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Hybrid maize seed production is a relatively complex task due to the coexistence of three distinct types of maize plants in the �eld:
female, male, and contaminant/o�-type plants. Female and contaminant/o�-type plants’ tassels should be removed immediately
following �owering initiation, while male tassels should be retained to allow cross-pollination between male and female plants.
�erefore, development of an intelligent tassel classi�cation system is deemed critical for hybrid purity decision-making.�e research’s
primary contribution is the integration of two widely used transfer learning architectures, Inception V3 and SqueezeNet, with stacking
ensemble machine learning using four algorithms (logistic regression, support vector machine, random forest, and k-nearest neighbors)
for rapid classi�cation of tassel images. Tenfold cross-validation was used to evaluate themodel performance. Cloud computing was also
investigated using E�cientNet to compare the predictive performance of the models. �emodels’ performance was assessed using four
metrics: accuracy, AUC, precision, and recall. �e results depicted an appropriate developed model that properly distinguished male,
female, and contaminant plants. �e integration of the model with machine learnings (logistic regression, SVM, random forest, and
KNNs) enables rapid recognition of o�-type plants even though it is operated by personnel with limited skills of seed technology on
ideotype recognition. Among all the evaluated CNN architecture and stacking models, Inception V3-embedded images with logistic
regression metaclassi�er outperformed other models with accuracy of about 98%. SqueezeNet and E�cientNet provided comparable
results for consistent tassel classi�cation with slightly lower performance measures.�emodel was also subjected to a multidimensional
scaling (MDS) analysis to investigate and comprehend misclassi�cation. Male and female plants are clearly distinguished by MDS, but
female and o�-type/contamination plants are ambiguous. �is indicates that the prediction errors were caused by highly similar data
features among female and o�-type images.�e developed modern plant phenotyping model can be used to assist breeders/technicians
in maintaining the quality of large-scale hybrid maize seed production activities in Indonesia.

1. Introduction

�e Government of Indonesia has recently launched a na-
tional maize self-su�ciency acceleration program through
various approaches, including high-yielding maize hybrid
seeds, to increase domestic production. For instance, the
Ministry of Agriculture supplied certi�ed national superior
maize hybrid variety seeds nationwide, although the
implementation success rate remained constant at around

60% [1]. One of the problems faced in hybrid maize seeds is
maintaining purity and quality from the parent seeds to
produce hybrid seeds (i.e., �rst-generation seeds). Maize is a
cross-pollinating crop that is easily contaminated by pollens
from surrounding plants, later reducing seed purity and
yield potential.

Furthermore, during the implementation of this national
program, the national research agency called the Indonesian
Agency for Agricultural Research and Development
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(IAARD) was selected to execute this self-sufficiency ac-
celeration program in collaboration with more than 30
private licensed seed producers. Hybrid maize seeds are
formed from a cross between two desired maize parent lines,
namely, the male and female lines. Generally, in the field,
one row of male plants is sandwiched between four rows of
female plants (1 : 4). However, during plant growth, con-
taminant plants usually emerged due to some constraints
such as volunteer plants and adulteration of maize seeds
during preparation [2]. When entering the flowering phase,
the female parents’ tassel should be removed to allow pollen
from the male plants to fertilize the female lines, leading to
hybrid seed generation. Besides, field inspections must be
carried out carefully and regularly to ensure that all female
tassels or off-type plants have been properly removed. ,is
activity is usually done manually by a specialist or group of
specialists with different knowledge levels on plant breeding.
An additional problem faced in the production of hybrid
seeds was in the large and scattered areas, making moni-
toring and execution of activities at critical stages, such as
eliminating tassel and off-type plants, quite difficult.

In the last decade, artificial intelligence technology has
experienced significant scale-up developments, including its
application in field/on-site research. Machine learning
technology has experienced improvements, especially in the
accuracy of recognizing objects. ,e introduction of a new
technique, which is nondestructive based on CNN, has
raised the expectation for image recognition technology’s
acceleration [3]. CNN is a deep learning method from the
development of Multilayer Perceptron (MLP) designed for
two-dimensional processing data. CNN is included in the
type of Deep Neural Network (DNN) because it comprises a
deep level of recognition applied to an object. CNN is
generally applied for image data processing, including the
development of self-driving cars, distance recognition,
disease diagnosis, product marketing, and others.

Currently, modern plant phenotyping of maize using
machine learning and deep learning can differentiate tassels
between male and female parents as well as other con-
taminating plants. No off-type plants are permitted to re-
main in the field during the two parents’ flowering. Tassels
exhibit a variety of morphological characteristics, including
curvature and cohesiveness, and cohesiveness. ,e chal-
lenges faced in tassel detection include tassels that appear
unsimultaneously, different in sizes and shapes of tassels,
and other lines producing differences in colour and texture
of the tassels, changes in light illumination during capturing,
and the background of the shooting. ,us, the tassel clas-
sification should be conducted with care after the detection
[4]. Image capture of plant disease for automatic detection of
maize Northern Leaf Blight disease and tassel type were also
developed with the use of a convolution neural network and
integrated into smartphone application [5, 6]. Additionally,
the estimated time and the number of tassel emergence in
maize were managed automatically with the neural network
regression approach. Furthermore, [7] reported deep
learning based on the recurrent neural network through
preselection data to estimate maize yields in the USA. ,e
utilized constituents included weather data, soil quality, and

soil moisture collected at an interval of one hour. ,ese data
were processed using machine learning which predicted the
spatial distribution of maize yields with an accuracy of above
80%. Machine vision-based technology was used to separate
seeds based on parameters such as colour, texture, size, and
shape characteristics based on photo images which were
later applied to seed handling and seed sorting activities [8].
Other researches on object detection were introduced by
involving hyperparameter setting for kernel counting on
maize ear by using the CNN supervised learning method [9].
,e results of the parameters through training revealed that
the model is appropriate for calculating the number of seeds
on an ear automatically with a depicted correlation level of
more than 0.90.

,e integration of deep learning and machine learning
into prediction and classification tasks has attracted in-
creasing attention in recent years. By combining diverse base
machine learning estimators of various types, it is possible to
create a more performant model, referred to as an ensemble
model [10]. Ensemble methods outperformmore established
machine learning techniques referred to as base learners.
Stacking is an ensemble approach that is frequently used to
improve prediction accuracy by combining two or more
independent machine learning algorithms into a metamodel
[11]. Once it relates to prediction, stacking ensemble ma-
chine algorithms outperform single algorithms.,e stacking
of ensembles technique has been applied to a variety of
agricultural problems, including prediction, classification,
regression, and feature selection.

To address quality control concerns in maize seed
production, the study sought to develop efficient tassel
recognition methods capable of rapidly capturing various
types of maize tassels during generative development. ,e
detection model is capable of accurately identifying a variety
of tassel parameters, including height, width, branches,
another colour, glume colour, and other morphological
characteristics of a particular line.

2. Materials and Methods

2.1. Study Area. ,e study to classify maize hybrid parental
lines was conducted in 2020 in two different seasons,
namely, rainy and dry seasons, at four different locations:
Gowa, Bone, Maros, and Pangkep in South Sulawesi
Province, Republic of Indonesia. Two lines were planted,
including male parent of Nasa 29 variety (i.e., G102612 line)
and female parent (i.e., MAL03 line). Planting system
adopted was 1 : 4 ratio where one row of male plants was
sandwiched to four rows of female plants (Figure 1). All
lines/genotypes were bred and generated by the Ministry of
Agriculture, the Republic of Indonesia, in collaboration with
the International Maize and Wheat Improvement Centre
(CIMMYT). Substantial variability was observed for all
agronomic characteristics at various growing environment
conditions across the country. During plant growth, con-
tamination/off-type plants began to appear, necessitating
their immediate removal from the fields.

To prevent the genetic aspect from off-type, all two lines
were planted separately in a 0.5 ha area and isolated distance
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of approximately 300m. Each genetic material was planted
at a distance spacing of 70 cm× 25 cm with one plant per
stand. Fertilizer was applied twice at 10 and 30 days after
planting (DAP) with urea (46% N) and NPK (15% N, 15% P,
and 15% K) fertilizers with doses of 300 and 400 kg/ha,
respectively.

When entering the �owering phase, the female parents’
tassel should be removed to allow pollen from the male
plants to fertilize the female lines, leading to hybrid seed
generation. Arbitrary tassel image datasets were obtained for

female parents, male parents, and contaminant plants. �e
contamination plants (neither male nor female plant) fre-
quently existed as volunteer plants that should be quickly
removed, such as Mr14, CLYN230, and CY7 lines. �e
dataset collected from the parental lines di�ered regarding
the tassel types and was trained and validated with the deep
learning CNN model. Images of the experimental sites were
captured using an Inspire 2 drone equipped with a Zenmuse
X5 Camera and 3-Axis Gimbal with 15 mmf/1.7 lenses,
whereas the tassel image was captured using a high-

Mal 03 (Female) Mal 03 (Female) G102612 (Male) G102612 (Male)

Various Off-type/contamination lines (Mr14, CLYN230, and CY7 lines)

Figure 1: Tassel/�ower removal and types of parental lines existed in the �eld.
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resolution CCD Digital Camera (Samsung). ,e captured
maize tassel datasets were utilized for training and valida-
tion, as shown in Table 1. All tassel images were divided into
80% for model development using training datasets and the
remaining 20% to validate tassel datasets. ,is method
follows the majority of machine learning studies’ recom-
mendations that the validation set should be 10%–30% of the
total dataset [12].

2.2. Model Development. ,e classification model for maize
hybrid lines was developed using the Convolutional Neural
Network (CNN) algorithm and was based on tassel-type
features. CNN is the Multilayer Perceptron (MLP), which is
designed to process two-dimensional data. Meanwhile, CNN
is included in Deep Neural Network (DNN) analysis because
of its high deep network that has been applied in several data
image classification. Besides, CNN is a type of neural net-
work commonly used in image data that can detect and
recognize objects of an image. Generally, it does much from
the usual neural network. Also, it consists of neurons that
have weight, bias, and activation functions. However, the
only difference can be seen in the architecture divided into
two parts: Feature Extraction Layer (FEL) and Fully Con-
nected Layer. FEL processed an image into features in the
form of numbers, thus representing an image. Additionally,
FEL consists of two parts, namely, the convolutional layer
and the pooling layer.

Much of recent research on deep CNN has focused on
increasing the accuracy of computer vision datasets, in-
cluding improvement of network architecture. In this study,
the classification of parental lines hybrid maize variety was
developed by comparing several well-known CNN archi-
tectures, that is, Inception V3, SqueezeNet, and EfficientNet-
B1. Inception V3 and SqueezeNet CNN analysis were done
by using Orange visual programming. Additionally, Effi-
cientNet-B1 execution was done in Google collaborator
GPU deep learning service.

2.2.1. Ensemble Machine Learning. Transfer learning was
combined with a deep learning model and several machine
learning algorithms in this study to determine the type of
parental lines (female line, male line, and off-type lines).
Transfer learning was used to create the features, which were
generated using the Inception V3 and SqueezeNet models.
,emodels were built using logistic regression (LR), support
vector machine (SVM), random forest (RF), and k-nearest
neighbors (KNN) algorithms. By comparing the contribu-
tion of different models, the best model can be chosen as the
base model for the stacking stage. ,e overall framework for
the detection of maize parental lines images using ensemble
machine learning is shown in Figure 2.

Image embedding was used for proceeding tassel clas-
sification on parental maize lines using Orange Software
[13]. ,e embedding process will generate a vector repre-
sentation of each image in a large number of features from a
deep network. ,e Keras Python library provides an in-
terface to the InceptionV3 and SqueezeNet tassel detection
models. Inception V3 is among the CNN architectures that

Szegedy first introduced [14]. ,e study involved Inception
V3 by considering that auxiliary classifiers did not con-
tribute much during the training stage in the previous
versions, and the possibility of fixing Inception V2 without
drastically changing modules should be investigated further.
As a solution, Inception V3 was involved in the study where
all the improvements over Inception v2 were involved, such
as the use of RMSProp optimizer, factorized 7× 7 convo-
lutions, batch norm in the auxiliary classifiers, and label
smoothing (a type of regularizing component added to a loss
formula which serves to prevent overfitting). Inception V3
represents an image as a set of 2048 features, which can then
be further processed using supervised or unsupervised
machine learning techniques. Figure 3 depicts the ensemble
process using transfer learning based on the Inception V3
model.

Another model that was also assessed in the developed
framework is SqueezeNet, which was done through transfer
learning from the pretrained ImageNet datasets. SqueezeNet
transforms raw images into their vector representation using
a Deep Neural Network that was trained on millions of real-
life prints (called image embedding). SqueezeNet is a deep
model with microarchitecture to enable accurate image
classification with fewer parameters [15]. It has a vital pa-
rameter, defined as a fire model that comprises a squeeze
convolutional layer that has filters fitting into an expanded
layer with a mix of convolutional field filters. It has fewer
parameters and offers several advantages, such as a more
efficient distributed training communication among servers
and faster training time due to the small model architecture.
SqueezeNet implemented three significant strategies for
building efficient network architecture; that is, instead of
3× 3, SqueezeNet used 1× 1 filters and expanded into
convolution filters (called fire module). Also, a bypass
system was employed to increase the filters per fire module.
Max-pooling and global average pooling were involved
before generating prediction/classification. Figure 4 depicts
the ensemble process using transfer learning based on the
SqueezeNet model. A fixed training/validation percentage of
the sampling method was applied to assess the performance
test and score of the tassel prediction by incorporating four
popular machine learning methods: logistic regression,
support vector machine, random forest, and k-nearest
neighbors.

2.2.2. Machine Learning Algorithms. Machine learning has
recently gained popularity in the field of pattern recognition,
including image embedding, particularly in agricultural
imaging. In this study, we examined a large number of
features from a deep network via transfer learning of In-
ception V3 and SqueezeNet, as well as four popular machine
learning models, that is, LR, RF, SVM, and KNN.

Logistic regression (LR) aimed to model the probability
of an event occurring depending on the independent vari-
ables’ values, in either numerical or categorical value. In
machine learning, LR is used to classify data observations by
estimating the probability that the observation is in a par-
ticular category. For example, the off-type plant’s
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probabilities in the maize �eld can be predicted by various
morphological information such as tassel shape, colour,
glume, circularity, and silk colour. LR is also used to predict
the e�ect of a series of variables on a binary response
variable.

Support vector machine (SVM) is a type of machine
learning to precisely classify di�erent objects by drawing a
decision boundary known as a hyperplane near the extreme
points in the dataset. Essentially, SVM is a frontier that best
segregates the two classes by creating a decision boundary
that segregates the two classes. SVM can be used in mul-
tidimensional datasets, and the data points are referred to as
vectors as they have coordinates within the space of data. In
high-dimensional space, a function was used to transform
the data from two-dimensional to three-dimensional fea-
tures. A kernel trick was adopted to reduce the computa-
tional cost of a function that takes as inputs vectors in the
original space and returns the vectors’ dot product in the
feature space (kernel function). Among the popular kernel
types to transform the data into high-dimensional features
are RBF, sigmoid, and polynomial. By selecting the ap-
propriate kernel, high accuracy in classifying objects is
permitted.

Random forests (RF) combine the simplicity of decision
trees with various �exibility, resulting in a fast improvement
in accuracy. RF makes a simple yet e�ective machine
learning method for optimal classi�cation or prediction. RF
was created by creating a bootstrap dataset by randomly
selecting the samples from the original dataset. Ensemble
model through aggregations will improve the accuracy of RF
and reduce the cost associated with storing and getting
inferences from multiple models.

K-nearest neighbors (KNN) is a classi�cationmethod for
a particular dataset based on previously classi�ed data. KNN
is supervised learning, where the results of new query in-
stances are classi�ed based on the majority of the existing
categories’ proximity. Proximity can be thought of as the
inverse of distance or inversely proportional to distance.�e
smaller the distance between two instances, the greater the
“proximity” between the two cases. �us, the k-nearest
neighbors of an instance are de�ned as the k instance with
the smallest distance/greatest proximity.

2.2.3. Cross-Validation Algorithms. K-fold cross-validation
is a technique for determining the average success rate of a

system by performing redundancy on the input attributes
and testing the system for several random input attributes.
Cross-validation on a k-fold scale begins by dividing the
desired number of n-fold datasets.�e �rst fold occurs when
the �rst part of the data is considered as validation data and
the remaining as training data. �en, using that portion of
the data, determine the accuracy, similarity, or proximity of
a measurement result to the actual number or data. �e
second fold occurs when the second part of the data is
treated as validation data, and the remaining data is treated
as training data. Furthermore, accuracy is calculated by
segmenting the data and continuing until it reaches the
k-fold. Calculate the average precision of the k accuracy
pieces mentioned previously. �is average precision be-
comes the �nal precision. Figure 5 illustrates the overall
process of k-folds.

2.2.4. Model Stacking. Stacking is a type of ensemble ma-
chine learning algorithm that utilizes metalearning algo-
rithms to determine the optimal way to combine predictions
from several base models. It is primarily used to train a new

Table 1: Maize tassel datasets used for the case study.

Trial �eld locations Number Lines Training Validation
Gowa_02 87 Female Mal 03 √
Bone_02 274 Female Mal 03 √
Pangkep_02 168 Female Mal 03 √
Gowa_01 102 Male-G102612 √
Bone_01 267 Male-G102612 √
Maros_01 160 Male-G102612 √
Gowa_03 89 Others/contamination √
Bone_03 320 Others/contamination √
Pangkep_03 120 Others/contamination √
Total 1587 images

Stacking process

Images of Maize Tassel

Image viewer

Vector features

New labels

KNNRFSVMLR

Machine learning

SqueezenetInception-V3

Image Embedding

Figure 2:�e overall framework for the detection of maize parental
lines in this study.
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model using the output of multiple weak learners. Wolpert
[16] introduced the stacking algorithm and generated a new
direction in the �eld of combined models. In comparison to
base models, the stacking model outperformed them.
Sigletos et al. [17] conducted a thorough comparison of the
bagging, boosting, and stacking algorithms and discovered
that the stacking algorithm o�ers signi�cant robustness
bene�ts.

�e model was developed over the sequence of a two-
stage training procedure. �e model stacking process is
described as follows: (1) Using k-fold cross-validation, train
the base model on the same datasets as the test model. (2)
Using k-fold cross-validation, select the m base models that
have signi�cant performance for prediction. (3) Use the
mean value of the base models’ k-fold cross-validation as the
new features. (4) Train a senior model using the new features

n0 True

n0 True

n0 True

………….

n2045 True

n2046 True

n2047 True

Logistic regression

Grid Size Reduction
Grid Size Reduction

Input:299×299×3.Output:8×8

5x Inception Module 4x Inception Module
2x Inception Module

Auxiliary

Final part : 8×8×2048

SVM

KNN 
Random forest

Male line
Female line

Contamination line
Stacking

Convolution
AvgPool
MaxPool

Dropout
Concat

So�max
Fully connected

Figure 3: Proposed ensemble process using transfer learning based on the Inception V3 model.
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selected in the previous step. While training with new
features, the 5-fold cross-validation algorithm was used to
ensure the robustness of the new features. Following that, LR
was used as the metamodel to construct the model and make
a �nal prediction in the subsequent stage. Figure 6 shows the
overall �ow of the model stacking process.

2.2.5. E�cientNet-B1. E�cientNet is a relatively new-scale
neural architecture search to e�ciently scale up CNN’s size.
�e signi�cant advantages of E�cientNet include higher
accuracy, e�ciency, and scaling of the CNNmodel [18].�is
model is a compact model and may be combined with
pretrained models for the purpose of determining the op-
timal scaling parameters for the computational process. �is
model also integrated with the TensorFlow Keras application
ecosystem for executing the E�cientNet model. E�cientNet
comprises �ve active modules that will be further combined
to build a subblock in a skip connection. E�cientNet
consisted of eight versions from E�cientNet-B0 to B8
(Figure 7). Model architecture is almost the same except for
the number of feature maps used in the model version.

2.3. Accuracy Assessment. Four popular measures were
employed to determine the robustness of the models, that is,
classi�cation accuracy (CA), precision, recall, and AUC
(equations (1) to (3) and AUC) as follows:

Accuracy �
TP + TN

TP + FN + TN + FP
× 100%, (1)

Precision �
TP

TP + FP
, (2)

Recall �
TP

TP + FN
. (3)

True Negative (TN) values are data that are correctly
classi�ed as negative or false outputs. True Positive (TP) is
data that is properly classi�ed as positive or true output.
False Positive (FP) is data that is classi�ed incorrectly if the
output is positive or true. False Negative (FN) is data that is
classi�ed incorrectly. Also, a confusion matrix was used for
summarizing the performance of the tassel classi�cation
model.

�e AUC is used to measure performance and separate
them among di�erent classi�cation thresholds. Meanwhile,

the AUC probability ranked classi�cation model randomly
with the positive value ranked higher than the negative. �e
values of AUC range between 0 and 1. For instance, a model
that is predicted as 100% wrong has an AUC value of 0.0,
whereas the prediction of 100% correct AUC value is 1.0.
AUC was preferably used for this research because it de-
termines how well predictions are ranked rather than using
their absolute values.

3. Results and Discussion

3.1. Agronomic Characteristics of Parental Lines. Maize seeds
are produced by crossing male and female parental lines of
the desired characteristics of the varieties. For instance, this
study used the male and female parents of the commercial
maize variety (i.e., Nasa 29) with speci�c tassel features. �e
�eld was planted with four rows of female plants and one
row of male plants (1 : 4 proportion of male: female). During
the onset of the �owering phase, the tassel of the female
plants (Mal03) was removed to prevent cross-pollination
from another source through dispersal agents. �e pollen
dust from the male plants (G102612) was used to pollinate
the female, producing the �rst generation called hybrid.
Field researchers carried out strict surveillance to ensure the
female tassel was carefully, regularly, and completely re-
moved. �is activity was done manually and involved many
�eld researchers and technicians with di�erent expertise
knowledge within �ve to ten days per hectare.

Proper detection of the type of maize tassel will sig-
ni�cantly a�ect the purity of the seeds being produced. Prior
to seed marketing in Indonesia, the national standard re-
quires 98 percent purity and a 2% germination rate. Ad-
ditionally, o�-type/contamination tassel removal must
consider several factors such as plant agronomic and en-
vironmental parameters. �e male/G102612 line was de-
veloped from the recombination of 5 drought-tolerant lines
introduced by CIMMYT in 2005. Additionally, the female/
Mal03 line was developed from a base population that was
resistant to downy mildew disease as part of the Asian
BiotechnologyMaize Network (AMBIONET) project, which
was a collaboration between the CIMMYTand IAARD. �e
agronomic characters of the two parental lines and other
contaminant lines are shown in Table 2.

�e selection of appropriate lines should consider the
genetic background and combine ability, either general
combining ability or speci�c combining ability of the crossed
lines. In general, the ideal parental pair for a hybrid has a
good speci�c combining ability value, taking into account
the tested lines of agronomic characters. Morphologically,
the female/Mal03 parent was characterized by tassels with an
upright and compact type with a length ranging from 230 to
260mm and the number of branches ranging from 12 to 13
branches with spikelets in each branch ranging from 23 to 73
spikelets per plant. �e compact and erect tassel character
and semierect leaf type are expected to minimize obstacles in
male plants’ pollination so that the pollination occurs
smoothly and more responsive toward high yield [19]. �e
choice of Mal03 as the female parent was due to the excellent

10 folds 1 2 3 4 5 6 7 8 9 10

1st fold 

2nd fold
. . . . . . . .
10th fold

Training dataset
Validation dataset

Figure 5: K-folds cross-validation.
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cob appearance, enabling a good grain �lling and increasing
seed yield.

�e male/G102612 parent has di�erent morphological
features compared to the female parent. �e choice of
G102612 as the male parent was mainly due to the longer
shape ranging from 320 to 400mm, with a higher number of
branches and spikelets surrounding the tassel. Furthermore,
the good tassel performance enables the production of huge
amounts of pollen applied to the female plants through
cross-pollination. Another merit of the male line was the
compact tassel shape and its ability to slowly release pollens
to enhance female plants’ pollination. As for male perfor-
mance, our previous research indicated that the G102612
line could release pollen up to 10 days after the initiation of
the maize hybrid tassel.

3.2. Metamodel Comparison for Accurate Classi�cations.
�ree popular deep learning models were trained and val-
idated in two cloud-based software services, namely, GPU-
based Google collab and Orange Software. Notwithstanding,
the model framework relies on detailed tassel morphological

information input, which is crucial for generating accurate
classi�cation. Two popular CNNmodels were also examined
for our study as comparisons, that is, Inception model
Version 3 and SqueezeNet using visual programming Or-
ange 3.1 environment. InceptionV3 is pretrained on
ImageNet datasets, and the embedding process makes use of
activation from the model’s penultimate layer, which rep-
resents the image as a vector. Transfer learning was involved
by generating a vector representation of each image in a huge
number of features from the Inception model. SqueezeNet is
built on ImageNet using the pretrained model weights. �e
embedding is pre-SoftMax (�atten10) layer activation. As
many as 2048 vector values (de�ned as N0 until N2047) were
generated to allow visual assignment of tassels according to
their classes (male, female, or o�-type/contamination). �e
model has a total of 3,251,763 parameters that were further
used to train and validate the tassel classi�cation model.

To build models for predicting parental lines, we used
traditional machine learning and ensemble methods
(stacking model) in combination with pretrained Inception
V3 and SqueezeNet. Four popular machine learning tech-
niques were used in this study: logistic regression, support
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Set /
New
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Meta
Learner

(Aggregates)
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Basemodel 1
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Basemodel 2
Fold 2
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Figure 6: Model stacking (LR aggregating input).
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Figure 7: �e model architecture of E�cientNet-B1.
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vector machine, random forest, and k-nearest neighbor.
Similar to the EfficientNet datasets, 80% of datasets were
used for training the model and the remaining 20% for
validation. ,e tuning of hyperparameters will be included
in order to obtain optimal prediction, as shown in Table 3.
Cross-validation was applied to derive predictions from
training data and to train higher-level machine learning
models. Tenfold cross-validation was adopted to evaluate all
nine unstacking examined models.

,e EfficientNet B1 used in this study is part of the
TensorFlow and/or Keras applications ecosystem of pre-
trained models to adapt the transfer learning paradigm and
to design and implement the prediction framework by
considering the parameters optimization. TensorFlow is a
popular software library used by engineers to study deep
computation [24]. Integrating TensorFlow with Keras can
execute the model faster in an efficient model-building
approach.

,e input shape was set to 240× 240-pixel image reso-
lution, followed by advanced data augmentation schemes
such as flip, rotation, zoom, and shear, which were applied
prior to model training. EfficientNet B1 utilizes a stochastic
depth regularization to drop out neurons and the entire path
of a network. ,e hyperparameter model used in the sim-
ulation included an optimal learning rate of 0.001; the
number of epochs was 50 with three classification classes:
Mal03, G102612, and contamination plant.,e loss function
used was the neural network cross-entropy loss which was
optimized using the Adam optimizer. A SoftMax activation
dropout and average pooling were adopted to smoothen out
the last output dimension from the EfficientNet with noisy-
student weight. ,e noisy student is a semisupervised
learning technique that uses a larger or equal-sized student
model and adds noise to the student during training [25].
,e model has 7,890,051 parameters, with a composition of
7,828,003 trainable parameters and 62,048 nontrainable
parameters. A summary of the model parameter of blocks
1A and 7b is shown in Table 4. ,ese long blocks will have a
varying number of subblocks with the increase of the model
version.

,e output was presented as model loss and accuracy,
respectively, in Figure 8, which were later used to assess the
impact of parameter setting on the model performance. ,e
model was first tested against the training datasets to check
the accuracy of tassel classification. ,e model gave a good
precision in matching features with an approximation of
99.8% of the tassels correctly classified. Simultaneously, the
model validation indicated that the magnitude of the
model’s response to the input change might cause a less
significant reduction in the model accuracy of 94.9%. Ad-
justment of the dropout layer parameter to an optimum
value of 0.5 provided a maximum increase in model ac-
curacy for distinguishing features.

Meanwhile, the loss value of the model during training
and validation processes remains stagnant at 0.15. A few
errors in classification may be attributed to the model’s
difficulties to quickly identify tassels with similar morpho-
logical shapes, particularly female and off-type/contaminant
categories. Most tassels were vulnerable to contamination
from the surrounding maize plant due to exposure in the
field.

Four indices, accuracy, AUC, precision, and recall, were
used to assess the model performances. Inception V3 (LR
with ridge regularization type/Model 4) and SVMwith radial
basis function kernel/RBF (Model 2) showed a performance
rate of 0.975 or 97.50% and 0.967 or 96.70% correctly
classified on test data. KNN and RF performed worse than
LR and SVM, although the accuracy level was still under
acceptable level, that is, 95.30% and 91.50%, respectively.
Model improvement was also assessed by incorporating a
newer CNN architecture, SqueezeNet, as a light image
embedding widget to generate 1000 vector values (defined as
N0 until N999) assigned to the tassel class. ,e model has a
total of 1,587.000 parameters, the lowest parameter numbers
as compared to the EfficientNet and Inception V3. SVM and
LR SqueezeNet (Models 6 and 8, resp.) perform better at
predicting tassels than KNN and RF models (Table 5).

Two additional models were evaluated for accuracy using
ensemble methods: Inception V3 (LR aggregate) and
SqueezeNet (SVM aggregate). Since LR, SVM, and KNN

Table 2: Description of male and female parental lines used in the study.

Variable Male parent/G102612 Female parent/Mal03

Pedigree Extracted from drought-tolerant CIMMYT inbreed
lines

Extracted from downy mildew tolerant
lines

Days to tasseling (days after
planting) 55 50

Tassel weight (g) 35.40–43.31 20.3–23.5
Tassel area (mm2) 4105–13.000 3653–5664
Perimeter (mm) 210–1,752 124–688
Tassel length (mm) 320–400 230–260
Spike length (mm) 243–310 135–162
Number of branches 13–15 12–13
Number of spikelets 41–74 27–73
Tassel compactness Compact Compact
Tassel shape Dropping Erect
Glume colour Green Green
Another colour Green-creamy Greyed-red
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outperform all other models, they were used as the base
models in stacking running. Stacking works by deducing
individual learners’ biases in relation to the training set [26].

During the initial training stage, the three models generated
new features, and cross-validation was used to demonstrate
objective accuracy. ,e final ensemble model is validated

Table 4: Model summary of EfficientNet B1.

Layer (type) Output shape Param # Connected to
input (InputLayer) (None, 240, 240, 3) 0
stem_conv (Conv2D) (None, 120, 120, 32) 864 input_2[0][0]
stem_bn (BatchNormalization) (None, 120, 120, 32) 128 stem_conv[0][0]
stem_activation (Activation) (None, 120, 120, 32) 0 stem_bn[0][0]
block1a_dwconv (DepthwiseConv2D) (None, 120, 120, 32) 288 stem_activation[0][0]
block1a_bn (BatchNormalization) (None, 120, 120, 32) 128 block1a_dwconv[0][0]
block1a_activation (Activation) (None, 120, 120, 32) 0 block1a_bn[0][0]
block1a_se_squeeze (GlobalAvera) (None, 32) 0 block1a_activation[0][0]
block1a_se_reshape (Reshape) (None, 1, 1, 32) 0 block1a_se_squeeze[0][0]
block1a_se_reduce (Conv2D) (None, 1, 1, 8) 264 block1a_se_reshape[0][0]
block1a_se_expand (Conv2D) (None, 1, 1, 32) 288 block1a_se_reduce[0][0]
block1a_se_excite (Multiply) (None, 120, 120, 32) 0 block1a_activation[0][0]

block1a_se_expand[0][0]
block1a_project_conv (Conv2D) (None, 120, 120, 16) 512 block1a_se_excite[0][0]
block1a_project_bn (BatchNormal) (None, 120, 120, 16) 64 block1a_project_conv[0][0]
Continue to block 1b until block 7a (script not shown)
block7b_expand_conv (Conv2D) (None, 8, 8, 1920) 614400 block7a_project_bn[0][0]
block7b_expand_bn (BatchNormali) (None, 8, 8, 1920) 7680 block7b_expand_conv[0][0]
block7b_expand_activation (Acti) (None, 8, 8, 1920) 0 block7b_expand_bn[0][0]
block7b_dwconv (DepthwiseConv2D) (None, 8, 8, 1920) 17280 block7b_expand_activation[0][0]
block7b_bn (BatchNormalization) (None, 8, 8, 1920) 7680 block7b_dwconv[0][0]
block7b_activation (Activation) (None, 8, 8, 1920) 0 block7b_bn[0][0]
block7b_se_squeeze (GlobalAvera) (None, 1920) 0 block7b_activation[0][0]
block7b_se_reshape (Reshape) (None, 1, 1, 1920) 0 block7b_se_squeeze[0][0]
block7b_se_reduce (Conv2D) (None, 1, 1, 80) 153680 block7b_se_reshape[0][0]
block7b_se_expand (Conv2D) (None, 1, 1, 1920) 155520 block7b_se_reduce[0][0]
block7b_se_excite (Multiply) (None, 8, 8, 1920) 0 block7b_activation[0][0]

block7b_se_expand[0][0]
block7b_project_conv (Conv2D) (None, 8, 8, 320) 614400 block7b_se_excite[0][0]
block7b_project_bn (BatchNormal) (None, 8, 8, 320) 1280 block7b_project_conv[0][0]
block7b_drop (FixedDropout) (None, 8, 8, 320) 0 block7b_project_bn[0][0]
block7b_add (Add) (None, 8, 8, 320) 0 block7b_drop[0][0]

block7a_project_bn[0][0]
top_conv (Conv2D) (None, 8, 8, 1280) 409600 block7b_add[0][0]
top_bn (BatchNormalization) (None, 8, 8, 1280) 5120 top_conv[0][0]
top_activation (Activation) (None, 8, 8, 1280) 0 top_bn[0][0]
global_average_pooling2d_1 (Glo) (None, 1280) 0 top_activation[0][0]
dropout_4 (Dropout) (None, 1280) 0 global_average_pooling2d_1[0][0]
dense_4 (Dense) (None, 1024) 1311744 dropout_4[0][0]
dense_5 (Dense) (None, 3) 3075 dense_4[0][0]
Layer (type) Output shape Param # Connected to
Input (InputLayer) (None, 240, 240, 3) 0

Table 3: Setting of ML model parameters.

No Method/model Hyperparameter settings References

1 Logistic regression Regularization� ridge (L2);
cost strength (C)� 1 [20]

2 Support vector machine
Kernel� radial basis function (RBF),

tolerance� 0.001, degree� 3, cost� 1.00, and
iteration� 100

[21]

3 Random forest N_estimator� 70, criterion� entropy, and
limit depth� 3 [22]

4 KNN Neighbors� 5, weight� uniform (all neighbors equally weighted), and metric�Euclidean

5 Ensemble model
(stacking)

Final estimator� logistic regression; classifiers� random forest, support vector machine, and
KNN [23]
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using LR and SVM algorithms. �e model selection process
is critical to the performance of the stacking model. All base
models should perform admirably. Following model selec-
tion, there are no additional limitations on the newly created
features. �e stacking model and the other models’ evalu-
ation results are summarized in Table 6.

Table 6 indicated that the Inception V3 stacking model
with LR (Model 10) produced the most accurate results.
Additionally, the SqueezeNet stacking model with SVM
outperformed the KNN and RF combination, indicating that
the combination of stacking signi�cantly improved the
model’s performance. Combining Inception V3 deep
learning and LR as metalearner, stacking ensemble produced
the best classi�cation performance. Additionally, it dem-
onstrated slightly improved classi�cation performance for
the datasets when SqueezeNet-SVMmetalearners were used.
�is result demonstrated that stacking LR models can sig-
ni�cantly improve prediction performance without re-
quiring additional parameter tuning. In terms of
performance, the stacking model outperformed the others in
terms of accuracy, AUC, precision, and recall (Figure 9).
Likewise, E�cientNet B1 showed a lower performance, al-
though the cores are still comparable with approximately 4%
di�erence with the best model. By �ne-tuning or changing
the B version of E�cientNet from B1 to a higher version, it is
possible to explore a deeper network and increase the
model’s accuracy. Model ensemble has been shown to be

superior to traditional ML in making predictions [27].
Additionally, [28] reported that incorporating logistic re-
gression, support vector machine, and neural network ap-
proaches into Fuzzy Dempster-Shafer (FDS) analysis
improves the classi�cation accuracy of paddy rice images
signi�cantly.

A simple corresponding plot of prediction errors was
created for each of the evaluation datasets in order to in-
vestigate the e�ect of the various tassel traits on classi�cation
ability (Figure 10). �e prediction errors indicate how
perplexed the model is while predicting the tassel type. �e
plot indicates that the majority of misclassi�cation occurs in
female and contamination lines, whereas male lines exhibit
less misclassi�cation. Breeding of hybrid maize is essential
for developing new plant varieties with higher yield potential
and diseased resistance. Tassel morphology is considered
one of the most essential traits for generating high purity
maize hybrid [29]. Several lines were observed with slightly
similar tassel morphological characteristics, including
Mal03, CLYN 230, and CY7 (parental lines of other varieties)
variety, which potentially makes misclassi�cation. �e male
parent has also shown slightly similar attributes to the Mr14
line (parental line of other varieties). Further, the CNN
model is susceptible to the slight change of tassel input.
Tassel that emergedmainly occurred between 50 and 54 days
after planting under a tropical lowland environment.
However, the tassel that emerged within 3-4 days earlier
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Figure 8: Variations in model accuracy and loss at the training and testing analysis.

Table 5: Model metrics assessment without stacking model.

Model Metrics
Accuracy AUC Precision Recall

Model 1 E�cient net V1 0.949 0.962 0.948 0.949
Model 2 Inception V3 (SVM) 0.967 0.980 0.970 0.974
Model 3 Inception V3 (RF) 0.915 0.980 0.906 0.908
Model 4 Inception V3 (LR) 0.975 0.996 0.975 0.975
Model 5 Inception V3 (KNN) 0.953 0.992 0.954 0.950
Model 6 SqueezeNet (SVM) 0.972 0.997 0.975 0.974
Model 7 SqueezeNet (RF) 0.910 0.982 0.917 0.918
Model 8 SqueezeNet (LR) 0.969 0.996 0.963 0.962
Model 9 SqueezeNet (KNN) 0.950 0.990 0.945 0.944
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produced a di�erent pattern of pollen shed and hanging o�
of the tassel. After emerging for 7–10 days, the tassel will
gradually be dried o�, which could be attributed to envi-
ronmental conditions. Illumination and background images
were factors that a�ected the proper detection of the tassel at
random moments. Under natural conditions, information
extraction from the plant would produce substantial
amounts of noise such as the surrounding leaf, skylight, and
sunshine illumination. Furthermore, [30] explained that
computer vision advancement allows the machine to
identify and detect tassel location with a challenging

accuracy in�uenced by background information. Besides,
[31] also reported that the overlapping technique used in this
study was one commonly used in the detection of the maize
tassel worldwide using global regression [32–34] as well as
local regression [35–38].

3.3. Interactive Data Visualization. �e CNN method is a
complex model, and many researchers have not fully un-
derstood the knowledge of network operations and be-
haviour in achieving good performance. In many cases, trial
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Figure 9: Comparison measures to determine the robustness of the models.

Table 6: Model metrics assessment with stacking model.

Model Metrics
Accuracy AUC Precision Recall

Model 1 E�cient net V1 0.949 0.962 0.948 0.949
Model 2 Inception V3 (SVM) 0.967 0.980 0.970 0.974
Model 3 Inception V3 (RF) 0.915 0.980 0.906 0.908
Model 4 Inception V3 (LR) 0.975 0.996 0.975 0.975
Model 5 Inception V3 (KNN) 0.953 0.992 0.954 0.950
Model 6 SqueezeNet (SVM) 0.972 0.997 0.975 0.974
Model 7 SqueezeNet (RF) 0.910 0.982 0.917 0.918
Model 8 SqueezeNet (LR) 0.969 0.996 0.963 0.962
Model 9 SqueezeNet (KNN) 0.950 0.990 0.945 0.944
Model 10 Inception V3 (stacking model) 0.980 0.998 0.98 0.979
Model 11 SqueezeNet (stacking model) 0.974 0.992 0.966 0.967
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and error methods have been deployed to ascertain the
tuning parameters and network architecture to produce
optimal results where needed. During the training process, a
layer visualization was performed to observe how the model
identi�ed the inputs that were entered into the model. �e
weights of the convolution process were visualized to esti-
mate how well the model can be trained. A good training
model usually has a smooth and continuous �lter, whereas
the over�tting model will display a pattern with lots of noise
[39].�e visualizations becamemore complex by encoding a
more profound process of extracting features that were
actively performed. Furthermore, a connected layer was
mainly used to reconnect all nodes and determine which
node was the most correlated with a particular class. Al-
though the training visualization process has been carried
out regarding the di�erences in tassels’ morphology, the
types of tassels that are o� type are sometimes complicated
to analyse even by using visual observation.

To explore and gain deeper information on misclassi-
�cation and make sense of it, a multidimensional scaling

(MDS) analysis was applied to the model. Firstly, all vector
parameters of the deep learning model were fed into a hi-
erarchical clustering widget to generate a tassel dendrogram
to classify each input parameter’s similarity according to
their target class. �e Euclidian distance was applied to
calculate the spaces between the embedded image param-
eters and display the result by constructing a connecting
dendrogram. For further exploration, an MDS analysis was
involved in projecting multidimensional data to a 2D space
to allow a deeper understanding of the dataset’s underlying
pattern. �e work�ow of the dendrogram and multidi-
mensional data projection is shown in Figure 11.

�e highlighted MDS plot is shown in Figure 7 and
derived from three di�erent maize lines/genotypes classes
and has various vector features related to the line/genotype
class.�ere are three groups, blue for male plants (G102612),
red for female plants (Mal03), and green for o�-type plants.
MDS separates the G102612 and Mal03 plants very well, and
the separation is less pronounced between Mal03 and o�-
type plants (Figure 7). �is indicates that the prediction
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errors mainly occurred between Mal03 and off-type plants
due to the highly similar data features, making it difficult for
the model to accurately diagnose these two classes in several
datasets. ,is unsupervised data is very useful to help plant
breeders to get insight into the morphological aspects and
additional information from big data processing of plant
features (over 3,251,763 parameters).

Several studies indicated that the problematic light
condition affects the overall classification of the model being
tested [40]. Several False Negative cases were found in the
classification process, especially in tassels that had similar
shapes. Breeders or technicians assigned for detasseling
activities in the field were generally made up of specialists,
fully equipped with technical knowledge to differentiate off-
type lines not based only on tassel characters but also on
other supporting factors such as leaf shape, type, leaf angle,
and hair colour. Another essential method used to improve
the accuracy of tassel-type classification was rearranging the
input image in the relevant region of interest. It enforced the
network to identify the line-off-type from the entirely ap-
propriate, focused area. Additionally, a maximum time is
warranted at a fixed interval for capturing the tassel before
its rupture and also to prevent pollens from off-type lines to
adulterate the hybrid maize seeds produced.

4. Conclusions

,e classification of lines was performed using deep learning
and ensemble machine learning combinations. ,is pair of
cutting-edge tools is capable of distinguishing between tassel
morphological characteristics. ,ree popular CNN models
were examined for the classification of hybrid maize parental
lines based on their tassel characteristics: Inception V3,
SqueezeNet, and EfficientNet. To summarize, stacking with
advanced deep learning as the base learner and logistic re-
gression as the metalearner may be considered the optimal
classification model for tassel classification and removal
during seed production. ,e accuracy of the stacking model
Inception V3-logistic regression is 98 percent. It also proves
that model stacking is effective for high-dimensional features.
Similarly, SqueezeNet and EfficientNet B1 demonstrated
slightly lower performance, despite the fact that their scores are
comparable. To further investigate, a multidimensional scaling
analysis was performed by projecting multidimensional data
to a two-dimensional space. ,is analysis revealed that pre-
diction errors occurred primarily between female and off-type
plants due to the highly similar data features, making it dif-
ficult for the model to accurately diagnose these two classes
across multiple datasets. ,e ensemble model is advantageous
for assisting plant breeders in gaining insight into morpho-
logical aspects and additional information derived from big
data processing of plant characteristics. Further research is
required to incorporate machine learning into smartphones to
enable in-field and real-time tassel classification.
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analytics by visual programming through integration of deep
models and small-scale machine learning,” Nature Commu-
nications, vol. 10, p. 4551, 2019.

14 Applied Computational Intelligence and Soft Computing



[14] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV,
USA, December 2016.

[15] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf,
W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level ac-
curacy with 50x fewer parameters and <0.5MB model size,”
arXiv, 2016.

[16] D. H. Wolpert, “Stacked generalization neural networks 5
241–59,” 1992.

[17] G. Sigletos, G. Paliouras, C. D. Spyropoulos, and
M. Hatzopoulos, “Combining information extraction systems
using voting and stacked generalization,” Journal of Machine
Learning Research, vol. 6, 2005.

[18] M. Tan and Q. V. Le, “EfficientNet: rethinking model scaling
for convolutional neural networks,” in Proceedings of the 36th
International Conference on Machine Learning, Long Beach,
CA, USA, June 2019.

[19] N. Upadyayula, H. S. da Silva, M. O. Bohn, and
T. R. Rocheford, “Genetic and QTL analysis of maize tassel
and ear inflorescence architecture,” :eoretical and Applied
Genetics, vol. 112, no. 4, pp. 592–606, 2006.

[20] D. W. Hosmer Jr., S. Lemeshow, and R. X. Sturdivant, Applied
Logistic Regression, John Wiley & Sons, Hoboken, NJ, USA,
2013.

[21] U. Gawande, M. Zaveri, and A. Kapur, “A novel algorithm for
feature level fusion using SVM classifier for multibiometrics-
based person identification,” Applied Computational Intelli-
gence and Soft Computing, vol. 2013, Article ID 515918,
11 pages, 2013.

[22] Z. Zhou, Ensemble Methods: Foundations and Algorithms,
Chapman & Hall/CRC, Boca Raton, FL, USA, 2012.
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