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Traditional clustering methods neglect the data quality and perform clustering directly on the original data. erefore, their
performance can easily deteriorate since real-world data would usually contain noisy data samples in high-dimensional space. In
order to resolve the previously mentioned problem, a new method is proposed, which builds on the approach of low-rank
representation. e proposed approach �rst learns a low-rank coe�cient matrix from data by exploiting the data’s self-ex-
pressiveness property.en, a regularization term is introduced to ensure that the representation coe�cient of two samples, which
are similar in original high-dimensional space, is close to maintaining the samples’ neighborhood structure in the low-di-
mensional space. As a result, the proposed method obtains a clustering structure directly through the low-rank coe�cient matrix
to guarantee optimal clustering performance. A wide range of experiments shows that the proposed method is superior to
compared state-of-the-art methods.

1. Introduction

Clustering is a powerful technique in unsupervised machine
learning, which requires a measure of similarity to group
data samples into k classes. erefore, traditional clustering
algorithms such as k-means [1] perform clustering on
original data samples directly by assuming that alike samples
reside around a centroid. is assumption is noted in [2] as
too restrictive in a real-world setting where two samples can
be far away from each other yet belong to the same cluster,
and vice versa. Furthermore, as real-world data is often high
dimensional, the k-means approach is also computationally
ine�cient. us, e�orts were made in literature [3] to en-
hance its e�ciency. However, the robustness needed for
accurate clustering under the aforementioned real-world
circumstances was largely ignored, as they do not consider
data quality.

erefore, considering that corresponding low-dimen-
sional subspaces exist for high-dimensional data, Zheng
et al. [4] and Cai et al. [5] proposed graph regularized sparse
coding (GraphSC) and graph regularized nonnegative

matrix (GNMF), respectively, to tackle the previously
mentioned lapses. e object of both methods is such that
discriminability and computational e�ciency can be en-
hanced simultaneously to improve clustering performance.
Nonetheless, as they do not fully utilize the self-expres-
siveness property of data, a good representation of data
cannot be guaranteed in all cases. As a result, subsequent
spectral-based approaches were built on the self-expres-
siveness property of data where a data sample can be rep-
resented by a combination of the bases in a whole dataset [6].
Speci�cally, low-rank representation (LRR) [7] and sparse
subspace clustering (SSC) [8] are the two classical methods,
and the newer ones are formed using either of their prin-
ciples. An example is Laplacian regularized low-rank rep-
resentation (LapLRR) [9] proposed to improve LRR’s global
data structure initiative by further capturing data’s intrinsic
nonlinear geometric information. Similarly, Zhang et al. [10]
proposed spectral-spatial sparse subspace clustering (S4C)
using the SSC’s L1-norm regularization strategy. Besides,
considering the local data structure that LRR previously
ignored, low-rank representation with adaptive graph
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regularization (LRR_AGR) [11] was proposed to learn op-
timal clustering. However, because real-world data often
contain noise, these spectral methods cannot guarantee that
two similar samples in the original high-dimensional space
will have a close representation coefficient in the low-di-
mensional space.

To address the previously mentioned concern, a new
method that adopts LRR’s approach to first learn data’s low-
rank coefficient matrix is proposed. A regularization term is
then introduced to ensure that the samples’ neighborhood
structure is maintained in the low-dimensional space. *us,
the proposed method learns optimal clustering structure
directly from the low-rank coefficient matrix without
spectral postprocessing. It is achieved by imposing a con-
straint on the low-rank coefficient matrix to promote a
robust affinity matrix, a rank constraint is further utilized to
make the affinity matrix express the clustering structure.

(1) We propose a novel method that uses the LRR
strategy first to obtain data’s low-rank coefficient
matrix, of which a regularization term is also in-
troduced to ensure that samples’ neighborhood
structure is maintained in the low-dimensional
space. *is approach is different from the existing
ones, which simply assume such a structure without
a robust strategy to tackle the influence of noise.

(2) We constrain the low-rank coefficient matrix to
guide a robust affinity matrix to obtain optimal
clustering directly while avoiding spectral post-
processing of the affinity matrix, unlike most existing
methods.

(3) Several experiments are performed to evaluate the
effectiveness of the proposed method using accuracy
(ACC), normalized mutual information (NMI), and
purity evaluation metrics. *e results demonstrate
the superiority of the proposed method over similar
state-of-the-art ones.

2. Related Work

To resolve the inefficiency of traditional clustering methods,
several spectral type methods based on the self-expres-
siveness property of data have been proposed over the years.
*erefore, one can categorize these methods into two groups
according to the strategy used to obtain a given data’s low-
dimensional coefficient matrix. *e first group has methods
like those mentioned in [10, 12–14], which use the L1-norm
regularization [8] to acquire the coefficient matrix. For
example, Zhang et al. [10] proposed a spectral-spatial sparse
subspace clustering algorithm for hyperspectral remote
sensing images, which obtains a final clustering by applying a
spectral clustering algorithm on an adjacent matrix. Also,
using the L1-norm approach, Li et al. [12] proposed
structured sparse subspace clustering (S3C), which learns an
affinity matrix and data segmentation jointly to improve
clustering accuracy. *e L1-norm’s regularization main
advantage lies in the fact that it can obtain a sparse rep-
resentation of data samples. However, it ignores the data’s
global structure; hence, it can be vulnerable to noise.

In contrast, the nuclear norm regularization approach
was proposed in [7] to capture a global data structure, thus
providing some robustness against noise and possible out-
liers. *us, the second category contains methods like those
in [6, 9, 11, 15–24], which apply the aforementioned nuclear
norm technique to learn the coefficient matrix. Illustratively,
the LapLRR method was proposed in [9] based on the
nuclear norm. LapLRR mainly focuses on capturing data’s
nonlinear geometric structures to improve clustering per-
formance. *e compound rank-k projection (CRP) [23]
algorithm was proposed for bilinear analysis. Specifically,
CRP uses multiple rank-k projection models to enhance
discriminant ability. Meanwhile, the constrained low-rank
representation (CLRR) [15] emphases on increasing dis-
criminating ability by incorporating supervision informa-
tion as hard constraints. Since the LRRmethods are based on
affinity graph construction, Luo et al. [24] argue that the
affinity measurement in the original feature space would
usually suffer from the curse of dimensionality. *us, a
method was proposed, which assumes similarity between
instances only if they have a larger probability of being
neighbours. However, because a fixed graph often does not
guarantee optimal performance, Wen et al. [11] then in-
troduced flexibility into graph learning and proposed the
LRR-AGR method. Besides, a technique founded on a finite
mixture of exponential power (MoEP) was proposed in [19]
to handle complex noise contamination in data. Further-
more, the recent work of [25] introduced an adaptive kernel
into LRR to boost the accuracy of clustering. Besides, a
coupled low-rank representation (CLR) strategy was pre-
sented in [6] to learn accurate clustering from data using the
k bock diagonal regularizer [26]. Aside from that, Yan et al.
[27] proposed a novel self-weighted robust linear discrim-
inant analysis (LDA) for multiclass classification, especially
with edge classes.

*is study also adopts the nuclear norm regularization
approach. However, unlike the previously mentioned
techniques, the proposed method further injects a regula-
rization term to guarantee that two similar samples in the
original high-dimensional space would have a close repre-
sentation coefficient in the low-dimensional space to handle
noise distortion in data more holistically.

3. The Proposed Method

In this section, the proposed method is formulated first.
*en, an optimization method is proposed to solve the
model.

3.1. Model Formulation. LRR’s nuclear norm regularization
has been shown in many studies, not limited to those
previously cited, as an effective technique for capturing a
robust data coefficient matrix due to its global orientation.
*us, LRR is integrated into our model to capture the data’s
low-rank coefficient matrix as follows:

‖Z‖∗ + λ2‖E‖2,1,

s.t. X � XZ + E,
(1)

2 Applied Computational Intelligence and Soft Computing



where Z ∈ Rn×n is the low-rank coefficient matrix. E ∈ Rd×n

is the error matrix, assuming that part of the given data
X ∈ Rd×n is corrupt. However, because the level of cor-
ruption in real-world data is unknown in advance, one
cannot guarantee thatZwill capture an accurate similarity of
the data samples. To address this concern, a regularization
term i,j‖xi − xj‖

2wi,j is introduced into (1) to ensure that
when samples xi and xj are similar in the original high-
dimensional space, zi and zj should be similar in low-di-
mensional space, so that Zij � 1, otherwise 0. *us, we have

min
X,Z,E


i,j

xi − xj

�����

�����
2
wi,j + λ1‖Z‖∗ + λ2‖E‖2,1

s.t. X � XZ + E, X � XZ,

(2)

where i,j‖xi − xj‖
2Wij � 2tr( XLW

X
T
). W � (W + WT)/2,

LW � D − W and D � diag(iWij). Once Z is obtained,
existing methods directly learn an affinity matrix U such that
U � (|Z| + |ZT|)/2. Most of these methods then apply a
spectral clustering algorithm on U to obtain the clustering
structure. Differently, we utilize a constraint Z � U to ensure
that the coefficient of Zij and Uij is the same, in which some
nonnegative constraints, diag(U) � 0, U≥ 0, UT1 � 1, im-
posed on U ensures that its entries are nonnegative. As a
result, a spectral postprocessing of U is then dodged by
imposing a rank constraint rank(LU) � n − c on its Lap-
lacian matrix to allow it to express our clustering structure
using *eorem 1. *erefore, the proposed model is for-
mulated as

min
X,Z,S,E

2tr XLW
X

T
  + λ1‖Z‖∗ + λ2‖E‖2,1

s.t. X � XZ + E, Z � U, X � XZ, diag(U) � 0,

U≥ 0, U
T1 � 1, rank LU(  � n − c,

(3)

where LU � DU − U is the Laplacian matrix of U and
DU ∈ Rn×n is the diagonal matrix with ith entry jUij � 1.
λ1 and λ2 are parameters to balance the terms, respectively.

Theorem 1 (see [6]). If U is nonnegative, the multiplicity c of
the zero eigenvalue of the graph Laplacian LU corresponds to
the number of connected components in the graph associated
with U.

3.2. Optimization. To solve (3), the augmented Lagrange
multiplier (ALM) [28, 29] approach is adopted, but an
auxiliary term Z � S is introduced first to make it easily
solvable. Besides, because the rank constraint is not linear, a
similar strategy employed in [6] is followed to express the i th
smallest eigenvalue of LU as θi (LU).*us, given sufficient λ3,
(3) is equal to

min
X,S,U,E

2tr XLW
X

T
  + λ1‖S‖∗ + λ2‖E‖2,1 + 2λ3 

c

i�1
θi LU( 

s.t. Z � S, X � XZ + E, Z � U, X � XZ, diag(U) � 0,

U≥ 0, U
T1 � 1.

(4)

According to Ky Fan’s theorem [30], 
c
i�1 θi(LU) is

equivalent to minimizing Tr(FTLUF) subject to FTF � I.
Hence, we have

min
X,Z,S,E

2tr XLW
X

T
  + λ1‖S‖∗ + λ2‖E‖2,1 + 2λ3Tr F

T
LUF 

s.t. Z � S, X � XZ + E, Z � U, X � XZ, F
T
F � I, diag(U)

� 0, U≥ 0, U
T1 � 1.

(5)

Following conventional practice, the augmented La-
grangian function of (5) is obtained as follows:

min
X,Z,S,E,U,F

2tr XLW
X

T
  + λ1‖S‖∗ + λ2‖E‖2,1 + 2λ3Tr F

T
LUF 

+〈Y1, Z − S〉 +〈Y2, X − XZ − E〉 +〈Y3,
X − XZ〉

+〈Y4, Z − U〉 +
μ
2

‖Z − S‖
2
F +‖X − XZ − E‖

2
F +‖ X − XZ‖

2
F +‖Z − U‖

2
F 

s.t. F
T
F � I, diag(U) � 0, U≥ 0, U

T1 � 1.

(6)

At this point, the terms not connected in (6) are sepa-
rated, where Y1, Y2, Y3, and Y4 are Lagrangian multipliers.
Hence, each term’s optimal value is obtained in the following
order.

3.2.1. X Problem. When other variables are fixed, X can be
obtained by minimizing the following formula:

L( X) � 2tr XLW
X

T
  +〈Y3,

X − XZ〉 +
μ
2
‖ X − XZ‖

2
F. (7)

By setting the derivative zL ( X)/z X � 0, variable X is
obtained as follows:

4 XL + μ( X − XZ) + Y3 � 0,

X � μXZ − Y3( (4L + μI)
− 1

.
(8)
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3.2.2. Z Problem. When other variables are fixed, Z can be
obtained by minimizing the following formula:

min
Z
〈Y1, Z − S〉 +〈Y2, X − XZ − E〉 +〈Y3,

X − XZ〉 +〈Y4, Z − U〉

+
μ
2

‖Z − S‖
2
F +‖X − XZ − E‖

2
F +‖ X − XZ‖ +‖Z − U‖

2
F .

(9)

By setting the derivative zL (Z)/zZ � 0, variable Z is
obtained as follows:

Z � I + X
T
X 

− 1 (1/μ)X
T

Y2 + Y3(  − Y1 + Y4( /μ(  + S + U + X
T
X + X

T X − X
T
E 

2
. (10)

3.2.3. S Problem. S can be achieved by solving the following
problem with other variables fixed

S � argmin
S

λ1
μ

‖S‖∗ +
1
2

S − Z +
Y1

u
 

�������

�������

2

F

. (11)

*en, S is obtained as follows by using the singular value
thresholding (SVT) operator [31]:

S � Sλ1/μ Z +
Y1

μ
 . (12)

3.2.4. E Problem. E is obtained by solving the following
minimization problem:

E � argmin
E

λ2‖E‖2,1 +
μ
2

E − X − XZ +
Y2

u
 

�������

�������

2

F

. (13)

Denote T� (X − XZ + (1/u)Y2), τ � λ2/μ.
*e i − th column of E is

E(:, i) �

ti

����
���� − τ
ti

����
����

ti, if τ < ti

����
����,

0, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

3.2.5. U Problem. U is obtained by solving the following
minimization problem:

min
U

2λ3Tr F
T
LUF  +〈Y4, Z − U〉 +

μ
2
‖Z − U‖

2
F. (15)

For simplicity, i,j‖Fi − Fj‖
2Ui,j is equivalent to

Tr(GTU), where Gij � ‖Fi − Fj‖
2
2; then, we rewrite (15) as

min
U

Tr G
T
U  +

μ
2

U − Z +
Y4

μ
 

��������

��������

2

F

. (16)

Denoting N � Z + (Y4/μ), we get

min
Ui

Ui − Ni − Gi/μ)( 
����

����
2
2

s.t. diag(U) � 0, U≥ 0, U
T1 � 1.

(17)

Considering the previously mentioned constraints, we
have the following:

min
Ui


j

Ui −
Ni − Gi/μ)( 

2λ4

��������

��������

2

2

− η 1T
Ui − 1  − ζT

Ui

s.t. Uii � 0.

(18)

*en, taking the derivative with respect to Ui and setting
it to zero, that is,

Ui −
1 Ni − Gi/μ( 

2λ4
− η1 − ζ � 0. (19)

*e j entry of Ui is shown as follows:

Uij −
Nij − Gij/μ

2λ4
− η − ζ i � 0. (20)

According to KKT conditions,

Uij �
Nij − Gij/μ

2λ3
+ η 

+

. (21)

3.2.6. F Problem. When other variables are fixed, F can be
obtained by solving the following minimization problem:

L(F) � min
F

Tr F
T
LUF 

s.t. F
T

F � I,

(22)

where LU is the Laplacian matrix of U. *is problem can be
simply solved via eigenvalue decomposition, and its solu-
tions are the set of c eigenvectors corresponding to the first c
smallest eigenvalues of LU.

*e complete solution is given in Algorithm 1.

3.3. Computational Complexity. *e inverse of a matrix,
eigen decomposition, and SVT’s nuclear norm minimi-
zation problem are three key aspects that define the
computing cost of our proposed algorithm. Specifically,
the eigen decomposition costs O(n2c), where c is the
number of clusters. *e inverse of a matrix and nuclear
norm minimization cost is O(n3) each. As a result, the
total computational complexity of each iteration is
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O(n3 + 2n2c) because the cost of computing multipliers
and basic matrix operations like addition, subtraction,
and division are negligible compared with the cost of
other operations.

4. Experiments

4.1. Experimental Settings. In order to demonstrate the ef-
fectiveness of the proposed method, several experiments

Input: Data X, clusters size c, parameter λ1, λ2, λ3
Initialize: X � Z � S � E � U � F � 0, Y1 � 0, Y2 � 0, Y3 � 0, Y4 � 0,; ρ � 1.01; μ � 0.01; μmax � 108; ϵ � 10− 5;
While not converged do

(1) Update X by equation (8);
(2) Update Z by equation (10);
(3) Update S by equation (12);
(4) Update E by equation (14);
(5) Update U by equation (21);
(6) Update F by equation (22);

Y1 � Y1 + μ(Z − S)

Y2 � Y2 + μ(X − XZ − E)
Y3 � Y3 + μ( X − XZ)

Y4 � Y4 + μ(Z − U)

(11) Update μ by μ � min(ρμ, max(μ))

(12) Check the convergence conditions:
||Z − S||∞ < ϵ , ||X − XZ − E||∞ < ϵ, || X − XZ||∞ < ϵ and ||Z − U||∞ < ϵ

Output: U

ALGORITHM 1: *e proposed algorithm.

Table 1: Summary of the datasets.

Dataset Class Dimension Number of samples
COIL20 20 1024 1440
UCI 10 240 2000
ORL 40 4096 400
FERET 200 1024 1400
BBC 5 4659 685

(a) (b)

(c)

Figure 1: Example images of (a) ORL, (b) FERET, and (c) UCI datasets.

Applied Computational Intelligence and Soft Computing 5



were performed on COIL20 (https://www.cs.columbia.edu/
CAVE/software/softlib/coil-20.php), UCI (https://archive.
ics.uci.edu/ml/datasets/
Optical+Recognition+of+Handwritten+Digits), ORL
(http://cam-orl.co.uk/facedatabase.html), FERET (https://
www.nist.gov/itl/products-and-services/color-FERET-
database), and BBC (http://mlg.ucd.ie/datasets/segment.
html) datasets (See Table 1 for a summary of each dataset
and Figure 1 for images of some datasets). *us, using
accuracy (ACC), normalized mutual information (NMI),
and purity (PUR) metrics, the performance of the proposed

Our method
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Figure 2: Clustering performances of different algorithms on corrupted ORL dataset.

Table 2: Clustering results of different algorithms on Coil 20
dataset.

ACC NMI PUR
Kmeans 67.78 83.47 78.91
LapLRR 66.06 79.14 82.23
GraphSC 82.12 92.05 79.51
GNMF 81.63 90.31 82.03
LRR_AGR 85.12 95.33 85.14
NSFRC 88.56 93.12 87.67
Proposed method 88.70 94.39 88.47

Table 3: Clustering results of different algorithms on UCI dataset.

ACC NMI PUR
Kmeans 75.58 72.71 58.44
LapLRR 81.73 78.92 72.11
GraphSC 80.12 81.56 81.58
GNMF 82.12 79.96 82.72
LRR_AGR 82.77 83.52 86.47
NSFRC 83.21 88.56 88.71
Proposed method 85.53 90.36 87.05

Table 4: Clustering results of different algorithms on ORL dataset.

ACC NMI PUR
Kmeans 48.95 34.51 13.63
LapLRR 71.77 58.51 53.13
GraphSC 78.92 70.43 65.56
GNMF 78.06 72.73 69.31
LRR_AGR 81.45 75.45 71.22
NSFRC 85.45 74.12 72.34
Proposed method 86.73 75.61 73.87

Table 5: Clustering results of different algorithms on FERET
dataset.

ACC NMI PUR
Kmeans 43.23 22.71 30.38
LapLRR 55.13 42.94 52.73
GraphSC 49.34 44.15 50.66
GNMF 55.30 49.28 53.31
LRR_AGR 60.66 53.23 52.34
NSFRC 61.96 52.87 52.15
Proposed method 63.28 53.77 53.52

Table 6: Clustering results of different algorithms on BBC dataset.

ACC NMI PUR
Kmeans 38.12 10.91 15.66
LapLRR 55.12 31.55 37.83
GraphSC 60.27 44.62 38.91
GNMF 59.65 43.92 45.08
LRR_AGR 61.23 47.12 36.12
NSFRC 53.67 45.23 41.97
Proposed method 62.13 48.23 42.39
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method was evaluated in comparison with Kmeans, LapLRR
[9], GraphSC [4], GNMF [5], LRR_AGR [11], and non-
negative self-representation (NSFRC) [32] state-of-the-art
methods. For each method, the parameter settings in the
corresponding literature were adopted. *erefore, each of
these methods are described as follows.

LapLRR [9]: it uses LRR’s nuclear norm strategy to
capture data’s intrinsic nonlinear geometric
information
GraphSC [4]: it considers the local manifold structure
of the data to learn a sparse representation
GNMF [5]: it constructs an affinity graph to encode the
geometrical information of data

LRR-AGR [11]: it learns optimal clustering by considering
the local data structure that LRR previously ignored
NSFRC [32]: it uncovers data’s intrinsic structure by
joint nonnegative self-representation and adaptive
distance regularization

4.2. ExperimentalResults. *is section analyzes the results of
various experiments conducted to evaluate the proposed
method’s effectiveness. Note that the best results are high-
lighted in bold fonts in the tables

4.2.1. Clustering Performance on Original Data.
Tables 2–6 display the clustering results concerning ACC,
NMI, and PUR of different algorithms on COIL20, UCI,

Our method
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ORL, FERET, and BBC benchmark datasets, respectively. On
COIL20 dataset, the proposed method has the best result in
all evaluation metrics, followed closely by NSFRC in ACC
and LRR_AGR in NMI. *is performance is not surprising
because LRR_AGR considers the local data structure of the
data to improve its performance, while NSFRC, on the other
hand, uses an adaptive affinity matrix learning approach to
uncover the intrinsic structure of data to boost clustering
performance. Besides, it is also not shocking that Kmeans
has the worst performance on COIL20 dataset because it
performs clustering directly on the original data, promoting
noise interference on the clustering structure. Furthermore,
one may observe that Kmeans has its best performance on
the UCI dataset compared to other datasets. However, its
performance is far below that of others methods, especially
the proposed method and NSFRC. It can also be observed
that NSFRC and LRR_AGR performances are consistently
close to the proposed method on ORL, FERET, and BBC
datasets. Specifically, on ORL datasets, both NSFRC and
LRR_AGR have a performance of 85.45% and 81.45%, re-
spectively, in ACC, which is lesser than that of the proposed
method with 1.28% and 5.28%, respectively. *is

performance is also maintained in the relatively difficult
datasets of FERET and BBC. Overall, the proposed method
has more excellent performance to demonstrate the effec-
tiveness of the regularization term in our model.

4.2.2. Clustering Performance on Data Corrupted with Pepper
Noise and Stripe Occlusion. In this section, several experi-
ments are performed to evaluate the robustness of each
algorithm against noise and occlusion. To perform this
experiment, two settings were adopted. First, stripe occlu-
sion of various degrees (0, 5%, 10%, and 15%) were ran-
domly applied to ORL and FERET datasets. Second, pepper
noise of various degrees (the same as previously mentioned)
were randomly applied to the UCI dataset. *erefore,
Figures 2–4 present each algorithm’s performance on cor-
rupted ORL, FERET, and UCI datasets, respectively. Al-
though it can be seen clearly from these figures that all
methods have performance degradation as the corruption
level increases, our proposed method shows more robust-
ness than other methods on the three datasets. More spe-
cifically, the proposed method’s performance maintained a
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steadier drop on the ORL dataset than a sharp one obtained
by the NSFRC method in the ACC evaluation metric. It can
also be observed that its performance in NMI is better with a
10% degree of stripe occlusion than in the 5% case, which
confirms that the proposed method can guarantee superior
robustness to a large extent. Besides, its performance on the
UCI dataset under the random pepper noise corruption
further validate above with a clear improvement over the
other compared methods.

4.3. Parameter Sensitivity. *is section uses some experi-
ments to show the sensitivity of parameters concerning
clustering ACC of the proposed method. We can find that
there are three regularization parameters, that is, λ1 λ2, and
λ3, needed to be set in advance. *ese parameters, respec-
tively, balance the importance of low-rank constraint term,
error term, and rank constraint. Generally, the larger the
parameter value is, the more important or impact the
corresponding term is. To demonstrate the effects of these
three parameters for data clustering, a candidate parameter
range set of 10 − 3, 10 − 2, 10 − 1, 1, 10 + 1, 10 + 2{ } is first
defined for the three parameters, and then, the proposed
method is performed with different combinations of the
parameters for data clustering. We first fixed parameters λ1
and λ2 and then executed the proposed method with

different parameter values of λ3 to show the influence on the
clustering ACC.

From Figure 5, it is obvious to see that the clustering
ACC is insensitive to parameter λ3 when λ3 ≤ 0.01. *is is
mainly because if parameter λ3 is too large, the corre-
sponding rank constraint term will play the dominant role in
the graph learning while ignoring the local and global
structure preservation. In this case, although the obtained
graph still has corresponding connected components, it
cannot reveal the intrinsic structure of data. In the exper-
iments, we can select a small value in the range of
10 − 3, 10 − 2, 10 − 1{ } for parameter λ3. Figure 6 shows the
clustering ACC versus different values of parameters λ1 and
λ2 when parameter λ3 is fixed. As shown in this figure, the
clustering ACC is sensitive to parameter λ2 to some extent,
and the best clustering result can be obtained when pa-
rameters λ1 and λ2 are in a feasible range. *is is mainly
because a very large or very small parameter λ2 leads to a
small error or large error that cannot compensate well for the
sparse data noise. In this case, the model cannot learn the
intrinsic similarity graph for data clustering. *us, in the
experiments, we can select the two parameters in the can-
didate range of 10 − 1, 1, 10, 10 + 2{ } according to the degree
of noise corruptions of data.

As far as we know, it is still an open problem to
adaptively select these optimal parameters for different
datasets. In the experiments, we first fix parameter λ3 since
this parameter is insensitive to the clustering ACC and then
perform the method to find the optimal λ 1 and λ2 in a
candidate domain where the optimal parameters may exist.
*en, by a similar strategy, we fix parameters λ1 and λ2 to
find the optimal value of parameter λ3 in a candidate do-
main. Finally, the optimal combination of these parameters
can be obtained in the 3D candidate space, composed of
three candidate domains of parameters.

4.4. Convergence Study. *e convergence of the ADMM-
style algorithm with two blocks has been generally proven in
[29]. *ere are six blocks (including X, Z, S, E, U, F) in
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Figure 7: *e convergence curve of the proposed method on COIL20 and ORL.

Table 7: Computation time (in seconds) of each method on three
benchmark datasets. *e experiments are conducted on an eight-
core windows with each core’s CPU at 4.2GHz; the total memory is
16G.

COIL20 UCI BBC
Kmeans 7.18 3.72 6.41
LapLRR 92.13 63.57 75.93
GraphSC 53.54 32.18 42.42
GNMF 78.49 58.81 68.35
LRR_AGR 77.21 65.51 72.61
NSFRC 120.15 87.52 81.64
Proposed method 88.93 67.59 73.46
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Algorithm 1, and the objective function is not smooth; it
would not be easy to prove the convergence in theory. For X,
Z, and U, their subproblems have clear analytical solutions.
With continuous iteration, they can be expected to reach the
optimal solution. *e subproblems of F can be solved by
solving the characteristic equations. For the S subproblem,
the SVT [33, 34] method is used to solve it. For the E

subproblem, the effectiveness and convergence of the so-
lution have also been confirmed [35]. *erefore, we can
expect the algorithm to reach a local optimal solution. In
Figure 7, we further verify the algorithm’s convergence on
the actual dataset.

Furthermore, Table 7 lists each method’s average
computation runtime on three benchmark datasets.
According to the record, it can be observed that although the
computational time of the proposed method is not the most
efficient, it is at the same level as most methods.

5. Conclusion

A novel method is proposed in this study that injects a
regularization term into LRR to ensure that the neigh-
borhood structure of data samples in the original high-
dimensional space is also maintained in the low-dimen-
sional space. With this strategy, the proposed method
guarantees robust clustering performance that resolves
the limitation of most existing methods. *is fact is
demonstrated experimentally, with several results show-
ing that the proposed method substantially outperformed
similar state-of-the-art methods in ACC, NMI, and PUR
evaluation metrics. *us, our approach will be extended to
multiview learning in future work based on several works
[36], which shows that it can improve single view learning
models.

Data Availability

All datasets used in this paper are open source, meaning they
are freely available for research purposes. *ey can be
accessed using the following links. COIL-20: https://www.cs.
columbia.edu/CAVE/software/softlib/coil-20.php; UCI:
https://archive.ics.uci.edu/ml/datasets/
Optical+Recognition+of+Handwritten+Digits; ORL: http://
cam-orl.co.uk/facedatabase.html; FERET: https://www.nist.
gov/itl/products-and-services/color-FERET-database; and
BBC: http://mlg.ucd.ie/datasets/segment.html.
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