
Research Article
An Intelligent Diagnostic System to Analyze Early-Stage Chronic
Kidney Disease for Clinical Application

N. I. Md. Ashafuddula ,1 Bayezid Islam ,2 and Rafqul Islam 1

1Department of Computer Science and Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh
2Department of Computer Science & Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh

Correspondence should be addressed to Rafqul Islam; rafqul.islam@duet.ac.bd

Received 15 May 2023; Revised 30 September 2023; Accepted 10 November 2023; Published 22 November 2023

Academic Editor: Nadeem Sarwar

Copyright © 2023 N. I. Md. Ashafuddula et al.Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Chronic kidney disease (CKD) is a progressive condition characterized by the gradual deterioration of kidney functions, po-
tentially leading to kidney failure if not promptly diagnosed and treated. Machine learning (ML) algorithms have shown sig-
nifcant promise in disease diagnosis, but in healthcare, clinical data pose challenges: missing values, noisy inputs, and redundant
features, afecting early-stage CKD prediction. Tus, this study presents a novel, fully automated machine learning approach to
tackle these complexities by incorporating feature selection (FS) and feature space reduction (FSR) techniques, leading to
a substantial enhancement of the model’s performance. A data balancing technique is also employed during preprocessing to
address data imbalance issue that is commonly encountered in clinical contexts. Finally, for reliable CKD classifcation, an
ensemble characteristics-based classifer is encouraged. Te efectiveness of our approach is rigorously validated and assessed on
multiple datasets, and the clinical relevancy of the strategy is evaluated on the real-world therapeutic data collected from
Bangladeshi patients. Te study establishes the dominance of adaptive boosting, logistic regression, and passive aggressive ML
classifers with 96.48% accuracy in forecasting unseen therapeutic CKD data, particularly in early-stage cases. Furthermore, the
efectiveness of the FSR technique in reducing the prediction time signifcantly is revealed. Te outstanding performance of the
proposed model demonstrates its efectiveness in addressing the complexity of healthcare CKD data by incorporating the FS and
FSR techniques. Tis highlights its potential as a promising computer-aided diagnosis tool for doctors, enabling early in-
terventions and improving patient outcomes.

1. Introduction

Te kidneys flter about 120 to 150 quarts of blood per day to
generate approximately 1 to 2 quarts of urine [1, 2]. Te
primary function of the kidneys is to remove waste from the
body’s fuids via urine. CKD starts with unexpected meta-
bolic disorders that gradually refer to the loss of endocrine,
excretory, and metabolic functions in the kidneys [3]. Tese
unusualities are evident as the signs and symptoms of renal
damage. Since the underlying cause of the disorder stays
unspecifed in many patients, the most common causes can
be diabetes, hypertension, interstitial diseases, systemic in-
fammatory disorders, glomerular diseases, congenital
conditions, and renovascular abnormalities [4].

In the absence of timely treatment, kidney disease
progresses to end-stage renal failure (ESRF), which causes
coma and even death in patients [5]. According to [6],
approximately 750,000 patients annually are afected by
renal failure in the United States, with an estimated 2 million
people globally sufering from kidney failure, and the di-
agnosed patient rate rises at a 5–7% rate annually. Over the
past decade, the overall CKD mortality rate has shown
a substantial increase at 31.7% [7]. Studies exploit the fact
that, in low- and middle-income countries, CKD is a more
signifcant burden when compared to high-income coun-
tries [7–10]. Te number of patients diagnosed with renal
disease in South Asian cities is 7.2%–17.2% [11]. Te reg-
ularity reports that 13% of all the available populations in
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Dhaka city are aged 15 years, or older [12]. About one-third
of Bangladesh’s rural people have incurable renal failure risk,
as suggested by another community-based report [13].
Hence, CKD poses an upright threat in a developing country
like Bangladesh.

A computer-aided diagnosis process can leverage an
efective CKD diagnosis for accurate detection at the primary
stage. ML is now one of the most essential and prosperous
areas in the healthcare sectors for analyzing and making
predictions for diferent diseases and stages [14]. Te ML
models gain knowledge by exploring large datasets and their
features, patterns, modes, and so on. In data analysis, the FS
strategy is used to select a subset of the most relevant features
in the dataset to improve the performance and interpretability
of theMLmodels, while the FSR technique aids in simplifying
the feature representation and overall complexity in the
dataset by extracting the principal components [15].

Previous research has shown that choosing the most
relevant and useful features can improve early-stage CKD
detection. Some researchers have used FS techniques and
others have used FSR techniques. However, combining both
has not been fully explored, resulting in limitations in
reaching a maximum accuracy while keeping the ML
model’s generalization capabilities for clinical CKD di-
agnosis. Moreover, analyzing healthcare table data related to
CKD is challenging due to missing or null attributes and
categorical values in the dataset. A data encoding meth-
odology is generally well-suited for categorical values, but
a suitable strategy for addressing missing or null attribute
values that takes into consideration the dataset’s random
nature is required. Tough the existing studies have used
various methods to overcome these issues, their efectiveness
in dealing with unseen clinical data has not been fully
established.Moreover, there are still a number of issues, such
as a lack of standardization of CKD, models’ interpretability,
generalizability, and fairness, in order to ensure their safe use
in normal clinical trials [16, 17].

Terefore, this work aims to extend renal disease diagnosis
in a clinical setting by efectively utilizing computer in-
telligence. To achieve this goal, both the FS and FSR techniques
are employed in the preprocessing phase. In addition, a data
balancing strategy, as well as data encoding and cleaning, is
used to account for clinically unseen data that is imbalanced,
missing, or noisy. Finally, multiple classifcation models are
incorporated, with adaptive boosting, logistic regression, and
passive aggressive being the recommended ML models for
CKD analysis due to their ensemble capabilities.

Te efectiveness of the proposed intelligent diagnostic
system is evaluated on multiple datasets separately. Finally,
the clinical CKD detection performances are evaluated on
unseen healthcare data collected from Bangladeshi patients.
Tis study increased the model performances in clinical
CKD detection by handlingmissing values, imbalanced data,
data encoding, feature selection, and dimension reduction
efectively. To sum up, the most signifcant contributions of
this work are as follows:

(1) Te datasets are analyzed to ensure that no data loss
occurs, even in the case of missing value.

(2) Te dimension reduction methodology is in-
vestigated in order to reduce the feature space; as
a result, the model training and testing time could be
reduced while simultaneously improving the overall
results.

(3) Tis study presented a generalized intelligent di-
agnostic system to analyze and predict renal disease
at an early stage with unseen healthcare data. To the
best of our knowledge, this is the frst work on CKD
prediction with clinical unseen data.

(4) A comprehensive analysis was performed on four
diferent datasets to fnd the best ML models for
CKD analysis.

(5) Adaptive boosting, logistic regression, and passive
aggressive techniques are recommended classifers
for CKD analysis on unseen real-life data due to their
robust ensemble capabilities.

Te rest of the paper is organized as follows: Te related
literature review is discussed in Section 2. Te proposed
methodology is categorized into subsections and briefy
discussed in Section 3. Data encoding, balancing, cleaning,
feature selection, and dimension reduction techniques are
discussed in Section 3.1. Te experimental analysis is dis-
cussed in Section 4.3. Dataset collection and dataset de-
scriptions are stated in Section 4.1. In Section 4.3
performance evaluationmetrics and experimental results are
discussed concerning diferent methods and datasets. Fi-
nally, the discussion and conclusion are delivered in Sections
4.4 and 5, respectively.

2. Literature Review

For efective disease classifcation and prediction, various
methodologies are designed and explored. Te study [18]
examined 12ML classifers across four distinct datasets:
breast cancer, liver disorders, wine quality, and Indian liver
patients. Te evaluation primarily focused on accuracy and
prediction speed. Tey concluded that the classifer’s per-
formances are disease specifc. However, this study did not
elaborate on how the data complexity was handled, and the
clinical relevancy was not discussed. As CKD is among the
life-threatening diseases that necessitate early detection to
enhance patient outcomes, researchers have explored nu-
merous ML algorithms coupled with preprocessing tech-
niques for efcient CKD prediction. A synthetic minority
oversampling technique (SMOTE) is employed in [19] to
balance the CKD-15 dataset. Te authors tested three dif-
ferent FS methods including correlation-based feature se-
lection (CFS) as a flter method, forward feature selection
(FFS) as a wrapper method, and the least absolute shrinkage
and selection operator (LASSO) feature selection as an
embedded feature selectionmethod.Te data balancing with
SMOTE and FS with LASSO resulted in an increase of 1.39%
accuracy compared to using a linear support vector machine
(LSVM) with the original dataset. Te authors in [20]
performed an FS strategy using a genetic algorithm (GA).
Tey achieved the highest accuracy of 99.75% from the
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multilayer perceptron (MLP) classifer. Diferent feature-
based prediction models were suggested in [21] for detecting
kidney disease in which logistic regression with a Chi-square
test-based model showed the highest accuracy (98.75%).
Similar ML-based models but diferent applications were
analyzed by the authors in [22, 23]. In their work, the
gradient boosting-based model was utilized in which their
major fnding was to utilize the FS and sampling techniques
(SMOTE, OneR, etc.) for achieving favorable accuracy. Te
fuzzy-based intelligent system that incorporated fuzzifca-
tion, implication, and defuzzifcation was proposed in [24]
for CKD analysis. Tey modeled an IF-THEN fashion to
develop the knowledge base for a fuzzy inference system. A
summary of the data imbalanced analysis was presented by
the authors [25]. Te study investigated 23 class imbalanced
techniques (resampling and hybrid systems) with three ML
classifers including random forest (RF), logistic regression
(LR), and linear support vector classifer (LinearSVC) to
identify the most suitable imbalanced method for the
medical dataset. Tey found that class imbalance learning
can signifcantly improve classifcation, with random
oversampling (ROS) and RF delivering the best results.

Several other FS methods have been explored to identify
the most relevant features. Te L1-regulated FS technique
has been explored in [26] to classify microarray cancer data
with improved performance.Te authors in [27] applied L1-
norm-based and chi-square-based FS strategies to classify
breast cancer. In other CKD studies [28–30], principal
component analysis (PCA) is utilized to extract noteworthy
features from the dataset. Te authors [28] extracted 19
features using PCA and achieved the highest accuracy of
98% using the support vector machine (SVM) classifer.
Other classifers such as LR, naive Bayes (NB), and k-nearest
neighbor (KNN) also demonstrated noteworthy perfor-
mance. Te study [31] utilizes PCA, discriminant analysis
(DA), and LR to extract features from the breast cancer
dataset. While achieving notable accuracy with a hybrid
feature extraction technique, discriminant logistic (DA-LR),
the study failed to discuss the data complexity, such as data
balancing and cleaning issues.Te authors in [32] performed
their experimental analysis on the CKD-15 dataset without
employing a feature optimization strategy. Despite this, they
were able to attain an accuracy of 97.25% using MLP as the
classifer, 96.5% using LR, and 95.75% using NB.Te highest
accuracy of 98.25% was achieved using SVM as the classifer.
Another study [30, 33] worked with handling nominal at-
tributes and observed the feature selection strategy in per-
formance analysis. Te nominal attributes were transformed
into binary attributes, and then they conducted a best-ft
feature selection (BFFS) method. According to their fnd-
ings, SVM and KNN outperformed LR and decision tree
(DT) classifers, with accuracy rates of 98.3% and 98.1%,
respectively. Non-numerical data of the CKD-15 dataset
were transformed into binary data in the study [34]. Te
authors aimed to identify the most signifcant clinical test
attributes by using SHapley Additive exPlanations (SHAP)
values and reducing the number of attributes to a minimum
for optimal clinical testing and high CKD detection accu-
racy. Among the tested classifers, the RF achieved the

highest accuracy of 99.5%, while gradient boosting (GB),
extreme gradient boosting (XGB), LR, and SVM also per-
formed well with high accuracy.

To handle the missing values in the CKD dataset, the
authors in [28, 30, 34, 35] replaced the missing values with
the mean value. Te missing values are handled in [3] with
themean, median, andmode values of the attributes and also
dropped the null values. Te authors in [36] utilized mutual
information measures (MIMs) for feature selection and
replaced missing values through multiple imputations while
analyzing kidney disease. Te authors in [37] used the
median technique to replace the missing values. Other
studies in [38, 39] replaced themissing values with 0.Te top
accuracy of 99.1% was achieved by decision forest (DF) and
97.5% while implementing NN with an arbitrary selection of
14 attributes [38]. Other authors [35] have selected 13 out of
24 attributes for classifcation, and the results showed that
adaptive boosting (ADAB) achieved a prediction accuracy of
99% while the extra-tree classifer (ETC) obtained 98%
accuracy. Te authors in [39] considered 21 attributes from
the CKD-15 dataset. During the classifcation phase, the DF
achieved the highest prediction accuracy (99.17%) to predict
three diferent potassium zones: LR 89.17% and NN 82.15%.
Te authors in [28] handled the categorical variables by
converting them to a corresponding numerical value uti-
lizing the one-hot encoding technique. Tey found the best
performance of 98.0% accuracy using an SVM classifer. In
a study [1], the attributes with more than 20%missing values
were removed from the dataset, and the remaining values
were flled using KNN imputation.Te authors then selected
features based on statistical signifcance, medical impor-
tance, and test data availability. Eleven ML algorithms were
evaluated, and four classifers (DT, RF, ETC, and ADAB
classifer) showed 100% accuracy.

Te comprehensive literature review highlights various
techniques and approaches employed in disease prediction,
particularly early CKD diagnosis and reveals common data
preprocessing techniques such as nominal-to-binary
transformation and one-hot encoding for categorical vari-
ables. Handling missing data involves methods like mean
imputation, median, mode, multiple imputations, or re-
placement with 0. Existing studies often focus solely on
feature selection or reduction techniques. For CKD pre-
diction, popular methods included CFS, FFS, LASSO, GA,
Chi-square, BestFit, SHAP, MIM, and PCA. Breast cancer
classifcation is employed, while L1-regulated and L1-norm-
based feature selections are used for efcient breast cancer
classifcation. While these studies demonstrated high ac-
curacy on the datasets utilized for training and testing by
splitting them, a critical gap emerged. None of them
combined feature selection and reduction methods to im-
prove model performance, particularly in better handling
clinical CKD data complexity. In addition, they also lack the
assessment of the performance of their models on real-
world, unseen clinical CKD data to provide patient-
centric CKD solutions at the initial phase. Tese raise the
necessity for an improved automated diagnostic system for
CKD detection. Tis study aims to address these gaps by
introducing a novel methodology tailored to enhance CKD
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diagnostic accuracy and handle data complexity in a patient-
centric manner.

3. Proposed Methodology

Preprocessing and classifcation are the two parts of the
proposed methodology. In the preprocessing step, data
encoding, balancing, cleaning, feature selection, and di-
mension reduction approaches were implemented to
properly train the ML algorithms. Te entire block diagram
of the proposed methodology is shown in Figure 1.

3.1. Preprocessing. Te datasets contain a mixture of nu-
merical, categorical, nominal, andmissing values, so the data
are preprocessed to address the issues with categorical,
nominal, and missing data. Before starting the preprocessing
phase, the “Afected” attribute is manually omitted from the
processed data, thus the processed data could not be afected
by the class variables.

3.1.1. Categorical Variable. Variables with two or more
categories but without intrinsic ordering to the categories
are known as categorical variables, often known as nominal
variables [40]. Categorical variables are the types of data that
may be divided into groups. For example, the categorical
variables are age, sex, group, race, educational level, etc.

3.1.2. Data Encoding. Data encoding is the process of
converting data or a given sequence of characters, symbols,
alphabets, etc., into a specifc format that can be processed by
a computer system or application. Te purpose of data
encoding is to transform the data into a standard format.
Tis study utilized the label encoding or ordinal encoding
technique to complete this task. All the non-numerical
(nominal categorical variables) labels are mapped to nu-
merical labels using this encoding (Table 1).

3.1.3. Data Balancing. Data balancing is a procedure in
which the amount of class data is equalized using diferent
data balancing techniques. Tis analysis used two datasets,
CKD-15, and CKD-21; both datasets were imbalanced.
CKD-15 contains 250 CKD and 150 non-CKD instances,
and CKD-21 contains 78 CKD and 122 non-CKD data. To
address this imbalance and prevent potential bias and poor
model generalization, the ROS technique was employed to
increase the lower number of instances. ROS duplicates
minority class examples randomly, ensuring an equal rep-
resentation of CKD and non-CKD instances in both
datasets.

Table 2 shows the data imbalance for both datasets.
Table 3 shows the amount of data after balancing the data
using the sampling technique.

3.1.4. Data Cleaning. Missing entries are common in clinical
CKD data due to the challenges of tackling a large number of
CKD patients within a limited time by medical assistants.
However, simply removing instances with missing data can

pose issues for accurate classifcation by ML models. In
addition, to ensure accurate and reliable outcomes, it is
crucial to avoid bias and data distortion caused by in-
complete or erroneous data. Tis necessitates employing
a data imputation technique tailored to the specifc disease
characteristics. Here, the study addressed the lost data by
flling up the mean value of the corresponding attribute
based on how the missing values were distributed randomly.
It serves to preserve the statistical properties of the dataset
while ensuring accuracy and reliability in subsequent
analyses.

3.1.5. Feature Selection. As the increasing number of fea-
tures creates computation overhead and increased model
overftting possibilities, FS comes into the solution [41]. Te
FS strategy reduces the input variables by using only relevant
data and eliminating unnecessary and noisy data [42]. It is an
automatically relevant feature-choosing process. Te sig-
nifcant advantage of using this technique is that it reduces
overftting [43]. Regularization is a useful technique for
reducing model complexity and feature selection [26]. Te
penalty “L1” (Lasso regularization) and solver “liblinear” are
used here with the “LogisticRegression” method to select
essential features based on the importance weights. It em-
ploys the shrinking strategy by penalizing the least-square
errors. To minimize the cost function, the model set the
weights of some features to zero, and a total of 13 features are
chosen for CKD-15, CKD-21, hybrid, and unseen
clinical data.

3.1.6. Dimension Reduction. Dimension reduction is a pro-
cess that reduces the feature space to the most relevant
feature space [15, 44] while preserving the maximum
amount of relevant information from the actual data. Tis
technique can enormously reduce the time complexity of the
ML algorithm’s training phase, and it does not degrade ML
model performance [45]. Among other dimension reduction
techniques including PCA, singular value decomposition
(SVD), linear discriminant analysis (LDA), and generalized
discriminant analysis (GDA), an unsupervised ML tech-
nique, PCA, is employed here due to its efectiveness and
popularity in feature reduction particularly in CKD analysis.
PCA employs mathematical principles to reduce a large
number of potentially correlated variables to a smaller
number of variables (lower dimension), which are referred
to as principal components [46]. Tis investigation utilized
PCA as the dimension reduction strategy in four ways to
prepare 4 categories of datasets.

For efective PCA analysis, the features of datapoints “X”
are standardized through mean removal and scaling to unit
variance using the following equation to ensure equal feature
scaling:

X �
X − mean(X)

std(X)
. (1)

To determine the direction in which the features are
most correlated, the covariance matrix “COV” is calculated
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using equation (2). It is a square matrix with dimensions
equal to the number of features, and each element in the
matrix represents the covariance between two features, in-
dicating their linear association.

COV Xi, Xj  �
 Xi − Xmean( ∗ Xj − Xmean 

N
. (2)

Here, N� number of samples in the dataset.
Te eigenvectors and eigenvalues of the “COV” matrix

are computed from equation (3). Tey determine the di-
rections in which the features are most varied and the
amount of variance explained by each component. Te ei-
genvalues and their corresponding eigenvectors are sorted in
descending order, with the largest eigenvalues being con-
sidered the principal components for projecting the data
onto a lower-dimensional space.

(COV − λI)] � 0. (3)

Here, λ is the eigenvalue, I is the identity matrix, and ] is
the eigenvector.

Ten, the frst “k” values are chosen as the largest ei-
genvalues and their corresponding eigenvectors to form
a matrix for the projection step to reduce data di-
mensionality utilizing the following equation:

]reduced � ][:, 0 : k]. (4)

In the experiment, the study used k� 2, for CKD-15,
k� 7, for CKD-21, k� 3, for hybrid data, and k� 10, for
clinical unseen data.

Xreduced � X × ]reduced. (5)

Finally, the new feature vectors are calculated from
equation (5). In the experimental analysis, the “k” values are
chosen such that they are minimal and outperform the
existing models.

Train
Dataset

Test
Dataset

Data Splitting

Machine Learning
Models

Train the Model Test the Model

Trained
Model

Decision
CKD

NON-CKD
Machine Learning

Model

Dataset
Data CleaningData Encoding Data Balancing

Data pre-
processing

Dimension
Reduction

(PCA)

Feature
Selection

Figure 1: Proposed intelligent system for clinically early-stage chronic kidney disease diagnosis.

Table 1: Data representation from non-numerical to numerical label using encoding operation.

Attribute name Attribute value Mapping value
DD/MM 01-Jan 1 (month index)
A range 2–4 3 (mean between them)
Less than 5 4 (immediate lesser decimal than the given value)
Less than zero 0 0 (same as the given value)
Less or equal 5 5 (same as the given value)
Greater than 2 3 (immediate greater decimal than the given value)
Greater or equal 5 5 (same as the given value)

Examples

1.019–1.021 1.02
1.009–1.011 1.01
≥ 1.023 2
< 1.007 0
01-Jan 1
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3.2. Classifcation. Te advantage of the ML algorithm is
that it can adapt to various cases by observing them.
Troughout this paper, twelve supervised classifcation ML
algorithms are picked and compared to detect CKD early on
in diferent scenarios.

3.2.1. Logistic Regression. Te logistic regression model
estimates the possibility of an event within a particular
class [47].

LR is commonly used for binary classifcation, although
its title incorporates “regression.” A decision boundary is

a value that is set to predict the data class. Te sigmoid
activation function is used here to compute this classifcation
probability.Temathematical model of the algorithm can be
denoted as in the following equation:

Pi �
1

1 + e
− 

m

j�0βjxij

, (6)

where i� 1 to N (number of observations), j� 1 to M
(number of individual variables), Pi � probability of “1” at
observation i, βj � regression coefcient, and xij � the jth

variable at observation i.

3.2.2. Decision Tree. Te basic goal of the decision tree al-
gorithm is to generate a prediction model from a set of
training data sets to predict classes or values of target
variables. Te DT algorithm is structured like a tree, with
leaves, branches, and roots. When compared to other
classifcation algorithms, the DT algorithm is simple
to grasp.

3.2.3. Random Forest. Tis algorithm creates multiple de-
cision trees during training and provides an output class of
individual trees [48]. Tis method incorporates the decor-
related tree by building a substantial range of decision trees
on bootstrapped samples from the training dataset. It
screens a few feature columns among all feature columns
throughout bootstrapping. Gini impurity is used in the
experiment with ten maximum depths of the tree. Te tree
grows with ten maximum leaf nodes. Predictions for un-
known data after training can be defned as in the following
equation:

f
′

�
1
B



B

b�1
fb x
′

 , (7)

where B� optimal number of trees and fb(x′) � prediction
from the i−th decision tree for the unknown sample x′.

Also, the uncertainty (σ) of the prediction is defned by
the following equation:

σ �

���������������


B
b�1fb x

′
− f
′

 
2

B−1




.
(8)

3.2.4. Passive Aggressive Classifer. Te passive aggressive
classifer (PAC) is one of the online learning algorithms in
ML. It responds passively to correct classifcations and
aggressively to any miscalculation. Generally, large-scale
learning works better. In contrast to batch learning,
where the entire training dataset is utilized at once, input in
online ML algorithms is received sequentially, and the ML
model is gradually updated. Fifty passes over the training
data are used in the experiment.

3.2.5. Support Vector Machines. Te SVM is built upon
a statistical learning framework, providing solutions for both

Table 3: Balanced dataset CKD-15 and CKD-21.

Dataset CKD Non-CKD Plotting data

CKD-15 250 253
50%50%

IMBALANCED CKD-15

CKD
NON-CKD

CKD-21 128 128
50%50%

IMBALANCED CKD-21

CKD
NON-CKD

Table 2: Imbalanced dataset CKD-15 and CKD-21.

Dataset CKD Non-CKD Plotting data

CKD-15 250 150 62%

38%

IMBALANCED CKD-15

CKD
NON-CKD

CKD-21 78 122

39%

61%

IMBALANCED CKD-21

CKD
NON-CKD
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regression and classifcation problems [49]. SVM can cat-
egorize both linear and nonlinear datasets by using the
kernel trick. As a subset of training points in the decision
function, it is also computationally efcient (called support
vectors). Te prediction function of an SVM classifer can be
described by the following equation (9).Te “rbf” kernel and
regularization parameter “1” are used in the experiment.

f(x) � βo + 
i∈s

aiK xi, xi
′( , (9)

where x� new data point, βo � bias, S� set of support vec-
tors, ai � corresponding weights of the training data xi, and
xi
′ are support vectors in the training data.

3.2.6. K-Nearest Neighbor. KNN is the most straightforward
supervised ML algorithm [50]. A distance is calculated to
determine similarities with other instances. For example, the
closest data point to the point under observation is thought
to be the most appropriate for the data point. Tere are
numerous distance metrics for calculating the nearest point,
such as Euclidean, Hamming, Manhattan, Cosine, Jaccard,
andMinkowski distances. In the experiment, 7 neighbors are
used with the Euclidean distance 10. Here, p and q are two
points in the space, pi and qi are the ith dimensions of points
p and q, and n is the number of dimensions.

d(p, q) �

�����������



n

i�1
qi − pi( 

2




. (10)

3.2.7. Gradient Boosting. Tis classifer [51] is also operated
to estimate the prediction performance as a boosting al-
gorithm.Te primary stages of a GB classifer are computing
the error residual, learning a regression predictor, and
memorizing to predict the residual. Additive models are
usually utilized, and weak learners are counted to optimize
the loss function. For weak learners, decision trees (re-
gression trees) are employed.

3.2.8. Naive Bayes. Te NB is a probabilistic supervised
algorithm while classifying data imposes independence of
features [52]. Te method works efectively for datasets with
a signifcant number of input variables. It assumes all the
features available, including weak features, in the fnal
prediction. Te probabilistic naive Bayes ML model can be
stated as the following equation (11) where A and B are two
independent events.

P(A | B) �
P(B | A) × P(A)

P(B)
. (11)

3.2.9. Stochastic Gradient Descent. Te word “stochastic”
denotes a system or process connected with a random
probability. Hence, for each iteration, a few samples are
selected randomly instead of the whole data in stochastic
gradient descent (SGD). To perform each iteration, SGD

uses only a sample, i.e., a batch size of one. Te sample is
shufed randomly and picked for executing the iteration. To
train the model, L1 regularization and 20 epochs are used.

3.2.10. Multilayer Perceptron. A multilayer perceptron is
considered to be the most signifcant class of feed-forward
artifcial neural networks (ANNs) that is made up of several
layers of perceptron [52]. Te network contains three layers
where at least one hidden layer is required, and others are the
input and the output layer. Tis experiment used the sig-
moid activation function and “lbfgs” solver which is an
optimizer in the family of quasi-Newton methods.

3.2.11. Adaptive Boosting. Te adaptive boosting algorithm
also known as AdaBoost is an ensemble ML technique that
merges a number of weak classifers to form a stronger
classifer to increase the classifcation performance [53]. Te
performance of this model is improved by using extra copies
of the classifer on the same dataset; for incorrectly classifed
samples, weights are adjusted to represent the fnal output of
the boosted classifer.

3.2.12. Extreme Learning Machine. An extreme learning
machine (ELM) is a single hidden layer feed-forward neural
network that solves problems by fnding the minimum norm
least-square (MNLS) solution of a system [54]. It provides
good generalization performance by solving problems in
a single iteration at an extremely fast speed. Te model
Moore–Penrose generalized inverse is used to set its weights.
In this experiment, 150 hidden nodes with the sigmoid
activation function are used. Te output of this model is
calculated using the following equation:

fL(x) � 
L

i�1
βigi(x). (12)

Here, x represents the input feature vector, and the pre-
diction is made by summing the product of the weights “βi”
and the activation function “gi(x)” for each hidden node “i”
in the hidden layer.

4. Performance Evaluation

Statistically, fnding the best ML classifers is difcult be-
cause it relies on the type of application and the data format.
Terefore, the focus of this work is on experimentally val-
idating all ML models in terms of CKD analysis. Based on
the data, both balanced and imbalanced conclusions can be
drawn about the most efective models for the application.

4.1. Dataset Description. To substantiate the clinical rele-
vancy of this study and demonstrate the efectiveness of ML
techniques enhanced by feature selection and reduction, this
work employed two distinct datasets: the chronic kidney
disease dataset, 2015 (CKD-15) [55] and the chronic kidney
disease dataset, 2021 (CKD-21) [56]. Tese datasets
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represent diverse patient clinical data and were obtained
from the “UCI Machine Learning Repository.”

4.1.1. CKD-15 Dataset. Te CKD-15 dataset [55] comprises
clinical data collected from the southern part of India with
an age range of patients between 2 and 90 years. Tis dataset
encompasses 400 instances, which are classifed into two
distinct categories: “ckd” (chronic kidney disease) and
“notckd” (without chronic kidney disease). Each sample has
25 features, with 24 being predictive variables (11 numeric
and 14 nominal). Notably, the dataset exhibits a signifcant
class imbalanced, with 250 instances classifed as CKD and
150 as not-CKD.

4.1.2. CKD-21 Dataset. Te CKD-21 dataset [56] comprises
real-world patient data collected from Enam Medical Col-
lege, Savar, Dhaka, Bangladesh. It consists of 200 samples,
including 78 cases classifed as “ckd” and 122 cases as
“notckd.” Te dataset contains a total of 29 attributes, which
are of three types: (i) numerical values, (ii) categorical values,
and (iii) nominal values. Within these 29 feature sets, the
target values are represented in two specifc features,
denoted as “class” and “afected.”

Both datasets have a signifcant number of missing
values, especially in the CKD-15 dataset. Tables 4 and 5
contain a description of the attributes with the necessary
information for the CKD-15 and CKD-21 datasets, re-
spectively. To apply ML algorithms, data must be well
structured and reliable.

4.2. Training and Testing. To train and test the proposed
model, two datasets, namely, CKD-15 and the real-world
clinical dataset CKD-21 are used in four ways. Te extensive
experimentation on diferent datasets ((i) CKD-15, (ii)
CKD-21, (iii) hybrid, and (iv) unseen clinical cases) with the
combination of multiple evaluation metrics strengthens the
validity of the work and demonstrates the proposed model’s
generalization capability for early CKD prediction in
a clinical setting. Furthermore, validating the model on
clinically unseen data highlights its clinical relevance for
CKD detection. In the CKD-21 dataset, “Afected” and
“Class” attributes have the same meaning.

As both datasets have diferent dimensions, PCA helps
here to bring them to the same number of dimensions for
hybrid and unseen cases.

(1) For both the CKD-15 and CKD-21, the model was
trained with 70% of the data and tested with the rest
30% of the data, as depicted in Figure 2(a).

(2) A hybrid dataset is created by utilizing both the
CKD-15 and CKD-21 datasets. To make a hybrid
dataset, all the datasets must be in the same space. As
the datasets contain diferent feature spaces, this
analysis transformed the dimensions of the two
datasets into a particular dimension utilizing PCA.
Here, for both datasets, 3 feature spaces are chosen to
carry out the research by confguring PCA.Ten, the

vertical (row-wise) concatenation is performed on
the transformed CKD-15 and CKD-21 datasets to
create a new dataset. Te diversity inherent in hybrid
datasets signifcantly enhances the generalization
capabilities of ML models, which is a crucial aspect
when tackling real-world applications. Te ML
models are trained on 70% of the sample data and
tested on the remaining 30%, as shown in
Figure 2(a).

(3) Te study transformed the existing feature space of
both datasets to 10 feature spaces by using PCA for
evaluating the ML models on clinically unknown
patient data. As Figure 2(b) shows, in the experi-
ment, the model is trained using dataset CKD-15
(i.e., 503 samples) and tested the model with
a clinical real dataset CKD-21 (i.e., 256 samples) for
clinical analysis of the unseen data.

All three datasets (CKD-15, CKD-21, and hybrid) were
additionally split using a random state argument to ensure
a nonoverlapping and unbiased evaluation of the proposed
approach on all datasets. Tis approach helps maintain the
integrity of the testing process and ensures the generaliz-
ability of the model’s performance.

4.3. Experimental Analysis. Tis work utilized the PCA as
a dimension reduction technique that addresses the issue of
overftting in ML models, improves computational ef-
ciency, and enhances the model’s generalization capability,
thereby reinforcing its clinical relevance. Te use of multiple
metrics and datasets provides a holistic assessment and
reduces the likelihood of biased results. Te previous studies
suggest evaluating multiple classifers comprehensively on
multiple datasets using considerable evaluation metrics,
recall, true negative ratio (TNR), positive predictive value
(PPV), f1-score, area under the receiver operating charac-
teristic (ROC-AUC) curve, and accuracy metrics that are
appropriate and relevant to evaluate ML models’ perfor-
mance in the context of early-stage CKD detection. Tese
metrics are commonly used in medical and healthcare-
related studies to understand each classifer’s performance
in diferent aspects, particularly in the context of early-stage
CKD detection, where sensitivity, specifcity, and diagnostic
accuracy are critical. Tough cross-validation is a common
and widely used technique for evaluating ML models, it may
not be feasible for our specifc datasets (unseen and hybrid)
due to their unique characteristics. For instance, cross-
validation on clinical unseen datasets might not provide
meaningful insights as this experiment aims to simulate real-
world clinical scenarios by testing the model on entirely
unseen data. Similarly, for the hybrid dataset, it may in-
troduce biases due to the combination of datasets with
varying characteristics. Te work fully operated on Google’s
cloud platform using “Colab Notebook.”

As Table 6 recites, eleven ML models (i.e., ADAB, DT,
ELM, GB, KNN, LR, MLP, PAC, RF, SGD, and SVM) with
PCA performed with 100% test accuracy, and ROC-AUC
value was exactly 1 in the experiment for CKD-15 dataset.
Although three ML algorithms (ADAB, DT, and RF) achieve
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Table 5: Description of diferent attributes of CKD-21 dataset.

Attribute Information Missing ratio (%)
bp (blood pressure) (diastolic) Numeric 0.0
bp (blood pressure) (limit) Numeric 0.0
rbc (red blood cells) Numeric 0.0
pc (pus cell) Numeric 0.0
pcc (pus cells clumps) Numeric 0.0
ba (bacteria) Numeric 0.0
htn (hypertension) Numeric 0.0
dm (diabetes mellitus) Numeric 0.0
cad (coronary artery disease) Numeric 0.0
appet (appetite) Numeric 0.0
pe (pedal edema) Numeric 0.0
ane (anemia) Numeric 0.0
stage CKD stage Numeric 0.0
afected (duplicate of class variable) Numeric 0.0
sg (specifc gravity) Categorical, ranging (1.009–1.021), (<1.007) 20.5
al (albumin) Categorical, ranging (<0) 42.5
su (sugar) Categorical, ranging (<0) 15.0
bgr (blood glucose) Categorical, ranging (112–448), (<112) 1.5
bu (blood urea) Categorical, ranging (48.1–276.7), (<48.1) 0.5
sod (sodium) Categorical, ranging (118–153), (<118) 0.5
sc (serum creatinine) Categorical, ranging (3.65–19.4), (<3.65) 0.5
pot (potassium) Categorical, ranging (7.31–42.59), (<7.31) 0.5
hemo (hemoglobin) Categorical, ranging (6.1–16.5), (<6.1) 7.5
rbcc (red blood cell count) Categorical, ranging (2.69–6.82), (<2.69) 0.5
wbcc (white blood cell count) Categorical, ranging (4980–21640), (<4980) 0.5
grf (glomerular fltration rate) Categorical, ranging (26.6175–227.944), (<26.6175) 1.5
age (patient’s age) Categorical, ranging (26.6175–227.944), (<26.6175) 5.0
pcv (packed cell volume) Categorical, ranging (20–74), (<12) 9.5
Class Nominal (CKD or not CKD) 0.0

Table 4: Description of diferent attributes of CKD-15 dataset.

Attribute Information (values) Missing ratio (%)
age (age) Numerical 2.25
bp (blood pressure) Numerical 3.0
Wbcc (white blood cell count) Numerical 26.5
sg (specifc gravity) Nominal 11.5
al (albumin) Nominal (0, 1, 2, 3, 4, 5) 11.5
Su (sugar) Nominal (0, 1, 2, 3, 4, 5) 12.25
Rbc (red blood cells) Nominal (normal, abnormal) 38.0
Pc (pus cell) Nominal (normal, abnormal) 16.25
Pcc (pus cells clumps) Nominal (present, not present) 1.0
ba (bacteria) Nominal (present, not present) 1.0
bgr (blood glucose) Random numerical in mgs/dl 11.0
bu (blood urea) Numerical in mgs/dl 4.75
sc (serum creatinine) Numerical 4.25
Pcv packed cell volume) Numerical 17.75
sod (sodium) Numerical in mEq/L 21.75
pot (potassium) Numerical in mEq/L 22.0
hemo (hemoglobin) Numerical in mEq/L 13.0
rc (red blood cell count) Numeric 32.75
htn (hypertension) Nominal (yes, no) 0.5
dm (diabetes mellitus) Nominal (yes, no) 0.5
Cad (coronary artery disease) Nominal (yes, no) 0.5
pe (pedal edema) Nominal (yes, no) 0.25
ane (anemia) Nominal (yes, no) 0.25
appet (appetite) Nominal (good, poor) 0.25
class (classifcation) Nominal (CKD, not CKD) 0
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100% accuracy without PCA, the other nine ML models
degrade their performance. Inferior experimental perfor-
mances are noticed in the KNN, PAC, SGD, and SVM
classifers without using PCA, ranging the test accuracy from
53.64% to 70.2% where PAC shows the least test accuracy of
53.64%. For the CKD-21 dataset, Table 7 shows seven ML
models (i.e., ADAB, DT, ELM, GB, KNN, SVM, and RF)
with PCA performing 100% accurately on test data and the
lowest accuracy (94.81%) achieved by the PAC classifer.
Tough the SGD model’s accuracy is not perfect, it has
a perfect ROC-AUC curve for the CKD-21 dataset, whereas
the ELM classifer’s ROC-AUC value is degraded to 0.729.
Te proposed model without PCA could not ft the ELM,
SVM, and PAC ML learning models well; hence, the overall
model’s performance has degraded and ranged in test ac-
curacy from 49.35% to 54.55%. Te MLP model performs
the best for the hybrid dataset. Table 8 describes the best test
accuracy of 99.12% for the MLP model, and the best
ROC-AUC value is 0.996 for the LR model though it ach-
ieves 96.93% of test accuracy.TeML classifers DT, GB, RF,
and SGD show an equal amount of test accuracy of 97.81%
and ROC-AUC of 0.978. In the clinical unseen dataset, the
ADAB, LR, and PAC classifers achieve the highest accuracy
of 96.48%, and the best ROC-AUC of 0.984 is achieved by
the LR model. Among the other ML models, DT and GB
produce the least results (97.27% test accuracy and 0.93
ROC-AUC), as shown in Table 9. Tough the NB model’s

accuracy is not the best, its ROC-AUC value of 0.981 was the
closest to the LR’s ROC-AUC value, establishing it as the
second-best well-fttedmodel whereas with 96.01% accuracy,
RF and SGD acquire the second-best performing models for
unseen clinical data.

Te proposed model with a dimension reduction tech-
nique (PCA) achieves the fnal predicted value for a classifer
in an average of 1.93 seconds for CKD-15 datasets and
6.57 seconds for CKD-21 datasets. Te model without PCA
takes 2.33 seconds for the CKD-15 dataset and 15.9 seconds
for the CKD-21 dataset, as shown in Table 10. Te hybrid
dataset model takes 7.7 seconds, while the unseen dataset
model takes 7.95 seconds. An ML model needs to have the
same dimension of datasets to create a hybrid dataset, and it
also needs to have the same dimension for training and
testing the model. Hence, the average required time without
considering PCA could not be calculated for hybrid and
unseen cases.

4.4. Results and Discussion. Our innovative machine
learning approach is fully automated and integrates feature
selection through L1 regularization and feature space re-
duction using PCA during the preprocessing phase. Tese
techniques were specifcally designed to address the com-
plexities of therapeutic data in CKD diagnosis, with a pri-
mary focus on enhancing early-stage prediction accuracy.

70%

30%

Train
Test

(a)

100%100%

CKD-15
unseen CKD-21 (clinical)

(b)

Figure 2: Dataset splitting for (a) CKD-15, CKD-21, and hybrid case and (b) unseen case.

Table 6: Experimental result analysis of various classifers for with and without PCA on dataset-1 (CKD-15).

Classifer
Recall TNR PPV F1-score Train accuracy Test accuracy ROC-AUC

With
PCA

Without
PCA

With
PCA

Without
PCA

With
PCA

Without
PCA

With
PCA

Without
PCA

With
PCA

Without
PCA

With
PCA

Without
PCA

With
PCA

Without
PCA

ADAB 100 100 100 100 100 100 100 100 100 100 100 100 1 1
DT 100 100 100 100 100 100 100 100 100 100 100 100 1 1
ELM 100 88 100 100 100 100 100 94 100 96 100 94.04 1 0.990
GB 100 99 100 100 100 100 100 99 100 99.72 100 99.34 1 0.993
KNN 100 43 100 97 100 94 100 59 100 76.99 100 70.2 1 0.7
LR 100 95 100 96 100 96 100 95 100 93.75 100 95.36 1 0.985
MLP 100 88 100 97 100 97 100 92 100 94.03 100 92.72 1 0.927
PAC 100 83 100 25 100 52 100 64 100 58.24 100 53.64 1 0.540
RF 100 100 100 100 100 100 100 100 100 100 100 100 1 1
SGD 100 48 100 99 100 97 100 64 100 77.84 100 73.51 1 0.748
SVM 100 43 100 83 100 71 100 54 100 60.8 100 62.91 1 0.628
NB 92 88 100 100 100 100 96 94 97.16 96.31 96.0 94.04 0.991 1
Te best results are indicated in bold.
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Table 7: Experimental result analysis of diferent classifers for with and without PCA on dataset-2 (CKD-21).

Classifer
Recall TNR PPV F1-score Train accuracy Test accuracy ROC-AUC

With
PCA

Without
PCA

With
PCA

Without
PCA

With
PCA

Without
PCA

With
PCA

Without
PCA

With
PCA

Without
PCA

With
PCA

Without
PCA

With
PCA

Without
PCA

ADAB 100 100 100 100 100 100 100 100 100 100 100 100 1 1
DT 100 97 100 97 100 97 100 97 100 100 100 97.4 1 0.974
ELM 100 53 100 56 100 54 100 53 98 100 100 54.55 0.729 0.53
GB 100 97 100 95 100 95 100 96 99.44 98.88 100 96.1 1 0.961
KNN 100 76 100 95 100 94 100 84 96.65 86.59 100 85.71 1 0.856
SVM 100 76 100 38 100 55 100 64 97.77 61.45 100 57.14 1 0.574
RF 100 100 100 97 100 97 100 98 99.44 100 100 98.7 1 0.99
LR 97 100 97 92 97 93 97 96 98. 2 96.09 97.4 96.1 0.995 0.99
NB 97 84 97 100 97 100 97 91 96.65 93.85 97.4 92.21 0.99 0.99
SGD 100 100 95 0 95 49 97 66 98. 2 50.28 97.4 49.35 1 0.86
MLP 92 92 100 97 100 97 96 93 100 89.39 96.1 94.81 0.987 0.95
PAC 95 100 95 0 95 49 95 66 98. 2 50.28 94.81 49.35 0.987 0.5
Te best results are indicated in bold.

Table 8: Experimental result analysis of diferent classifers for the hybrid dataset (mixture of CKD-15 and CKD-21).

Classifer Recall TNR PPV F1-score Train accuracy Test accuracy ROC-AUC
MLP 0.98 1 1 0.99 100 99.12 0.991
DT 0.96 1 1 0.98 100 97.81 0.978
GB 0.96 1 1 0.98 100 97.81 0.978
RF 0.96 1 1 0.98 99.62 97.81 0.978
SGD 0.97 0.98 0.98 0.97 98.49 97.81 0.978
ADAB 0.95 1 1 0.97 100 97.37 0.974
KNN 0.95 1 1 0.97 98.31 97.37 0.974
SVM 0.96 0.99 0.99 0.97 98.12 97.37 0.974
LR 0.95 0.99 0.99 0.97 98.12 96.93 0.996
ELM 0.97 0.96 0.96 0.96 0.98 96.49 0.985
PAC 0.97 0.96 0.96 0.96 98.31 96.49 0.965
NB 0.9 1 1 0.95 96.99 95.18 0.992
Te best results are indicated in bold.

Table 9: Experimental result analysis for clinical unseen dataset, i.e., training the model with CKD-15 and testing with CKD-21.

Classifer Recall TNR PPV F1-score Train accuracy Test accuracy ROC-AUC
ADAB 0.98 0.95 0.95 0.96 100 96.48 0.965
LR 0.95 0.98 0.98 0.96 99.01 96.48 0.984
PAC 0.95 0.98 0.98 0.96 99.2 96.48 0.961
RF 0.97 0.95 0.95 0.96 100 96.09 0.961
SGD 0.97 0.95 0.95 0.96 99.8 96.09 0.938
MLP 0.96 0.95 0.95 0.95 100 95.7 0.957
SVM 0.97 0.94 0.94 0.95 99.2 95.31 0.953
NB 0.9 0.99 0.99 0.94 97.22 94.53 0.981
ELM 0.89 0.98 0.98 0.93 0.98 93.75 0.964
KNN 0.88 0.99 0.99 0.93 98.41 93.75 0.938
DT 0.97 0.89 0.9 0.93 100 92.97 0.93
GB 0.97 0.89 0.9 0.93 100 92.97 0.93
Te best results are indicated in bold.

Table 10: Average model processing time comparison for the proposed model with and without PCA.

Dataset With PCA (s) Without PCA (s)
CKD-15 1.93 2.33
CKD-21 6.57 15.9
CKD-hybrid 7.7 —
CKD-unseen 7.95 —
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Table 11: Experimental result (accuracy (%)) comparison for CKD-15 with state-of-the-art methodologies.

Methodology NB SVM LR KNN PAC RF DT GB SGD ADAB MLP
Nishat et al. [3] 90.50 99.36 99.36 94.3 — — 98.10 — — — 94.3
Gupta et al. [57] — — 99.24 — — 94.16 98.48 —
Herath et al. [1] 93.33 — 95.00 98.33 — 100 100 — — 100 —
Chu et al. [58] 95 — 96 — — 99 98 — 98 96 98
Gokiladevi et al. [59] — 73.75 94.68 67.5 — 98.75 96.25 — — — —
Chittora et al. [19] — 94.63 71.71 64.39 — 98.75 96.25 — — — —
Islam et al. [30] 88.33 96.66 — 59.00 — 97.50 97.50 97.50 97.50 98.30 —
Dritsas et al. [60] 98.40 — 97.40 98.40 — 98.90 97.40 — — — —
Kaur et al. [61] — — — 74.00 — 96.00 95.00 — — — —
Proposed model without PCA 94.04 62.91 95.36 70.2 54.3 100 100 99.34 73.51 100 92.72
Proposed model 96.0 100 100 100 100 100 100 100 100 100 100
Te best results are indicated in bold.
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Figure 3: ROC-AUC curve analysis of ML models using PCA for (a) CKD-15, PCA � 2; (b) CKD-21, PCA � 7; (c) CKD-15 and CKD-21,
PCA � 3; and (d) CKD-15 and CKD-21, PCA � 10.
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Consequently, the intelligent model surpasses all other
existing methodologies. A comprehensive analysis of the
performance metrics for the four types of datasets, namely
CKD-15, CKD-21, hybrid, and unseen clinical cases, is
presented in Tables 6–9 subsequently.Te datasets (CKD-21,
hybrid, and unseen clinical cases) employed here are novel
and unique for early-stage CKD detection, and there were no
previous works available that used these datasets for CKD
diagnosis. While conducting a direct comparison with state-
of-the-art methods for these specifc datasets (CKD-21,
hybrid, and unseen clinical cases) was not feasible, this study
thoroughly evaluated the proposed approach on the CKD-15
dataset in Table 11. Te outcomes demonstrated the supe-
riority of our approach over previous works by a wide
margin for the CKD-15 dataset, establishing its efectiveness
in CKD detection.

Table 6 depicts that overall, the ADAB, DT, and RF
classifers achieve better performance than other models
regardless of PCA usage, while the GB classifer performs
better when PCA is utilized. Te performance of other
models steadily decreased when PCA was not considered.

Te four ML models (i.e., ELM, SVM, SGD, and PAC)
performworst without PCA for the CKD-21 dataset depicted
in Table 7. To the best of our knowledge, this is the frst work

done on this dataset to detect CKD from the non-CKD class.
A few works have been conducted on the CKD-21 dataset
but they are limited to identifying renal disease risk factors
only. Furthermore, no works on CKD-hybrid and clinical
unseen data are found to compare with our model outputs.

Figure 3 shows the ROC-AUC curves, and Figure 4
shows the result comparison with all the 12ML models
on four types of datasets (i.e., CKD-15, CKD-21, hybrid, and
unseen case) using PCA. For the CKD-15 dataset, all models
performwith 100% of accuracy except for the NBmodel.Te
PAC model performs least for the CKD-21 dataset. In ag-
gregate, ADAB, DT, ELM, GB, KNN, SVM, and RF models
perform best for both datasets.

MLP performs best for the hybrid dataset (99.12% test
accuracy), and NB performs the least (95.18% test accuracy).
Te average performance on the hybrid dataset was relatively
good and is in a steady state, whereas for the unseen clinical
data, ML model performances steadily degraded from
96.48% (ADAB, LR, and PAC) to 92.97% (DT and GB) test
accuracy.

To evaluate the overall ML model’s performance on the
four types of the dataset, this exploration presents the av-
erage performance analysis in Table 12 and plots the average
train-test accuracy and ROC-AUC value in Figures 5 and 6,
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Figure 4: Accuracy (%) comparison graph for the four types of data using PCA.

Table 12: Average performance analysis of ML models on all four types of dataset.

S/L Classifer Training accuracy (%) Testing accuracy (%) ROC-AUC
1 RF 99.77 98.48 0.98
2 ADAB 100 98.46 0.98
3 SVM 98.77 98.17 0.98
4 SGD 99.15 97.83 0.98
5 KNN 98.34 97.78 0.98
6 MLP 100 97.73 0.99
7 DT 100 97.7 0.91
8 GB 99.86 97.7 0.98
9 LR 98.86 97.7 0.99
10 ELM 98.5 97.56 0.99
11 PAC 98.96 96.95 0.98
12 NB 97.01 95.79 0.99
Te best results are indicated in bold.
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respectively. Te ELM, LR, MLP, and NB show the best
ROC-AUC performances at 0.99 whereas DTshows the least
ROC-AUC value at 0.91, and other classifers achieve
0.98 ROC-AUC performance in Figure 6. Figure 5 describes
that on the CKD dataset, the RF classifer averagely performs
the best (98.48% test accuracy and 0.98 average ROC-AUC),
and ADAB acquires the second-best position with 98.46%
test accuracy.Tough the train-test accuracy gaps are less for
the SVM, KNN, and ELM classifers, overall, in kidney
disease prediction, the RF model could be the best choice for
CKD-15, CKD-21, and unseen clinical data considering the
accuracy and ROC-AUC performances, and the MLP model
could be the best model for hybrid renal data.

5. Conclusion

Kidney failure causes diseases ranging from mild to severe,
has signifcant health implications, and demands accurate
diagnosis, especially in rural areas of developing countries

where specialists are limited. To address these issues, this
work suggests an intelligent diagnostic system for early CKD
detection in a clinical environment with high accuracy and
in a time-efcient manner. Te suggested model was eval-
uated from four distinct perspectives to enhance its real-life
clinical performance and credibility. To optimize themodel’s
performance, necessary corrections were made to the
datasets. It outperforms previous studies for the CKD-15
dataset and exhibits impressive accuracy for test data.
Tis positions it as a valuable novel solution and establishes
its validity.Te kidney disease prediction has been improved
efectively by employing both the logistic regression method
with the “L1” penalty as feature selection and PCA as feature
space reduction technique alongside an ensemble
characteristic-based classifer. It also shows notable per-
formance for CKD-21 and hybrid datasets.

To validate the signifcance of this study and clinical
relevancy, the proposed intelligent diagnostic system was
fnally evaluated on clinically unseen complex data and
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achieved impressive performance, demonstrating its po-
tential as a valuable patient-centric solution for early CKD
diagnosis in clinical practice. Te implementation of the
model in local healthcare systems would allow for a swift
assessment of patients for early-stage CKD identifcation.
Incorporating PCA into the model improved the CKD
detection performance and signifcantly decreased the
analysis time, specifcally by 0.4 seconds for the CKD-15
dataset and 9.33 seconds for the CKD-21 dataset. Tis states
the real-life clinical applicability of the suggested model.

A future investigation might include performing sta-
tistical tests on more patient-centric data. Te study ac-
knowledges the necessity of more work on clinical
benchmark data to facilitate thorough comparisons with
state-of-the-art methods, especially for novel datasets like
CKD-21, hybrid, and unseen clinical cases. Furthermore,
validation by domain experts is a necessary step prior to
clinical implementation.
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