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In various articles, it is said that the class of all soft topologies on a common universe forms a complete lattice, but in this paper, we
prove that it is a complete lattice. Some soft topologies are maximal, and some are minimal with respect to specific soft topological
properties. We study the properties of soft compact and soft connected topologies that are maximal. Particularly, we prove that a
maximal soft compact topology has identical families of soft compact and soft closed sets. We further show that a maximal soft
compact topology is soft T1, while a maximal soft connected topology is soft T0. Lastly, we establish that each soft connected
relative topology to a maximal soft connected topology is maximal.

1. Introduction

,e real world is far too complex for our instant compre-
hension. We construct “models” of reality that are simplified
versions of reality. Unfortunately, these mathematical
models are just too complex, and we are unable to obtain
exact solutions. Traditional classical methods are ineffective
for modeling problems in engineering, physics, computer
sciences, economics, social sciences, medical sciences, and
many other domains due to the unpredictability of data.,is
could be owing to the unpredictability of natural environ-
mental occurrences, human knowledge of the real world, or
the limitations of measurement tools. For instance, ambi-
guity or confusion on the border between states or between
major cities, the precise population growth rate in a
country’s rural areas, or making judgments in a machine-
based environment using database information. As a result,
classical set theory, which is predicated on the crisp and
accurate case, may not be totally adequate for dealing with
such uncertainty concerns. ,e theory of fuzzy sets [1], the
theory of intuitionistic fuzzy sets [2], the theory of vague sets
[3], the theory of interval mathematics [4], and the theory of
rough sets [5] are some of the theories. ,ese theories might
be seen as instruments for dealing with uncertainty, but each
has its own set of problems. ,e insufficiency of the theory’s

parametrization tool, as highlighted by Molodtsov in [6],
could be the cause of these difficulties. He invented the word
“soft set theory” to describe a new mathematical tool that is
free of the issues discussed above. He stated the core results
of the new theory in his paper [6], and effectively applied it to
a variety of fields, including smoothness of functions, game
theory, operations research, Riemann-integration, and
probability theory. A “soft set” is a collection of approxi-
mations to an object’s description.

General topology is the branch of topology that deals
with the fundamental set-theoretic notions and construc-
tions used in topology. It is the foundation of most other
topics in topology, including differential topology, geometric
topology, and algebraic topology. Soft topology, which
combines soft set theory and topology, is another field of
topology. It is concerned with a structure on the set of all soft
sets and is motivated by the standard axioms of classical
topological space. ,e work of Shabir and Nazs [7], in
particular, was crucial in establishing the field of soft to-
pology. After that various classes of soft topological spaces
have been proposed, such as: soft compact [8], soft con-
nected [9], soft paracompact [9], soft extremely discon-
nected [10], and soft separable spaces [11], soft J-spaces [12],
soft Menger spaces [13] and soft separation axioms [11, 14].
At this point, it is worth remarking that not all classical
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results in topology are true in soft topology, see,eorem 4 in
[15]. Introducing all the above terminologies, arguments,
and Remark 1 motivate us to study the structure of maximal
soft compact and maximal soft connected topologies.

,is paper is organized as follows: Sections 1 and 2 are
dedicated to a brief introduction and preliminary concepts
from soft set theory and soft topology. Section 3 starts by
showing that the set of all soft topologies on a common
universe forms a complete lattice. ,e definition of a
maximal soft topology with property Γ is given, followed by
two subsections. ,e first one defines the concept of a
maximal soft compact topology. Some properties and a
characterization of maximal soft compact topologies are
established. ,e second subsection concerns the funda-
mental properties of maximal soft connected topologies. It
also contains some examples that present the structure of
maximal soft connected topologies. Finally, the main result
on maximal soft connected topologies is demonstrated.
Section 4 concludes the summary of our findings and
proposes possible lines for future work.

2. Preliminaries

Let Z be an initial universe, P(Z) be all subsets of Z and E be
a set of parameters. An ordered pair
(Y, E) � (e, Y(e)): e ∈ E{ } is said to be a soft set over Z,
where Y: E⟶ P(Z) is a set-valued mapping. ,e family of
all soft sets on Z is represented by P(Z, E). A soft element
[16] is a soft set (Y, E) over Z in which (Y, E) � z{ } for all
e ∈ E, where z ∈ Z, and is denoted by ( z{ }, E). A soft point
[17], denoted by z(e), is a soft set (Y, E) over Z in which
Y(e) � z{ } and Y(e′) � ∅ for each e′ ≠ e, e′ ∈ E, where e ∈ E

and z ∈ Z. A statement z(e)􏽥∈ (Y, E) means that z ∈ Y(e).
,e singleton soft set z(e){ } is referred to
z(e){ } � (e, z{ }), (e′,∅), . . . : ∀e′ ∈ E, e′ ≠ e􏼈 􏼉. ,e soft set

(Z, E)\(Y, E) (or simply (Yc, E)) is the complement of
(Y, E), where Yc: E⟶ P(Z) is given by Yc(e) � Z\Y(e)

for all e ∈ E. A soft subset (Y, E) over Z is called null,
denoted by 􏽥Φ, if Y(e) � ∅ for any e ∈ E and called absolute,
denoted by 􏽥Z, if Y(e) � Z for any e ∈ E. Notice that 􏽥Z

c
� 􏽥Φ

and 􏽥Φc
� 􏽥Z. It is said that (X, E1) is a soft subset of (Y, E2)

(written by (X, E1) 􏽥⊆ (Y, E2), [18]) if E1⊆E2 and X(e)⊆Y(e)

for any e ∈ E1. We say (X, E1) � (Y, E2) if (X, E1) 􏽥⊆ (Y, E2)

and (Y, E2) 􏽥⊆ (X, E1).

Definition 1 (see [19, 20]). Let (Yi, E): i ∈ I􏼈 􏼉 be a family of
soft sets over Z, where I is any index set.

(i) ,e intersection of (Yi, E), for i ∈ I, is a soft set
(Y, E) such that Y(e) � ∩ i∈IYi(e) for each e ∈ E and
denoted by (Y, E) � 􏽦∩ i∈I(Yi, E)

(ii) ,e union of (Yi, E), for i ∈ I, is a soft set (Y, E) such
that Y(e) � ∪ i∈IYi(e) for each e ∈ E and denoted by
(Y, E) � 􏽦∪ i∈I(Yi, E)

Definition 2 (see [7]). A collectionI of P(Z, E) is said to be
a soft topology on Z if the following conditions are satisfied:

(i) 􏽥Φ, 􏽥Z􏽥∈I

(ii) If (Y1, E), (Y2, E)􏽥∈I, then (Y1, E)􏽦∩ (Y2, E)􏽥∈I
(iii) If any (Yi, E): i ∈ I􏼈 􏼉 􏽥⊆I, then 􏽦∪ i∈I(Yi, E)􏽥∈I

Terminologically, we call (Z,I, E) a soft topological
space on Z. ,e elements ofI are called softI-open sets (or
simply soft open sets when no confusion arise), and their
complements are called soft I-closed sets (or soft closed
sets).

In what follows, by (Z,I, E) we mean a soft topological
space, by two distinct soft points u(e), v(e′) we mean either
u≠ v or e≠ e′, and by two disjoint soft sets (Y, E), (X, E)

over Z, we mean (Y, E)􏽦∩ (X, E) � 􏽥Φ.

Definition 3 (see [21]). A subcollectionB⊆I is called a soft
base for the soft topologyI if each element ofI is a union of
elements of B.

Definition 4 (see [7]). Let (Y, E)≠ 􏽥Φ be a soft subset of
(Z,I, E). ,en, IY: � (G, E)􏽦∩ (Y, E): (G, E)􏽥∈I}􏼈 is
called a soft relative topology over Y and (Y,IY, E) is a soft
subspace of (Z,I, E).

Definition 5 (see [7]). Let (Y, E) be a soft subset of (Z,I, E).
,e soft interior of (Y, E), denoted by IntI((Y, E)), is the
largest soft open set contained in (Y, E). ,e soft closure of
(Y, E), denoted by ClI((Y, E)), is the smallest soft closed set
which contains (Y, E). ,e soft closure and interior of a soft
subset (Y, E) in the soft subspace (X,IX, E) are, respec-
tively, denoted by ClX((Y, E)) and IntX((Y, E)).

Lemma 1 (see [22]). For a soft subset (Y, E) of (Z,I, E),

IntI (Y, E)
c

( 􏼁 � ClI((Y, E))( 􏼁
c
,

ClI (Y, E)
c

( 􏼁 � IntI((Y, E))( 􏼁
c
.

(1)

Definition 6 (see [23, 24]). Let (Z, E), (Y, E′) be soft sets,
and let p: Z⟶ Y, q: E⟶ E′ be functions.,e image of a
soft set (A, E) 􏽥⊆ (Z, E) under f: (Z, E)⟶ (Y, E′) is a soft
subset f(A, E) � (f(A), q(E)) of (Y, E′) which is given by

f(A) e′( 􏼁 �
∪

e∈q−1 e′( )∩E

p(A(e)), q
−1

e′( 􏼁∩E≠∅,

∅, otherwise,

⎧⎪⎨

⎪⎩
(2)

for each e′ ∈ E′.
,e inverse image of a soft set (B, E′) 􏽥⊆ (Y, E′) under f is

a soft subset f−1(B, E′) � (f−1(B), q−1(E′)) such that

f
−1

(B)(e)􏼐 􏼑 �
p

−1
(B(q(e))), q(e) ∈ E′,

∅, otherwise,

⎧⎨

⎩ (3)

for each e ∈ E.
,e soft function f is bijective if both p and q are

bijective.

Lemma 2. Let (Z, E), (Y, E′) be soft sets. If
f: (Z, E)⟶ (Y, E′) is bijection, then f((A, E)c) � (f(A,

E)c) for each (A, E) 􏽥⊆ (Z, E).
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Proof. It follows from ,eorem 3.14 in [24].

Definition 7 (see [16]). Let (Z,I, E) and (Y,T, E′) be soft
topological spaces. A soft function f: (Z,I,

E)⟶ (Y,T, E′) is said to be

(i) Soft continuous if the inverse image of each soft
open subset of (Y,T, E′) is a soft open subset of
(Z,I, E)

(ii) Soft open if the image of each soft open subset of
(Z,I, E) is a soft open subset of (Y,T, E′)

(iii) Soft homeomorphism if it is a soft open and soft
continuous bijection from (Z,I, E) onto (Y,T, E′)

3. Maximal Soft Topologies

Definition 8. Let I1,I2 be two soft topologies on Z. It is
said that I1 is coarser than I2 if I1 􏽦⊂ I2. And I1 is finer
than I2 if I2 􏽦⊂ I1.

Lemma 3. LetF � Iα: α ∈ Λ􏼈 􏼉 be a family of soft topologies
on Z, where Λ is any index set. 3en I � 􏽦∩ α∈ΛIα is a soft
topology on Z.

Proof. Evidently, 􏽥Φ, 􏽥Z belong to I as they belong to Iα
for all α s. Let (Y1, E), (Y2, E)􏽥∈I. ,en (Y1, E), (Y2, E)􏽥∈Iα
for all α ∈ Λ. Since all Iα are soft topologies, so
(Y1, E)􏽦∩ (Y2, E)􏽥∈Iα for all α ∈ Λ. ,erefore (Y1, E)􏽦∩
(Y2, E)􏽥∈􏽦∩ α∈ΛIα � I. Let Yλ: λ ∈ Δ􏼈 􏼉 be a collection of sets
in I. ,en for each α ∈ Λ, Yλ 􏽥∈Iα for all λ ∈ Δ. But for each
α, Iα is a soft topology on Z, so 􏽦∪ λ∈ΔYλ 􏽥∈Iα for all α ∈ Λ.
Hence 􏽦∪ λ∈ΔYλ 􏽥∈􏽦∩ α∈ΛIα � I.

,e above result is an extension of Proposition 6 in [7].

Lemma 4. Let C be a collection of soft subsets over Z. 3ere
exists a unique soft topology I on Z including C and if I0 is
any other soft topology on Z that includes C, then I􏽦⊂ I0.

Proof. Notice that such a soft topology always exists
because P(Z, E) is the soft topology on Z which includes C.
ConsiderI, the intersection of all those soft topologies on Z

which includeC. ,en it follows from Lemma 3 thatI is the
required soft topology.

Definition 9. LetC be a collection of soft subsets over Z. ,e
unique soft topology obtained in the above lemma is called
the soft topology on Z generated by the collection C and is
denoted by I(C), which is the smallest soft topology on Z

including C.
,e union of two soft topologies is not a soft topology,

see example 3 in [7], but we can generate a unique soft
topology that includes both of them.

Lemma 5. Let I1,I2 be two soft topologies on Z. 3e
generating soft topology I(I1􏽦∪I2) is identical to the soft
topology I(F) generated by
F � (G1, E)􏽦∩ (G2, E): (G1, E)􏽥∈I1, (G2, E)􏽥∈I2}􏼈 .

Proof. SinceI1,I2 soft topologies, so they include 􏽥Z. By
taking 􏽥Z � (Gi, E), for i � 1, 2, then F will exactly contain
I1,I2. By the uniqueness of the generating soft topology,
I(F) � I(I1􏽦∪I2), see Definition 9.

Theorem 1. 3e set Σ of all soft topologies over a common
universe Z forms a complete lattice under soft set inclusion
“ 􏽥⊂ ”.

Proof. One can easily show that 􏽥⊂ is a partially ordered
set on Σ. It remains to prove that every subset of Σ has the
greatest lower bound and the least upper bound. Let Σ0 be a
subset of Σ. By Lemma 3, ∧Σ0 � 􏽦∩ I0: I0

􏽥∈Σ0}􏼈 is the
greatest lower bound of Σ0. By Lemma 6,
∨Σ0 � I(􏽦∪ I0: I0 􏽥∈Σ0})􏼈 is the least upper bound of Σ0.

Remark 1. Note that the indiscrete soft topology II on Z is
the minimal (smallest) element in Σ and the discrete soft
topologyID on Z is the maximal (largest) element in Σ. It is
worth remarking that ID is the maximal soft Hausdorff
topology and II is the minimal soft compact (and minimal
soft connected) topology. From the latter statement, we
understand that maximal covering and connectedness
properties are more interesting to study. On the other hand,
minimal separation axioms are more interesting. Hence, we
focus on considering maximal soft compact and maximal
soft connected spaces.

Definition 10. Let (Z,I, E) be a soft topological space with
the property Γ. ,en I is called Γ-maximal if any soft to-
pology finer than I does not have the property Γ.

3.1. Maximal Soft Compact Topologies. Recall that a space
(Z,I, E) is called soft compact [8] if each soft open cover of
􏽥Z has a finite subcover. If we replace Γ by soft compactness,
Definition 10 will be as follows.

Definition 11. Let (Z,I, E) be a soft compact space. ,enI

is called maximal soft compact if any soft topology finer than
I is not soft compact.

,e following example shows the structure of maximal
soft compact spaces.

Example 1. Consider the set of naturals N and E � e{ }.
Define a soft topology I � YE

􏽥⊆ 􏽥N: YE �􏼈 n(e){ } for n≠
1 or 1(e)􏽥∈YE if Yc

E is finite}􏽦∪ 􏽥Φ􏼈 􏼉. ,en (N,I, E) is maxi-
mal soft compact.

Lemma 6 (see [25], Proposition 5.1). Let (Z,I, E) be a soft
compact space and let (Y, E) 􏽥⊆ 􏽥Z. If (Y, E) is soft closed, then
(Y, E) is soft compact.

Definition 12 (see [26]). Let (Z,I, E) be any soft topological
space and let (Y, E) be any soft non-open subset over Z. ,e
soft topologyI∗ on Z generated byI􏽦∪ (Y, E){ } is said to be
an s-extension of I and it is denoted by I∗ � I[(Y, E)] (or
shortly, I∗ � I[Y]).
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Lemma 7 (see [26], ,eorem 3.2). Let (Z,I, E) be a soft
compact space. 3en (Z,I[Y], E) is soft compact if and only
if (Yc, E) is soft compact in (Z,I, E).

Proposition 1. A soft topological space (Z,I, E) is maximal
soft compact if and only if the family of all softI-closed sets is
equal to the family of all soft I-compact sets.

Proof. Assume that I is maximal soft compact. If (Y, E)

is a soft compact set but not soft closed, then (Yc, E) is not
soft open. By Lemma 7, I[Yc] is soft compact. But
I􏽦⊂ I[Yc], so this violates the maximality of I. Hence
(Y, E) must be closed.

Conversely, suppose the family of all softI-closed sets is
equal to the family of all soft I-compact sets. If I is not
maximal soft compact, there exists a soft compact topology
I∗ such that I􏽦⊂ I∗. ,erefore there is a set (Y, E) 􏽦⊂ 􏽥Z

which is soft I∗-closed but not soft I-closed. By as-
sumption, (Y, E) is not I-compact. ,erefore, there exists a
soft I-open coverU of (Y, E) which has no finite subcover.
Since I􏽦⊂ I∗, so U is also a soft I∗-open cover of (Y, E).
,is means that (Y, E) is not soft I∗-compact. But this is a
contradiction, because (Y, E) is soft I∗-closed and, by
Lemma 6, it must be softI∗-compact.,is proves thatI has
to be maximal soft compact.

Proposition 2. A soft topological space (Z,I, E) is maximal
soft compact if and only if each soft continuous bijection from
a soft compact space onto (Z,I, E) is a soft homeomorphism.

Proof. Assume (Z,I, E) is maximal soft compact. Let
f: (Y,I′, E′)⟶ (Z,I, E) be a soft continuous bijection,
where (Y,I′, E′) is soft compact. Take
T � f((U, E′)): (U, E′)􏽥∈I′}􏼈 . Evidently (Z,I, E) is a soft
topology and f is a soft homeomorphism. Since (Y,I′, E′)
is soft compact, (Z,I, E) is also soft compact under f. But
I 􏽥⊆T and I is maximal, thus T � I.

Conversely, if (Z,I, E) is not maximal soft compact,
then there exists a soft compact topology I∗ on Z such that
I 􏽥⊆I∗. ,en the identity soft function
h: (Z,I∗, E)⟶ (Z,I, E) is a soft continuous bijection
but not a soft homeomorphism. ,is completes the proof.

Theorem 2. For a soft topological space (Z,I, E), the fol-
lowing are equivalent:

(1) I is maximal soft compact
(2) 3e family of all soft I-closed sets is equal to the

family of all soft I-compact sets
(3) Each soft continuous bijection from a soft compact

space onto (Z,I, E) is a soft homeomorphism

Proof.

(1)⇒ (2) Proposition 1
(2)⇒ (3) Suppose f is a soft continuous bijection from
a soft compact space (Y,I′, E′) onto (Z,I, E). It
remains to check that f is soft open. Let (G, E′) be soft
I′-open. ,en (Gc, E′) is soft I′-closed. Since

(Y,I′, E′) is soft compact space, by Lemma, 3.11,
(Gc, E′) is softI′-compact. From the soft continuity of
f, f((Gc, E′)) is soft I-compact and by (2) f((Gc, E′))
is soft I-closed. Since f is bijective,
f((Gc, E′)) � (f((G, E′)))c and so f((G, E′)) is soft
open. Hence f is a soft open function.
(3)⇒ (1) Proposition 2.

Lemma 8 (see [11], ,eorem 4.1). Let (Z,I, E) be a soft
topological space. If each singleton soft set is soft closed, then
(Z,I, E) is soft T1.

,e above is true in various soft point theories, see [27].

Theorem 3. If (Z,I, E) is a maximal soft compact space,
then (Z,I, E) is soft T1.

Proof. One can easily show that each singleton soft set is
soft compact. Since (Z,I, E) is maximal soft compact, by
Proposition 1, each singleton soft set is soft closed and
Lemma 8 finishes the proof.

Definition 13 (see [15]). A soft set (A, E) from (Z,I, E) is
called stable if there exists a subset Y of Z such that A(e) � Y

for each e ∈ E.

Definition 14. We call a soft topological space (Z,I, E)

stable if each soft open is stable.

Lemma 9. If (Z,I, E) is a stable soft T2-space, then each soft
compact is soft closed.

Proof. It follows from Lemma 7 and ,eorem 8 in [15].

Theorem 4. If (Z,I, E) is a stable soft compact T2-space,
then (Z,I, E) is maximal soft compact.

Proof. If I is not maximal soft compact, there exists a soft
compact topologyI∗ onZ such thatI􏽦⊂ I∗. Pick a set (Y, E)

to be softI∗-open but not softI-open. LetI0 � I[Y]. ,en
I􏽦⊂ I0 􏽦⊂ I∗ and soI0 is soft compact. By Lemma 7, (Yc, E)

is a soft I-compact set and by Lemma 9, it is soft I-closed.
,is implies (Y, E) is soft I-open, which contradicts to the
choice of (Y, E). Hence (Z,I, E) is maximal soft compact.

3.2. Maximal Soft Connected Topologies

Definition 15 (see [9]). A soft topological space (Z,I, E) is
called soft connected if it cannot be written as a union of two
disjoint soft open sets. Otherwise, it called soft disconnected.

Definition 16. Let (Z,I, E) be a soft connected space. ,en
I is called maximal soft connected if any soft topology finer
than I is not soft connected.

We start by giving some examples of maximal soft
connected spaces.
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Example 2. Let R be the set of reals and let E � e1, e2􏼈 􏼉. ,e
soft topological space (R,I, E) is maximal soft connected,
where I � YE

􏽥⊆ 􏽥R: 0(e1)􏽥∈YE}􏽦∪ 􏽥􏽥Φ􏼚 􏼛􏼚 .

Example 3 (see [26], Example 3.3). ,e soft topological space
(R,I, E) is maximal soft connected, where I � YE

􏽥⊆ 􏽥R:􏼈

0(e1)􏽦∉ YE}􏽦∪ 􏽥R􏼈 􏼉, R is the set of reals, and E � e1, e2􏼈 􏼉.

Remark 2. From the above example, we shall remark that the
maximal soft topology dealt with in this note does not have a
nice connection with maximal crisp topology [28], in general,
due to the concept of soft point we select. ,e soft topology
given in Example 3 is maximal and the crisp topology of e1 is
maximal, while the crisp topology of e2 is not maximal.

Theorem 5. Let (Y, E) be a soft subset of a soft topological space
(Z,I, E). If (Y, E), (Yc, E) are soft connected (as soft subspaces)
and either of them is soft open, thenI is maximal soft connected.

Proof. Assume (Y, E)≠ 􏽥Φ≠ (Yc, E), otherwise the result trivially
holds. Suppose that (Y, E), (Yc, E) are not softI-open.,en, by
taking I∗ � I[Y], we obtain a disconnected soft topology I∗

such thatI􏽦⊂ I∗.,erefore, there are disjoint softI∗-open sets
(G, E), (H, E) such that 􏽥Z � (G, E)􏽦∪ (H, E). W.L.O.G as-
sume that (G, E)􏽦∩ (Yc, E)≠ 􏽥Φ≠ (H, E)􏽦∩ (Yc, E). ,en
(G, E)􏽦∩ (Yc, E), (H, E) 􏽦∩ (Yc, E) are disjoint soft I∗Yc-open
and (G, E)􏽦∩ (Yc, E)􏽦∪ (H, E)􏽦∩ (Yc, E) � (Yc, E). By Re-
mark 2.2 (vii) in [26], (G, E)􏽦∩ (Yc, E), (H, E)􏽦∩ (Yc, E) are
disjoint softIYc-open which means that (Yc,IYc , E) is not soft
connected, a contradiction. ,erefore, either (G, E) 􏽥⊆ (Y, E) or
(H, E) 􏽥⊆ (Y, E). Suppose (G, E) 􏽥⊆ (Y, E). If (G, E) � (Y, E),
then (H, E) � (Yc, E), which is a soft I-open set, but that is
not possible (as it is soft I∗-open). ,erefore, we must have
(H, E)􏽦∩ (Y, E)≠ 􏽥Φ. Hence (G, E)􏽦∪ (H, E)􏽦∩ (Y, E) � (Y,

E), where (G, E), (H, E)􏽦∩ (Y, E) are soft I∗Y-open. But, by
Remark 2.2 (vii) in [26] soft I∗Y-open and soft IY-open are
similar, thus (Y,IY, E) is soft disconnected, again contra-
diction. ,e result is proved.

3eorem 5. Let (Z,I, E) be a soft connected space. If I is
maximal soft connected, then (Z,I, E) is soft T0.

Proof. Suppose (Z,I, E) is not soft T0. ,en there are
soft points y(e), z(e′) with y(e)≠ z(e′) such that
y(e), z(e′)􏽥∈ (G, E) for all softI-open sets (G, E). ,erefore,
y(e)􏽥∈Cl( z(e′)􏼈 􏼉) and z(e′)􏽥∈Cl( y(e)􏼈 􏼉). Let I∗ � I

[ z(e′)􏼈 􏼉]. ,enI􏽦⊂ I∗ and soI∗ is not soft connected asI
is maximal soft connected.,erefore, there exist disjoint soft

I∗-open sets (G, E), (H, E) such that (G, E)􏽦∪ (H, E) � 􏽥Z.
,us either y(e), z(e′)􏽥∈ (G, E) or y(e), z(e′)􏽥∈ (H, E). If
y(e), z(e′)􏽥∈ (G, E), by Remark 2.2 (ii) in [26], each soft
I∗-open set containing y(e) is also softI-open, so (G, E) is
soft I-open. ,erefore, there is a soft I-open (U, E) such
that y(e)􏽥∈ (U, E) 􏽥⊆ (G, E). But (U, E) is a soft I-open
containing z(e′) such that (U, E) 􏽥⊆ (G, E). ,us (U, E) is a
soft I-open containing each of its points, and similarly for
(H, E). ,is implies that (Z,I, E) is soft disconnected,
which is impossible.

Proposition 3. If (Y, E) is a soft open connected subset of a
maximal soft connected space (Z,I, E), then (Y,IY, E) is
maximal soft connected.

Proof. If (Y,IY, E) is not maximal soft connected, then
there exists a soft connected topology T on Y such that
TY

􏽦⊂ T. Let (X, E) 􏽥⊆ (Y, E) be a soft I-open set but not
soft TY-open. If T

∗ � IY[X], then IY
􏽦⊂ T∗ and so T∗ is

soft connected. If I∗ � I[X], then I􏽦⊂ I∗ but I∗ cannot
be soft connected. ,erefore, there are disjoint soft
I∗-open sets (G, E), (H, E) such that (G, E)􏽦∪ (H, E) � 􏽥Z.
,en either (Y, E) 􏽥⊆ (G, E) or (Y, E) 􏽥⊆ (H, E), differently
(Y,T∗, E) � (Y,I∗Y, E) will be soft disconnected by the
disjoint soft T∗-open sets (G, E)􏽦∩ (Y, E), (H, E)􏽦∩ (Y, E)

(impossible). Hence, we assume (Y, E) 􏽥⊆ (G, E). By Remark
2.2 (ii), for all soft points z(e) that belongs to some soft
I∗-open set but does not belong to any soft I-open, we
have

z(e)􏽥∈ (X, E) 􏽥⊆ (Y, E) 􏽥⊆ (G, E). (4)

,is means that (G, E) is soft I-open as (Y, E) is soft
I-open. Similarly, one can show that (H, E) is soft I-open.
Hence (G, E), (H, E) are disjoint soft I-open and
(G, E)􏽦∪ (H, E) � 􏽥Z, which proves that (Z,I, E) is not soft
connected, a contradiction.

Proposition 4. If (Y, E) is a soft closed connected subset of a
maximal soft connected space (Z,I, E), then (Y,IY, E) is
maximal soft connected.

Proof. Assume (Y,IY, E) is not maximal soft connected.
Take a set (X, E) 􏽦⊂ (Y, E) which is not soft IY-open. If
T � IY[X], then IY

􏽦⊂ T and so T is soft connected. Let
(W, E) � 􏽥Z\((Y, E)\(X, E)). ,en, we have (W, E)􏽦∩
(Y, E) � (X, E). ,erefore, IY[X] � I∗Y, where I∗ is an
s-extension of I with respect to (W, E) (i.e. I∗ � I[W]).
Since I is maximal soft connected and I􏽦⊂ I∗, then I∗ is
soft disconnected.,us there exist disjoint softI∗-open sets
(G, E), (H, E) such that (G, E)􏽦∪ (H, E) � 􏽥Z. Since I∗Y is
soft connected, then either (Y, E) 􏽦⊂ (G, E) or
(Y, E) 􏽦⊂ (H, E). Suppose (Y, E) 􏽦⊂ (G, E). We consider two
cases: (i) suppose z(e)􏽥∈ (G, E). Since (G, E) is softI∗-open,
there are soft I-open sets (U, E), (V, E) such that
z(e)􏽥∈ (U, E)􏽦∪ [(V, E)􏽦∩ (W, E)] 􏽦⊂ (G, E). If z(e)􏽥∈
(U, E) 􏽦⊂ (G, E) and so z(e)􏽥∈ IntI((G, E)). If
z(e)􏽥∈ (V, E)􏽦∩ (W, E) 􏽦⊂ (G, E), then z(e)􏽥∈ (V, E) �

(V, E)􏽦∩ [(􏽥Z\(W, E))􏽦∪ (W, E)] 􏽦⊂ (G, E) as [(V, E)􏽦∩
(􏽥Z\(W, E))] 􏽦⊂ 􏽥Z\(W, E) � (Y, E)\(X, E) 􏽥⊆ (Y, E) 􏽥⊆ (G, E).
Again z(e)􏽥∈ IntI((G, E)). Since z(e) was arbitrarily taken,
so (G, E) is soft I-open. (ii) suppose z(e)􏽥∈ (H, E). Since
(H, E) is soft I∗-open, there are soft I-open sets
(U, E), (V, E) such that z(e)􏽥∈ (U, E)􏽦∪ (V, E)􏽦∩
(W, E) 􏽦⊂ (H, E). If z(e)􏽥∈ (U, E) 􏽦⊂ (H, E) and so
z(e)􏽥∈ IntI((H, E)). If z(e)􏽥∈ (V, E)􏽦∩ (W, E), then, since
z(e)􏽥∈ (H, E) 􏽥⊆ 􏽥Z\(Y, E) 􏽦⊂ (W, E), so z(e)􏽥∈ (V, E)􏽦∩
[􏽥Z\(Y, E)] 􏽦⊂ (V, E)􏽦∩ (W, E). Since 􏽥Z\(Y, E) is soft
I-open, therefore z(e)􏽥∈ IntI((H, E)). ,us (H, E) is soft
I-open. ,is means that (Z,I, E) is not soft connected,
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which is impossible. Hence (Y,IY, E) must be maximal soft
connected.

Definition 16. (see [29]). A soft topological space (Z,I, E) is
called soft submaximal if each soft I-dense set is soft
I-open.

Lemma 10. Let (Z,I, E) be a soft connected space and let
I∗ � I[Y] be an s-extension of I over Z. If (Y, E) is soft
I-dense, then (Z,I∗, E) is soft connected

Proof. It follows from ,eorem 3.17 [26].

Lemma 11. If (Z,I, E) is a maximal soft connected space,
then (Z,I, E) is soft submaximal.

Proof. Let (D, E) be a softI-dense set over Z. By Lemma
10, (Z,I∗, E) is soft connected, where I∗ � I[D], but I is
soft maximal, hence I � I∗. ,us (D, E) must be a soft
I-open.

�eorem 5. If (Y, E) is a soft connected subset of a
maximal soft connected space (Z,I, E), then (Y,IY, E) is
maximal soft connected.

Proof. Since (Y, E) is soft connected, then ClI((Y, E)) is
also soft connected and, by Proposition 4, ClI((Y, E)) is
maximal. By Lemma 11, (Y, E) is soft open in ClI((Y, E))

because (Y, E) is soft dense in ClI((Y, E)). By Proposition 3,
(Y, E) is maximal soft connected.

4. Conclusion

,e growth of topology has been supported by the continual
supply of classes of topological spaces, examples, and their
properties and relations. As a result, extending the area of soft
topological spaces in the same way is significant. We have
shown that the collection of all soft topologies on a non-empty
set is a complete lattice. ,e minimal element in this lattice is
the soft indiscrete topology, which is both soft compact and soft
connected. One might ask the question of what be will be the
structure of maximal soft compact andmaximal soft connected
topologies. ,e third section answers this question and gives
some more properties of these topologies. We have charac-
terized maximal soft compact topologies in terms of soft
closed-compact subsets and soft homeomorphisms. It is shown
that the class of maximal soft compact topologies contains the
class of stable soft compact T2 topologies and is contained in
the class of soft T1 topologies. Furthermore, we have seen that
the class of maximal soft connected topologies is contained in
the class of soft T0 topologies. With the help of a simple ex-
tension of a soft topology, we have found that any soft con-
nected topology relativised with a maximal soft connected is
also maximal.

As part of future work, the following tasks are expected
to be completed:

(i) Different soft point theories can be applied to all the
results presented in this paper.

(ii) Recall that a soft topologyI on Z with the property Γ
is Γ-maximal if any soft topology finer thanI does not

have the property Γ. One can examine different soft
topological properties in place of soft compact or soft
connected, namely: soft countably compact, soft se-
quentially compact, soft paracompact, soft Menger,
soft path-connected, soft J-topologies, and so on.

(iii) ,is work is done on soft topologies, one can work
on different topological structures, like fuzzy soft
topologies, supra topologies, infra topologies, etc.
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[24] İ. Zorlutuna, M. Akdag, W. Min, and S. Atmaca, “Remarks on
soft topological spaces,” Annals of fuzzy Mathematics and
Informatics, vol. 3, no. 2, pp. 171–185, 2012.

[25] M. E. El-Shafei, M. Abo-Elhamayel, and T. M. Al-Shami,
“Partial soft separation axioms and soft compact spaces,”
Filomat, vol. 32, no. 13, pp. 4755–4771, 2018.

[26] Z. A. Ameen and S. Al Ghour, “Extensions of soft topologies,”
2021.

[27] T. Al-shami, “Comments on some results related to soft
separation axioms,” Afrika Matematika, vol. 31, no. 7,
pp. 1105–1119, 2020.
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