0.6
,

x5

0.6
,

x6

0.7
  ,

e4,
x1

0.6
,

x2

0.9
,

x3

0.7
,

x4

0.7
,

x5

0.4
,

x6

0.4
,  , e5,

x1

0.8
,

x2

0.8
,

x3

0.9
,

x4

0.7
,

x5

0.5
,

x6

0.6
  ,

(31)

be a fuzzy soft set over E2 ⊂ E. Now, let the parameter set P � E be as observed by the
observer. To using Maji and Roy algorithm, we firstly find
(H, E) which is the union of (F, E1) and (G, E2) as follows:

(H, E) � e1,
x1

0.8
,

x2

0.6
,

x3

0.9
,

x4

0.4
,

x5

0.8
,

x6

0.4
  , e2,

x1

0.4
,

x2

0.5
,

x3

0.7
,

x4

0.4
,

x5

0.5
,

x6

0.5
  , e3,

x1

0.6
,

x2

0.8
,

x3

0.9
,

x4

0.6
,

x5

0.7
,

x6

0.8
  ,

e4,
x1

0.6
,

x2

0.9
,

x3

0.8
,

x4

0.7
,

x5

0.4
,

x6

0.4
,  , e5,

x1

0.8
,

x2

0.8
,

x3

0.9
,

x4

0.7
,

x5

0.5
,

x6

0.6
  , e6,

x1

0.6
,

x2

0.6
,

x3

0.9
,

x4

0.7
,

x5

0.6
,

x6

0.5
  .

(32)

.e tabular representation of resultant fuzzy soft set
(H, E) will be, as in Table 1.

.e comparison table of the above resultant fuzzy soft set
is in Table 2.

Now, we compute the row-sum, column-sum, and the
score for each oi as shown in Table 3:

It is clear that our decision is to select Car 3 since the
maximum score is 28, scored by x3. To use our algorithm,
firstly, we use the basic fuzzy union (max) to get the new
effective set Λs from Λ′ and Λ′′ as follows:

Λs x1(  �
a1

0.8
,
a2

1
,

a3

0.1
,

a4

0.3
 ,

Λs x2(  �
a1

0.6
,
a2

1
,

a3

0.7
,

a4

0.5
 ,

Λs x3(  �
a1

0.3
,

a2

0.4
,
a3

0
,

a4

0.4
 ,

Λs x4(  �
a1

0.6
,

a2

0.6
,

a3

0.5
,

a4

0.5
 ,

Λs x5(  �
a1

0.7
,

a2

0.8
,

a3

0.5
,

a4

0.8
 ,

Λs x6(  �
a1

1
,
a2

1
,

a3

0.7
,

a4

0.6
 .

(33)

.en, by using the FSS (H, E) as above, Definitions 12
and 6, we obtain the following EFSS (HΛs

, E):

(H, E) �

e1,
x1

0.8
,

x2

0.6
,

x3

0.9
,

x4

0.4
,

x5

0.8
,

x6

0.4
  , e2,

x1

0.4
,

x2

0.5
,

x3

0.7
,

x4

0.4
,

x5

0.5
,

x6

0.5
  , e3,

x1

0.6
,

x2

0.8
,

x3

0.9
,

x4

0.6
,

x5

0.7
,

x6

0.8
  ,

e4,
x1

0.6
,

x2

0.9
,

x3

0.8
,

x4

0.7
,

x5

0.4
,

x6

0.4
,  , e5,

x1

0.8
,

x2

0.8
,

x3

0.9
,

x4

0.7
,

x5

0.5
,

x6

0.6
  , e6,

x1

0.6
,

x2

0.6
,

x3

0.9
,

x4

0.7
,

x5

0.6
,

x6

0.5
  

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (34)

.e tabular representation of resultant EFSS (HΛs
, E)

will be as in Table 4.
.e comparison table of the above resultant effective

fuzzy soft set is in Table 5.

Now, we compute the row-sum, column-sum, and the
score for each oi as shown in Table 6.

It is clear that our decision is to select Car 6 since the
maximum score is 17, scored by x6, and by comparing with
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Maji and Roy algorithm, we conclude that the effective setΛs

made the change in decision from Car 3 to Car 6.

5. Application of EFSS in Medical Diagnosis

.ere are many applications and theories that seek to fa-
cilitate the process of medical diagnosis, but each of these
applications and theories take into account the symptoms
that appear on the patient without looking at external effects
that can change the diagnosis completely. In this section, we

will try for the first time to find the closest diagnosis of the
disease, depending on the symptoms and external effects.

Assume that P � p1, p2, p3, p4  be a set of 4 patients in
the hospital. .e hospital diagnostic expert identified the
following symptoms to find out what patients were suffering
from:

S � s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15, s16, s17, s18, s19, s20 , (35)

Table 1: Tabular representation of (H, E).

U e1 e2 e3 e4 e5 e6

x1 0.8 0.4 0.6 0.6 0.8 0.6
x2 0.6 0.5 0.8 0.9 0.8 0.6
x3 0.9 0.7 0.9 0.8 0.9 0.9
x4 0.4 0.4 0.6 0.7 0.7 0.7
x5 0.8 0.5 0.7 0.4 0.5 0.6
x6 0.4 0.5 0.8 0.4 0.6 0.5

Table 2: Comparison table of (H, E).

U x1 x2 x3 x4 x5 x6

x1 6 3 0 4 3 4
x2 5 6 1 5 5 6
x3 6 5 6 6 6 6
x4 4 1 0 6 3 4
x5 4 3 0 3 6 4
x6 2 2 0 3 4 6

Table 3: oi scores.

Row-sum (ri) Column-sum (ti) Score (Si)

x1 20 27 −7
x2 28 20 8
x3 35 7 28
x4 18 27 −9
x5 20 27 −7
x6 17 30 −13

Table 4: Tabular representation of (HΛs
, E).

U e1 e2 e3 e4 e5 e6

x1 0.91 0.73 0.82 0.82 0.91 0.82
x2 0.88 0.85 0.94 0.97 0.94 0.88
x3 0.93 0.78 0.93 0.86 0.93 0.93
x4 0.73 0.73 0.82 0.87 0.82 0.87
x5 0.94 0.85 0.91 0.82 0.85 0.88
x6 0.9 0.92 0.97 0.9 0.93 0.92

Table 5: Comparison table of (HΛs
, E).

U x1 x2 x3 x4 x5 x6

x1 6 1 0 4 2 1
x2 5 6 4 6 5 1
x3 6 2 6 5 4 3
x4 4 0 1 6 1 0
x5 5 3 2 5 6 1
x6 5 4 4 6 5 6

Table 6: oi scores of (HΛs
, E).

Row-sum (ri) Column-sum (ti) Score (Si)

x1 14 31 −17
x2 27 16 11
x3 26 17 9
x4 12 32 −20
x5 22 23 −1
x6 30 13 17

Table 7: Patients daily activities and lives.

P a1 a2 a3 a4 a5 a6 a7 a8 a9

p1 Yes Yes No Yes Yes No No No Yes
p2 No No Yes No Yes No Yes Yes Yes
p3 Yes No No No No Yes Yes No No
p4 No No No Yes Yes No No Yes No

Table 8: Parameters-diseases relation.

D a1 a2 a3 a4 a5 a6 a7 a8 a9 |Aj|

d1 Yes Yes Yes Yes No No No No No 4
d2 Yes No No No No Yes Yes No No 3
d3 Yes No No No No Yes Yes No No 3
d4 Yes No No No Yes No No Yes Yes 4

Table 9: Tabular representation of Λd1
(pi).

(pi) a1 a2 a3 a4 a5 a6 a7 a8 a9 Sum

p1d1 1 1 0 1 0 0 0 0 0 3
p2d1 0 0 1 0 0 0 0 0 0 1
p3d1 1 0 0 0 0 0 0 0 0 1
p4d1 0 0 0 0 1 0 0 0 0 1
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where s1 � fever, s2 � dry cough, s3 � loosemotion,
s4 � shortness of breath or difficulty breathing,
s5 � headache, s6 � tiredness, s7 � aches, s8 � runny nose,
s9 � sore throat, s10 � severe pneumonia, s11 � rash,
e12 � diarrhoea, s13 � bone and joint pain, s14 � nausea,
s15 � vomiting, s16 � pain behind the eyes, s17 � chills,
s18 � sweating, s19 � abdominal pain,
ands20 � swollen glands. Also, let D � d1, d2, d3, d4  be a set
of diseases such that d1 � COVID-19, d2 � dengue fever,
d3 � malaria, and d4 � typhoid.

Suppose A � a1, a2, a3, a4, a5, a6, a7, a8  be a set of ef-
fective parameters, where a1 � in the past two weeks, he
visited a country in Europe, America, Africa, or East Asia,
a2 � he close contacted (less than 6 feet) with anyone who is
suffering from COVID-19, a3 � he works in medical centers,
a4 � he is working in large gatherings or using public

Table 10: Tabular representation of Λd2
(pi).

pi a1 a2 a3 a4 a5 a6 a7 a8 a9 Sum

p1d2 1 0 0 0 0 0 0 0 0 1
p2d2 0 0 0 0 0 0 1 0 0 1
p3d2 1 0 0 0 0 1 1 0 0 3
p4d2 0 0 0 0 0 0 0 0 0 0

Table 11: Tabular representation of Λd3
(pi).

pi a1 a2 a3 a4 a5 a6 a7 a8 a9 Sum

p1d3 1 0 0 0 0 0 0 0 0 1
p2d3 0 0 0 0 0 0 0 1 0 1
p3d3 1 0 0 0 0 1 1 0 0 3
p4d3 0 0 0 0 0 0 0 0 0 0

Table 12: Tabular representation of Λd4
(pi).

pi a1 a2 a3 a4 a5 a6 a7 a8 a9 Sum

p1d4 1 0 0 0 1 0 0 0 1 3
p2d4 0 0 0 0 1 0 0 1 1 3
p3d4 1 0 0 0 0 0 0 0 0 1
p4d4 0 0 0 0 1 0 0 1 0 2

Table 13: Tabular representation of (F, S) part 1.

P s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

p1 0.2 0.1 0.1 0.7 0.8 0.4 0 0 0.1 0
p2 0.7 0.5 0.1 0 0.8 0.9 0.6 0.2 0.3 0
p3 0.8 0.7 0.2 0 0.6 0.1 0.7 0 0.2 0
p4 0.6 0.7 0.7 0.9 0.5 0.1 0.6 0.6 0.4 0.9

Table 14: Tabular representation of (F, S) part 2.

P s11 s12 s13 s14 s15 s16 s17 s18 s19 s20

p1 0.7 0.2 0.9 0.7 0.6 0.9 0 0.1 0.7 0.7
p2 0.7 0.7 1 0.8 0 0 0.6 0.4 0.6 0
p3 0.1 0 0.9 1 0.7 0 0.6 0.6 0.4 0
p4 0.1 0.6 0.1 0.2 0 0.2 0 0 0 0

Table 15: Tabular representation of (G, S) (Part 1).

D s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

d1 1 1 1 1 0.5 0 0.5 0.5 0.5 1
d2 0 0 0 0.5 1 0.5 0 0 0 0
d3 1 0.5 0 0 1 0 1 0 0 0
d4 1 0.5 0 0 1 1 1 0 0 0

Table 16: Tabular representation of (G, S) (Part 2).

D s11 s12 s13 s14 s15 s16 s17 s18 s19 s20

d1 0 0.5 0 0 0 0 0 0 0 0
d2 1 0 1 1 1 1 0 0 0.5 1
d3 0 0 1 1 1 0 1 0.5 0.5 0
d4 0.5 1 1 1 0 0 0.5 0.5 1 0

Table 17: Tabular representation of (FΛd1
, S) part 1.

P s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

p1 0.8 0.76 0.76 0.93 0.95 0.85 0 0 0.76 0
p2 0.76 0.63 0.33 0 0.85 0.93 0.7 0.4 0.48 0
p3 0.85 0.76 0.4 0 0.7 0.33 0.76 0 0.4 0
p4 0.7 0.76 0.76 0.93 0.63 0.33 0.7 0.7 0.55 0.93

Table 18: Tabular representation of (FΛd1
, S) (part 2).

P s11 s12 s13 s14 s15 s16 s17 s18 s19 s20

p1 0.93 0.8 0.98 0.93 0.9 0.98 0 0.76 0.93 0.93
p2 0.76 0.76 1 0.85 0 0 0.7 0.55 0.7 0
p3 0.33 0 0.93 1 0.76 0 0.7 0.7 0.55 0
p4 0.33 0.7 0.33 0.4 0 0.4 0 0 0 0

Table 19: Tabular representation of (FΛd2
, S) (Part 1).

P s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

p1 0.47 0.4 0.4 0.8 0.87 0.6 0 0 0.4 0
p2 0.8 0.67 0.4 0 0.87 0.93 0.73 0.47 0.53 0
p3 1 1 1 0 1 1 1 0 1 0
p4 0.6 0.7 0.7 0.9 0.5 0.1 0.6 0.6 0.4 0.9

Table 20: Tabular representation of (FΛd2
, S) (Part 2).

P s11 s12 s13 s14 s15 s16 s17 s18 s19 s20

p1 0.8 0.47 0.93 0.8 0.73 0.93 0 0.4 0.8 0.8
p2 1 1 1 1 0 0 1 1 1 0
p3 0.1 0 0.9 1 0.7 0 0.6 0.6 0.4 0
p4 0.1 0.6 0.1 0.2 0 0.2 0 0 0 0

Table 21: Tabular representation of (FΛd3
, S) (Part 1).

P s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

p1 0.47 0.4 0.4 0.8 0.87 0.6 0 0 0.4 0
p2 0.8 0.67 0.4 0 0.87 0.93 0.73 0.47 0.53 0
p3 1 1 1 0 1 1 1 0 1 0
p4 0.6 0.7 0.7 0.9 0.5 0.1 0.6 0.6 0.4 0.9
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transportation daily, a5 � he is eating his food in the res-
taurant or eating fast food, a6 � he was in an area with
stagnant water, especially at dawn and dusk, a7 � he used to
sleep without a cover or mosquito net, a8 � eating food that
is raw or undercooked, and a9 � eating foods and beverages
purchased from street vendors. After talking with patients,

we found out the patients daily activities and lives, as in
Table 7.

.e relation between the above parameters and the given
diseases is presented in Table 8.

By using the expertise of the medical team and the in-
formation in Tables 7 and 8, we construct the effective sets
Λdj

(pi) for each patient with respect to the given diseases as
the representation, Tables 9–12.

Now, suppose the tabular representation of (F, S) (pa-
tient symptom) given in Tables 13 and 14.

Also, the tabular representation of (G, S) (model
symptom) is given in Tables 15 and 16.

w, we construct the EFSSs using Definition 6 and Ta-
bles 13 and 14, as given in Tables 17 and 24.

Finally, we compute the score table by finding the
similarity between each row in Tables 17–24 with each row
in Tables 15 and 16 and find the maximum value for each
patient and the diseases related to these values. We use the
following formula to find the similarity:

S pi, dj  �


20
l min Fdj

pi(  sl( , G dj  sl(   


20
l min Fdj

pi(  sj , G dk(  sj   

. (36)

.is step can be as follows:

S p1, d1(  �
min(0.8, 1) + min(0.76, 1) + · · · + min(0.93, 0) + min(0.93, 0)

max(0.8, 1) + max(0.76, 1) + · · · + max(0.93, 0) + max(0.93, 0)
�
4.75
16.7

� 0.28. (37)

By similar calculations, consequently, we get the score
table, as in Table 25.

It is clear from Table 25 that the first patient suffers from
dengue fever, the second patient suffers from typhoid, the
third patient suffers from malaria, and the fourth patient
suffers from COVID-19

6. Conclusion

As a new tool dealing with uncertainty, we have introduced
the effective fuzzy soft set theory which is more efficient and
useful and studied some of its properties. We also defined
basic operations on effective fuzzy soft sets, such as com-
plement, union, and intersection. .e theory has been ap-
plied to solve DM and MD problems. In future work,
researchers can generalise this concept to interval-valued
effective fuzzy soft set and they also can develop it to effective
fuzzy soft expert set to give it more efficiency.
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Table 22: Tabular representation of (FΛd3
, S) (Part 2).

P s11 s12 s13 s14 s15 s16 s17 s18 s19 s20

p1 0.8 0.47 0.93 0.8 0.73 0.93 0 0.4 0.8 0.8
p2 1 1 1 1 0 0 1 1 1 0
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