
Research Article
An Improved Hashing Approach for Biological Sequence to Solve
Exact Pattern Matching Problems

Prince Mahmud , Anisur Rahman, and Kamrul Hasan Talukder

Computer Science and Engineering Discipline, Khulna University, Khulna 9208, Bangladesh

Correspondence should be addressed to Prince Mahmud; m.princecse@gmail.com

Received 17 April 2023; Revised 30 October 2023; Accepted 10 November 2023; Published 20 November 2023

Academic Editor: Anandakumar Haldorai

Copyright © 2023 Prince Mahmud et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Pattern matching algorithms have gained a lot of importance in computer science, primarily because they are used in various
domains such as computational biology, video retrieval, intrusion detection systems, and fraud detection. Finding one or more
patterns in a given text is known as pattern matching. Two important things that are used to judge how well exact pattern
matching algorithms work are the total number of attempts and the character comparisons that are made during the matching
process.Te primary focus of our proposed method is reducing the size of both components wherever possible. Despite sprinting,
hash-based pattern matching algorithms may have hash collisions. Te Efcient Hashing Method (EHM) algorithm is improved
in this research. Despite the EHM algorithm’s efectiveness, it takes a lot of time in the preprocessing phase, and some hash
collisions are generated. A novel hashing method has been proposed, which has reduced the preprocessing time and hash collision
of the EHM algorithm.We devised the Hashing Approach for PatternMatching (HAPM) algorithm by taking the best parts of the
EHM and Quick Search (QS) algorithms and adding a way to avoid hash collisions. Te preprocessing step of this algorithm
combines the bad character table from the QS algorithm, the hashing strategy from the EHM algorithm, and the collision-
reducing mechanism. To analyze the performance of our HAPM algorithm, we have used three types of datasets: E. coli, DNA
sequences, and protein sequences. We looked at six algorithms discussed in the literature and compared our proposed method.
Te Hash-q with Unique FNG (HqUF) algorithm was only compared with E. coli and DNA datasets because it creates unique bits
for DNA sequences. Our proposed HAPM algorithm also overcomes the problems of the HqUF algorithm.Te newmethod beats
older ones regarding average runtime, number of attempts, and character comparisons for long and short text patterns, though it
did worse on some short patterns.

1. Introduction

Pattern matching is one of the most signifcant tasks in
computer science. Finding a specifc pattern within a large
pattern or text is known as patternmatching [1]. Problems of
this type arise in many areas of the fourth industrial rev-
olution, including networking, signal processing, data re-
covery, language processing, artifcial intelligence, and many
more [2]. Pattern matching is also known as pattern
searching or string matching.

String-matching algorithms make up a signifcant sub-
class of string algorithms. Tese algorithms look for in-
stances in a lengthy string or text where a single string
or multiple strings, collectively called patterns, appear.

String-matching techniques look for strings in text strings
(where strings are collections of characters) that ft a pre-
defned pattern (fnite set) [3]. Let a text t, which has a length
of n, and the pattern be p, which has a length ofm, wherem is
less than or equal to n. Te sequence and the search window
are compared, character by character, to fnd the pattern in
the text string. Te term “search window” refers to the area
of a text string compared to a pattern in which the search
box’s length equals the pattern’s length [4].

To comprehend biological data, mainly when the
datasets are enormous and complicated, the in-
terdisciplinary discipline of bioinformatics develops
techniques and software tools [5]. Pattern matching issues
appear in many computational bioinformatics tasks,

Hindawi
Applied Computational Intelligence and So Computing
Volume 2023, Article ID 3278505, 16 pages
https://doi.org/10.1155/2023/3278505

https://orcid.org/0000-0002-8891-7870
mailto:m.princecse@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3278505


including basic local synchronization search, biomarker
discovery, sequence matching, homologous sequence
identifcation, and proteogenomic mapping [6, 7]. Pattern
matching can be used in biotechnology, forensics, med-
ical, and agricultural research to look into probable dis-
ease or anomaly diagnoses [8]. Hashing’s efectiveness in
storage and search has made it a popular choice for co-
lossal pattern matching [9]. Hashing methods generate
a unique hash value that helps search for a specifc text
pattern [10].

Pattern matching can be broken down into numerous
categories. Exact and approximate pattern matching are the
two primary types of pattern matching in terms of accuracy
[11, 12]. While approximate pattern matching results in
erroneous searching, exact matching efectively searches for
the precise occurrence of the pattern within the text [13, 14].
Based on the number of patterns, pattern matching can be
divided into two categories: single and multiple patterns
[14, 15]. Single patternmatching searches for a single pattern
in the text, whereas multiple patterns are searched in
multiple pattern matching [16]. Te concept of exact pattern
matching can be classifed into two distinct groups: online
and ofine. Online string matching involves preprocessing
only the pattern, while ofine string matching involves
preprocessing the text while keeping the pattern unchanged
[17, 18]. Figure 1 displays the classifcation of string
matching.

Although many algorithms were proposed to solve the
pattern matching problem, here we propose an approach
based on the hashing technique. Te hashing method
notably improves efciency and efectiveness when applied
to pattern-matching challenges [20]. Te success of this
algorithm can be attributed to its versatile design, which
allows it to perform well across various domains and fa-
cilitates single and multiple searches [21, 22]. Te main
objective of this paper is to design and construct an efcient
algorithm for better performance in exact pattern
matching. Te algorithm is applied within bioinformatics,
specifcally for analyzing biological data such as DNA and
protein sequences. Te performance of the algorithm is
evaluated by comparing it with various methods, including
traditional, hybrid, and hashing-based pattern matching
techniques. Tese techniques include Quick Search (QS),
Maximum Shift (MS), Minimum Attempts and Compar-
isons (MAC), Back and Forth Matching (BFM), Efcient
Hashing Method (EHM), and Hash-q Unique FNG
(HqUF). Te evaluation is conducted on publicly available
datasets, utilizing identical parameter settings for all
methods. Te contributions of this research can be sum-
marized as follows:

(1) We propose a hashing approach that improves the
EHM algorithm, which includes two phases: pre-
processing and searching

(2) Te preprocessing phase integrates the EHM algo-
rithm’s hashing technique, QS bad character table,
and hash collision-reducing technique, whereas the
searching phase follows our own approach

(3) Experiments were undertaken to assess the efcacy
of the proposed approach, which was then compared
with several algorithms across three distinct datasets

(4) Whether the accuracy is outstanding compared to
other tasks is investigated

Te subsequent sections of this work are structured in
the following manner. Te related works that have been
recently developed are outlined in Section 2. Section 3 of the
document comprehensively explains the proposed tech-
nique for addressing string-matching problems. Tis ex-
planation also includes a working example, an analysis of the
hashing method, and the time complexity. In addition,
graphical representations enhance the clarity and un-
derstanding of the presented information. Section 4 rep-
resents the outcomes of the conducted tests, accompanied by
appropriate graphical and tabular illustrations. Te con-
clusions of our study are explained in Section 5.

2. Literature Review

To address the pattern matching problem, a large number of
algorithms employ their technique or a hybrid approach.
Hash-based string-matching algorithms have become very
popular recently for solving string-matching problems.
However, the algorithm that frst comes to mind when
thinking about how to solve the pattern-fnding problem is
probably Brute Force (BF) [23]. Brute Force is a straight-
forward algorithm that searches the pattern character by
character and right-shifts the pattern by one position [24].
Te Boyer–Moore (BM) method introduces three ideas for
searching for patterns: the right-to-left comparison, the
good sufx rule, and the bad character rule [24, 25].
According to the pattern of the selected alphabet, the fnal
two observations are subject to the preprocessing stage [26].
Aligning the pattern from left to right and using a search
strategy that checks characters in right-to-left order char-
acter by character, like the Brute-Force algorithm, makes the
string-matching method work better [27]. Te BM algo-
rithm has a variation known as the Quick Search algorithm
[28]. Te bad character table value of the next character in
the search window determines the shifted value of the QS

Based on
finding pattern occurrence

Based on
Number of pattern

Exact

On-line Off-line

Approximate
Single

Pattern
Multiple
Pattern

String
Matching

Figure 1: Taxonomy of string matching [11, 19].

2 Applied Computational Intelligence and Soft Computing



algorithm [29]. Te Back and Forth Matching algorithm
employs index-based techniques [30].When the frst and last
characters of the search window match the pattern, the
second and rightmost characters are checked simulta-
neously, and the remaining characters are also checked in
the above manner [19, 31]. An efcient string-matching
algorithm known as Maximum Shift was designed and
implemented in 2014 [32]. Quick Search, Zhu–Takaoka, and
Horspool algorithms are combined to form the MS algo-
rithm. Quick Search and Zuh–Takaoka bad character rules
are constructed during the preparation stage of the MS
algorithm. Te name of this algorithm is based on the
maximum shift feature in the search phase, which takes the
maximum value from two tables. Te Berry–Ravindran (BR)
and index-based methods are combined to create the
modern and efective exact string-matching method known
as the Minimum Attempts and Comparisons method [33].
Te MAC algorithm initially creates the BR table from the
BR equation and the index table (IT) for preprocessing.
Based on the initial character of the pattern, the shifting
value table (IbSv) is subsequently produced from the index
table. A hashing-based string-matching algorithm known as
Rabin–Karp (RK) was developed in 1987 [34]. Tis algo-
rithm uses the hashing approach to identify patterns within
a text [35]. Lecroq introduced the Hash-q algorithm, which
calculates a hash value between 0 and 255 for each q-gram in
the pattern p [36, 37]. Tis algorithm computes a shift for
each hash value and generates q values from 3 to 8. Te hash
function is

Hash− q � 4p[k − 2] + 2p[k − 1] + p[k]. (1)

Here, many hash collisions are generated for diferent q
values. In a recent study, researchers proposed an efcient
hashing approach with an enhanced form of Hash-q known
as Hash-q with Unique FNG [38]. Tis algorithm converts
ASCII codes, represented as follows, into a hash with a bit
representation. A: 01000001, C: 01000011, T: 01010100, G:
01000111. Te basic idea of this algorithm is to use two
unique bits, which are A: 00, C: 01, G: 11, and T: 10, instead
of eight bits. Tese two bits are the rightmost second and
third bits from the ASCII code of the corresponding
character. Te following is the hash function for this
algorithm:

HqUF � 􏽘

q−2

k�0
(x[k]&0b110)≪ 2(q − k − 1) − 1⎛⎝ ⎞⎠

+(x[q − 1]&0b110)≫ 1.

(2)

If the last q characters of the text and the pattern do not
have equal hash values, the pattern will be moved by
m− q+ 1; otherwise, compare the text and pattern from start
to before the last q characters.

Precise string-matching algorithms are widely used in
many disciplines, including bioinformatics, computational
biology, text processing, and intrusion detection [39]. Tese
algorithms are widely used to solve various problems related
to string matching and pattern recognition. Exact string-
matching methods are used in bioinformatics for a wide

range of tasks, including genome assembly, sequence
alignment, and gene prediction [40]. For DNA and protein
sequence alignment, methods like Quick Search and Boy-
er–Moore are frequently used. Tese algorithms can quickly
match and compare sequences to identify similarities and
diferences, which is critical for understanding the structure
and function of genes and proteins. Exact string-matching
algorithms are also used in computational biology to fnd
patterns in DNA and protein sequences. For example, the
Boyer–Moore algorithm can search for specifc patterns in
DNA sequences [41], which is very important for fnding
genes, regulatory elements, and other functional parts. In
text processing, exact string-matching algorithms are used
for tasks such as spell-checking, plagiarism detection, and
natural language processing [11]. For example, algorithms
such as the Berry–Ravindran algorithm can be used to
identify the diference between two strings, which helps
spell-check and identify plagiarism. Intrusion detection
systems use a string-matching method to identify data
packets with intrusion-related keywords. Whenever new
data is received, it is compared to the database, which
contains all the dangerous code. If a match is detected, an
alert will be sent. Every intruded packet must be captured
and identifed using exact string-matching methods.

Te essential requirement of the abovementioned
methods is to reduce the search time. Tese methods were
usually accomplished by creating a single function or a hy-
brid approach combining the advantageous features of
several single algorithms. Performance can be afected by
various factors, including the speed of the processor, the
operating system, and the database, the length of the string
or pattern, the frequency with which it occurs, and the size of
the alphabet. Although the time complexity of the BF al-
gorithm is high, it applies to all felds; nonetheless, it per-
forms slowly when dealing with lengthy patterns and text.
Te BM algorithm is superior to the BF algorithm, although
the performance of the BM algorithm is variable depending
on the length of the pattern and the alphabet set. Using QS to
diferentiate between short and long sequences in real-world
applications is a process that is both quick and un-
complicated to carry out. Despite this, the amount of time
required for QS preprocessing grows longer when the letter
size of the pattern is increased. Compared to previous al-
gorithms, BFM shows a considerable boost in its ability to
locate strings inside substantial text fles. However, because
a preprocessing phase must be fnished before searching can
begin, BFM’s performance will improve if the text and the
pattern are brief. Tis is because of the nature of the search.
In experimental settings, the MS algorithm yields superior
results for English text, DNA sequences, and protein se-
quences; nevertheless, its performance sufers when dealing
with limited alphabet sets. Even though the MAC algorithm
only makes a limited number of attempts and comparisons,
it nonetheless needs the maximum amount of time to ex-
ecute because of the index-based approach. Te Rabin–Karp
algorithm ofers a rapid means of determining the presence
of a pattern inside a given text, obviating the need to ex-
amine all potential positions within the text exhaustively.
However, it is essential to note that this technique may

Applied Computational Intelligence and Soft Computing 3



exhibit suboptimal temporal complexity in scenarios where
numerous hash collisions arise.TeHash-q algorithm works
fast for small patterns in small-sized alphabets but shows the
worst output for large patterns due to having to calculate
a hash value between 0 and 255 for each q-gram. Te HqUF
technique efectively mitigates hash collisions in the context
of DNA sequences. Te system ofers optimal hashing ca-
pabilities and efciently generates hash values. Te main
problem with the HqUF algorithm is that it only produces
unique bits for DNA sequences, and it is complicated to
create individual bits for proteins or other arrangements that
contain more than four characters.

Te HqUF method has been identifed as a highly ef-
fective hash-based text matching technique. Tis algorithm
efciently adapts the Hash-q algorithm and demonstrates
suitability for DNA sequences. Nevertheless, a limitation of
this technique is its exclusive ability to generate distinct hash
values solely for DNA sequences. Tis algorithm cannot
generate separate bits if a dataset contains more than four
characters. Research has also demonstrated that a single
algorithm with hashing approaches capable of efectively
processing all types of data is yet to be identifed as the
optimal option. In light of the shortcomings of existing
algorithms, this research aims to introduce a novel and

efective approach that generates distinct hash values across
all datasets to prevent hash collisions. Terefore, if hash
collisions can be eliminated, runtime, character compari-
sons, and hash comparisons can all be decreased.

3. Proposed Approach

In the challenge of string-matching problems, our obser-
vation concludes that some existing algorithms consider the
act of shifts, comparisons, and execution time. We con-
centrated our research on the string-matching algorithm
and proposed one that may decrease the number of shifts
and comparisons for sequential pattern matching. We have
improved the hashing method used in the Efcient Hashing
Method (EHM) [19]. Our proposed algorithm is divided into
two phases: one is preprocessing, and the other is searching.

3.1. Te Proposed Hash Function. Te hash function is
mainly used for the ASCII value of its corresponding
character. Te basic idea of the hashing method is to sum up
all the ASCII values of a particular string and modulate it
with a specifc prime number to get a remainder. Te fol-
lowing equation is used to generate the hash function:

h(S) � [ASCII(S1) +ASCII(S2) +ASCII(S3) + · · · +ASCII(Sn)]mod q. (3)

Here, n is the pattern length or substring length, and q
denotes a predefned prime number, where prime numbers
are a subset of natural numbers divisible solely by one and
the number itself. Te likelihood of producing distinct and
nonrepetitive values increases when using prime numbers in
the hashing process. Tis characteristic is inherent to the
feld of mathematics. As an illustration, consider the given

string “ResearchTopic.” A diferent hash value may be ob-
tained by assigning a prime number to each letter and
summing these values.

Tere is some hash collision that occurs in this equation.
Let a pattern p1�ACGTTGA and p2�TAGCACG of
a DNA sequence and prime numbers 17. Te hash function
or value is computed by the following equation:

h(p1) � (ASCII(A) +ASCII(C) +ASCII(G) +ASCII(T) +ASCII(T) +ASCII(G) +ASCII(A))mod 17 � 14,

h(p2) � (ASCII(T) +ASCII(A) +ASCII(G) +ASCII(C) +ASCII(A) +ASCII(C) +ASCII(G))mod 17 � 14.
(4)

Tese two patterns generate the same hash values, but
these are diferent patterns.Tis is known as a hash collision.
We improve the hash collision by dividing the pattern with

a specifc prime number for getting a quotient.Te following
equation is used to generate the quotient:

r(S) � [ASCII(S1) +ASCII(S2) +ASCII(S3) + · · · +ASCII(Sn)]divide q. (5)

Here, n is the pattern or substring length, and q denotes
a predefned prime number.

4 Applied Computational Intelligence and Soft Computing



Let the above pattern p1�ACGTTGA and
p2�TAGCACG of a DNA sequence and prime numbers 17.
Te quotient is computed by the following equation:

r(p1) � (ASCII(A) +ASCII(C) +ASCII(G) +ASCII(T) +ASCII(T) +ASCII(G) +ASCII(A))divide 17 � 29,

r(p2) � (ASCII(T) +ASCII(A) +ASCII(G) +ASCII(C) +ASCII(A) +ASCII(C) +ASCII(G))divide 17 � 28.
(6)

Tese two patterns generate diferent values, although
their hash function generates the same ones.

3.2. Preprocessing Phase. Our proposed algorithm is online-
based, which preprocesses the pattern and keeps the text
intact. First of all, our algorithm calculates the hash of the
pattern using the following equation:

h(S) � [ASCII(S1) +ASCII(S2) +ASCII(S3) + · · · +ASCII(Sn)]mod q. (7)

Ten, the algorithm calculates the quotient of the pattern
using the following equation:

r(S) � [ASCII(S1) +ASCII(S2) +ASCII(S3) + · · · +ASCII(Sn)]divide q. (8)

For shifting the pattern within the text, our proposed
algorithm uses the good properties of the QS algorithm. Te
shifting value of the QS algorithm depends on the next
character of the search window. Te following function
below generates the next shifting distance to skip character
comparisons.

qsBc(x) �

(i: 0≤ i<m andp[m − i] � x), if x occurs,

inp,

m + 1, otherwise.

⎧⎪⎪⎨

⎪⎪⎩

(9)

Here, m is the length of pattern P, and i denotes the
pattern index from 0 tom− 1. Character x serves as the text’s
defnition for each character.

Algorithm 1 presents the preprocessing stage’s
pseudocode:

3.3. Searching Phase. A window of size m glides along with
the text during the searching phase, starting at position 0.
After each try, the window is shifted to the right until the

text’s conclusion is reached. First, compare the pattern’s frst
character with the search window. If the match occurs,
create a substring based on the pattern length and compute
the hash value and quotient using the above hash value and
quotient equation. Te hash and quotient of the pattern will
be compared with the substring hash value and quotient. If
the substring hash value and quotient match the pattern
hash value and quotient, then the fnal character of the
pattern and substring will be compared. If matched, then the
substring and pattern’s leftmost second and rightmost
second characters are checked concurrently. If there are any
diferences, the algorithmmoves the pattern based on the QS
table values saved during preprocessing. If no diferences
exist, the substring and pattern’s leftmost and rightmost
third characters are checked simultaneously. Te rest of the
characters are compared in the same way.

Algorithm 2 presents the searching stage’s pseudocode:

Since matched, so perform the next step

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
A T C T A G C A T C A T A A C C C T A A

A C G T T C A

Applied Computational Intelligence and Soft Computing 5



(1) start_ind⟵ 0, d⟵m/2, end_ind⟵m− 1
(2) while (text_size!� 0)
(3) if t [start_ind]� p[0]
(4) //Create substring based on pattern length
(5) for (i� 0 to m) do
(6) sum⟵ASCII (si)
(7) end for loop
(8) //Create hash value using predefned prime number
(9) h (s)⟵ sum mod q
(10) //Create quotient value using predefned prime number
(11) r (s)⟵ sum divide q
(12) if h(p)� h(s) and r(p)� r(s)
(13) if t [start_ind +m− 1]� p[m− 1]
(14) for (i� start_ind + 1 to d) do
(15) if t[i]!� p[i] or t[m− i− 1]!� p[m− i]
(16) break
(17) end if
(18) end for loop
(19) end if
(20) end if
(21) if every character is matched
(22) then the pattern found occurs
(23) end if
(24) shift_val⟵QsBc [text [end_ind + 1]]
(25) start_ind⟵ start_ind + shift_val
(26) end_ind⟵ start_ind +m− 1
(27) end while

ALGORITHM 2: Searching of HAPM (T, P).

(1) //preprocess only pattern characters and take any prime number
(2) q⟵ prime number
(3) for (i� 0 to m) do
(4) sum⟵ASCII (pi)
(5) end for loop
(6) //Generate hash value
(7) h (p)⟵ sum mod q
(8) //Generate quotient value using predefned prime number
(9) r (p)⟵ sum divide q
(10) //Generate QS table for the pattern
(11) set <char> alphabet set, map< char, int>QsBc
(12) set <char>:: iterator i
(13) for (i� alphabet_set.begin() to i!� alphabet_set.end()) do
(14) QsBc[∗i]⟵m+ 1
(15) end for loop
(16) for (i� 0 to pattern size) do
(17) QsBc [pattern[i]]⟵m – i
(18) end for loop
(19) Searching (t, p)

ALGORITHM 1: Pre-processing of HAPM (P).

6 Applied Computational Intelligence and Soft Computing



Now, generate the substring and calculate the hash and
quotient value of that substring:

h(s) � (ASCII(A) +ASCII(T) +ASCII(C) +ASCII(T) +ASCII(A) +ASCII(G) +ASCII(C))mod 13 � 9,

r(s) � (ASCII(A) +ASCII(T) +ASCII(C) +ASCII(T) +ASCII(A) +ASCII(G) +ASCII(C))divide 13 � 38.
(10)

Since the substring hash and quotient value are equal to
the pattern hash and quotient, respectively, the following
comparison is performed according to the search technique:

Since mismatched, so stop searching this substring

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
A T C T A G C A T C A T A A C C C T A A

A C G T T C A

A diagram depicting the proposed algorithm for the
string-matching problem is presented in Figure 2. Tis di-
agram mainly represents the data fow of our proposed
algorithm.

3.4.WorkingExample. Te aloe vera plant is a succulent that
retains water as a gel in its leaves. Tis moisturising gel is
perfect for sunburns, insect bites, minor cuts and wounds,
and other skin problems. Te Aloe vera voucher Aloe vera

chloroplast nucleotide sequence was used to test our pro-
posed approach. According to the FASTA format, we se-
lected a small portion of the gene’s nucleotide sequence from
index 4970 to 5002 (just 33 characters) [42]. Te wording of
the DNA sequence under consideration is as follows:

Text is t�TACGGCTCGAGAAAAAATGATTCTAAT
TCTGTA, pattern is p�GATTCTA, and the prime number
is 17.

h(p) � [ASCII(G) +ASCII(A) +ASCII(T) +ASCII(T) +ASCII(C) +ASCII(T) +ASCII(A)]mod 17 � 10,

r(p) � [ASCII(G) +ASCII(A) +ASCII(T) +ASCII(T) +ASCII(C) +ASCII(T) +ASCII(A)]divide 17 � 30.
(11)

Te Quick Search table is shown in Table 1 for pattern p.
1st attempt:

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

T A C G G C T C G A G A A A A A A T G A T T C T A A T T C T G T A

G A T T C T A

Applied Computational Intelligence and Soft Computing 7



Start

Compute hash, quotient value and bad
character table of the pattern

Align the pattern with begining
of the text

Compare first character of
pattern and text No

Did the
index of the

pattern exceed
the text?

Stop

Matched? Yes Create substring and compute
hash and quotient value

Are the
hash and

quotient values of text
and substring

equals?

Compare last character of
pattern and substring

Matched?

No
Pattern found Yes

Yes

Yes

Matched? No

No

No

Shift the pattern using quick
search bad character table

Yes

Compare Remaining characters
using forward and backward

approach respectively

Figure 2: Flowchart of the proposed method.

Table 1: Quick Search table.

x A C G T
qsBc (x) 6 3 7 5

8 Applied Computational Intelligence and Soft Computing



Shift by qsBc [C]� 3.
2nd attempt:

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

T A C G G C T C G A G A A A A A A T G A T T C T A A T T C T G T A

G A T T C T A

h(s) � [ASCII(G) +ASCII(G) +ASCII(C) +ASCII(T) +ASCII(C) +ASCII(G) +ASCII(A)]mod 17 � 3,

r(s) � [ASCII(G) +ASCII(G) +ASCII(C) +ASCII(T) +ASCII(C) +ASCII(G) +ASCII(A)]divide 17 � 29.
(12)

Here, h(p)!� h(s) so shift by qsBc [G]� 7.
3rd attempt:

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

T A C G G C T C G A G A A A A A A T G A T T C T A A T T C T G T A

G A T T C T A

h(s) � [ASCII(G) +ASCII(A) +ASCII(A) +ASCII(A) +ASCII(A) +ASCII(A) +ASCII(A)]mod 17 � 2,

r(s) � [ASCII(G) +ASCII(A) +ASCII(A) +ASCII(A) +ASCII(A) +ASCII(A) +ASCII(A)]divide 17 � 27.
(13)

Here, h(p)!� h(s) so shift by qsBc [T]� 5.
4th attempt:

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

T A C G G C T C G A G A A A A A A T G A T T C T A A T T C T G T A

G A T T C T A

Shift by qsBc [C]� 3.
5th attempt:

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

T A C G G C T C G A G A A A A A A T G A T T C T A A T T C T G T A

G A T T C T A

h(s) � [ASCII(G) +ASCII(A) +ASCII(T) +ASCII(T) +ASCII(C) +ASCII(T) +ASCII(A)]mod 17 � 10,

r(s) � [ASCII(G) +ASCII(A) +ASCII(T) +ASCII(T) +ASCII(C) +ASCII(T) +ASCII(A)]divide 17 � 30.
(14)

Applied Computational Intelligence and Soft Computing 9



As h (p)� h (s) and r (p)� r (s), so perform the next step:

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

T A C G G C T C G A G A A A A A A T G A T T C T A A T T C T G T A

G A T T C T A
1 3 4 5 4 3 2

Match the pattern and shift by qsBc [A]� 6.
6th attempt:

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

T A C G G C T C G A G A A A A A A T G A T T C T A A T T C T G T A

G A T T C T A

Shift by qsBc [T]� 5, which exceeds the text, so stop
searching.

Our proposed algorithm needs six shifts and thirteen
character comparisons to fnd the pattern within the text.

3.5.HashingMethodAnalysis. We have used only 200MB of
DNA sequence to test the efectiveness of the hashing
technique in our proposed approach against various prime
values [43]. Our approach divides the pattern by a pre-
determined prime number to determine the hash value by
calculating the remainder of the patterns. Te hash value is
computed by the following equation:

h(T) � [ASCII(T1) +ASCII(T2) +ASCII(T3) + · · · +ASCII(Tn)]mod q. (15)

Here, n is the pattern or substring length, and q denotes
a predefned prime number.

Let a pattern p�ACGTA of a DNA sequence and prime
numbers 3 and 229, which were chosen randomly. Te hash
function or value is computed by the following equation:

h(p) � (ASCII(A) +ASCII(C) +ASCII(G) +ASCII(T) +ASCII(A))mod prime number

� (65+ 67+ 71+ 84+ 65)mod prime number

� 352mod prime number.

(16)

Here, 352 mod 3�1 and 352 mod 229�123.
When we divide the sum by a smaller prime number (3),

the remainder value gets smaller (1). For this reason, the
substring hash value is becoming more and more equal to
the pattern hash value. As a result, the number of attempts
and comparisons increases, but when we divide the sum by
a more signifcant prime number (229), the remainder value
gets larger (123). Due to this reason, the substring hash value
and pattern hash value are getting less equal. As a result, the
attempts and comparisons are decreasing.

After analyzing the hashing process, it can be concluded
that a more extensive prime number results in fewer at-
tempts and comparisons, leading to favourable output.
However, the prime number must be less than the sum of the
ASCII values of the letters.

Figures 3–5 present a graphical representation of the
experimental fndings about the tallying of attempts, com-
parisons of characters, and length of time required for the
task’s completion, respectively. We have used the prime
numbers 3, 7, 11, 13, 17, 39, 47, 73, 97, and 229, which were

10 Applied Computational Intelligence and Soft Computing



chosen based on randomness or pseudorandomness. We ran
our algorithm ten times for a single prime number to get
a more efcient and accurate result. We used the pattern
length of ten taken from the DNA text. Based on the ob-
tained fndings, it can be inferred that there exists an inverse
relationship between the magnitude of the prime number
and the number of attempts and character comparisons
required. Te larger the prime number, the fewer attempts
and character comparisons. Tis is because the more sig-
nifcant the prime number, the fewer times the substring
hash value and the pattern hash value will match. However,
the impact on execution time is very insignifcant. Whether
the prime number is large or small, execution time is
random because the residual value depends on the sum of
the ASCII value and the prime number. To compute the
hashing method, we employ the ASCII character and then
determine the summation of its corresponding ASCII value,
resulting in the generation of a signifcant value.

3.6. Time Complexities in Perspective and Comparison to the
Proposed Algorithm. Te amount of time a statement will
take to execute depends on its complexity. Te preparation
stage of the proposed algorithm’s complexity is O(m).
However, the temporal complexity of the search phase can
be broken down into two scenarios as follows:

Case I: In the worst-case scenario, each character in the
text would appear to ft into a specifc pattern.
Troughout the procedure, the worst-case scenario
frequently happens if the characters in the pattern
match those in the following text. For example, it is
stated that the worst-case complexity for the text
t� “LLLLLLLLLLLLLLLLLLLLLL,” and the pattern
p� “LLLLL” is O(nm).
Case II: Te pattern is p� “FFFFF,” and the text
t� “SSSSSSSSSSSS” is used to evaluate the best case of
the proposed search phase.Te preparation stage of the
proposed algorithm is directly infuenced by the
searching stage, where the maximum shift value is
always denoted by the QS shift value, which is (m+ 1).
To determine the best case, follow the following for-
mula: O(n/(m+ 1)).

Table 2 shows the time complexity of diferent string-
matching algorithms.

4. Results and Discussion

We have used three diferent types of data to examine the
performance of our proposed algorithm.Tese are the E. coli
dataset, DNA sequence, and protein sequence. Escherichia
coli (E. coli) is a small dataset with a length of 4,686,137. Tis
dataset contains only DNA sequence letters (A, C, T, and G).
Text fles containing the E. coli dataset were acquired from
the NCBI website [38, 44]. We have used a large dataset of
200MB for DNA (the alphabet’s set of 4 characters) and
protein (the alphabet’s set of 20 characters) sequences taken

HAPM

3 7 11 13 17 29 47 73 97 229
Prime Number

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

N
um

be
r o

f A
tte

m
pt

s

Figure 3: Number of attempts for prime numbers using DNA
sequence.

3 7 11 13 17 29
Prime Number

HAPM

47 73 97 229
0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

20000000

N
um

be
r o

f C
om

pa
ris

on
s

Figure 4: Number of comparisons for prime numbers using DNA
sequence.

HAPM

3 7 11 13 17 29 47 73 97 229
Prime Number

0

5

10

15

20

Ex
ec

ut
io

n 
Ti

m
e

Figure 5: Number of execution time using DNA sequence.

Applied Computational Intelligence and Soft Computing 11



from the “Pizza & Chili Corpus” website [43]. For the E. coli
dataset, pattern lengths 4, 8, 16, 32, 64, 128, 256, 512, and
1024 were chosen randomly using the HqUF algorithm. Te
pattern lengths for DNA and protein sequences are 3, 5, 10,
20, 30, 40, 50, 60, 70, 80, 90, 100, 150, and 200, which are
randomly selected from the text fle. To determine the
performance of our proposed HAPM algorithm, 20 distinct
patterns were chosen randomly for each pattern length and
executed 20 times each. Te C++ programming language is
employed to execute the proposed algorithm. Te algorithm
was run utilizing code blocks version 17.12. Te computer is
equipped with an Intel Core i5-3210M processor operating
at a frequency of 2.50GHz. It features 8GB of random access
memory (RAM), HD Graphics 3000, and a 750GB
hard drive.

4.1. Te E. coli Dataset Outcomes. Table 3 displays the av-
erage run time. From this result, it can be seen that there is
a 73.04% speed increase for the pattern length 64.Te lowest
speed increase is found for pattern length 512, which is
15.38%. It can also be seen from the table that for small
patterns (pattern length 4 to 64) the execution time of our
algorithm is much less than HqUF algorithm, which means
that the speed increases a lot. Tis is because the shorter
pattern matches the text more often, so it takes longer to fnd
the more succinct pattern.

Table 4 displays the average number of shifts or attempts.
It can be seen from the table that 31.04% improvement has
occurred for pattern length 256, and the lowest improve-
ment is found for pattern length 32, which is 02.43%. Im-
provements vary for all other patterns. Results are often
suitable for small patterns, and sometimes results are good
for large patterns. Te attempt depends on the shifting value
of the pattern.

Table 5 displays the average number of character
comparisons. Tis result shows that an improvement of
28.69% has been made for pattern length 1024, while the
lowest improvement, 11.43%, is observed for pattern
length 32. For the other patterns, the upgrades are varied.
Results are frequently favourable for large patterns but can

also be favorable for large and small patterns. Te char-
acter comparison depends on the hashing value of the
pattern.

However, our HAPM algorithm outperforms the HqUF
algorithm for each pattern length regarding execution time,
attempts, and character comparisons.

4.2. Te DNA Dataset Outcomes. Te efciency of the BFM
algorithm, in terms of execution time, number of attempts,
and comparisons, is notably superior when compared to the
Knuth–Morris–Pratt (KMP) and Boyer–Moore–Hoorspool
(BMH) algorithms [30]. It is worth noting that the BMH
algorithm is a simplifed and enhanced version of the BM
algorithm. When comparing the results of the EHM algo-
rithm with those of the BFM, MAC, MS, and QS algorithms
in terms of gaining lesser numbers of attempts and com-
parisons, the EHM algorithm demonstrated superior per-
formance for both the short and long patterns [19]. Te
HqUFmethod performs better than the Hash-q method, but
it works only for DNA sequences [38].

Table 2: Te time complexity of diferent string-matching
algorithms.

Algorithms Time complexity Data
BF [23] O(mn) All datasets
BM [24] O(mn) All datasets
QS [29] O(mn) All datasets
BFM [30] O(mn) All datasets

MS [32] Best case: O(n/(m+ 1))
Worst case: O(nm) All datasets

MAC [33] O(nm) All datasets
EHM [19] O(nm) All datasets

Hash-q [36] Best case: O(n/(m− q))
Worst case: O(nm) DNA datasets

HqUF [38] Best case: O(n/(m− q))
Worst case: O(n(m− q)) DNA datasets

HAPM Best case: O(n/(m+ 1))
Worst case: O(nm) All datasets

Table 3: Average run time using E. coli.

Pattern length HqUF HAPM Speed up (%)
4 16.13 8.05 50.00
8 13.12 6.16 53.05
16 5.06 2.01 60.27
32 3.28 1.56 52.43
64 1.15 0.31 73.04
128 0.33 0.21 36.36
256 0.15 0.12 20.00
512 0.13 0.11 15.38
1024 0.17 0.12 29.41

Table 4: Average number of attempts using E. coli dataset.

Pattern length HqUF HAPM Improvement (%)
4 34412.56 30124.76 12.46
8 32156.94 29901.67 07.01
16 5123.87 4524.67 11.69
32 501.76 489.56 02.43
64 204.81 190.34 07.07
128 159.34 128.39 19.43
256 178.34 122.98 31.04
512 512.89 411.67 19.74
1024 671.57 510.39 24.01

Table 5: Average number of character comparisons using E. coli
dataset.

Pattern length HqUF HAPM Improvement (%)
4 45454.24 40198.56 11.56
8 42145.23 31145.67 26.10
16 12437.89 10104.98 18.76
32 578.87 512.65 11.43
64 280.42 244.56 12.78
128 234.89 178.58 23.97
256 252.52 201.57 20.18
512 911.98 789.56 13.43
1024 1139.89 812.87 28.69

12 Applied Computational Intelligence and Soft Computing



Figure 6 displays the average number of attempts. From
these outcomes, it is clear that the EHM algorithm performs
better than the BFM algorithm for all patterns. Te HqUF
algorithm performs better than the EHM algorithm for all
large patterns, but the EHM algorithm performs better for
small patterns. Tis is because the HqUF algorithm uses
2 bits for each character of DNA and matches the last q
character of the pattern with the q character of the text most
of the time in case of small patterns. Our HAPM algorithm
shows superior results to the HqUF algorithm for all small
and large patterns. It also shows better than the EHM and
BFM algorithms.

Figure 7 displays the average number of character
comparisons. Tis outcome demonstrates that the EHM
algorithm is better than the BFM algorithm for all patterns,
where the BFM algorithm displays an unstable behaviour.
Te HqUF algorithm displays better results than the EHM
algorithm for all large patterns but shows the worst out-
comes for small patterns such as pattern length 3. Te use of
the HqUF technique stems from implementing a 2-bit
encoding scheme for each DNA letter. Tis encoding
scheme facilitates the matching process between the last q
characters of the pattern and the corresponding q characters
in the text, mainly when dealing with smaller patterns. Our
proposedHAPM as well as the HqUF algorithms show stable
behaviour. However, our HAPM algorithm performs better
than the HqUF, EHM, and BFM algorithms for all pattern
lengths.

Figure 8 displays the average number of execution times.
Tese fndings show that the EHM algorithm’s execution
time is most signifcant for all considerable pattern lengths.
However, the algorithm’s performance with tiny pattern
lengths reveals some encouraging signs.Te EHM algorithm
is a substring-based approach that takes so long to run. Te
time required to hash text substrings increases as the pattern
length increases. Te BFM algorithm shows better results
than the EHM algorithm for all patterns. Te HqUF ap-
proach outperforms the BFM algorithm for large patterns
but underperforms for short pattern lengths due to the 2-bit
encoding time required by the HqUF methodology. Our
proposed algorithm shows stable behaviour and better re-
sults than the HqUF algorithm for all pattern lengths, but
worse results than the EHM and BFM algorithms for short
pattern lengths. Te poor outcomes for small patterns are
because our HAPM algorithm produces fewer shifted values
for small patterns and takes longer to hash them.

4.3. Te Protein Dataset Outcomes. Te MS algorithm is
more efcient than four other string-matching algorithms:
Quick Search, Horspool, Smith, and Berry–Ravindran [32].
In addition, the MAC algorithm outperforms the MS and
IBS (index-based shift) algorithms regarding the number of
attempts and the total number of character
comparisons [33].

Figure 9 displays the average number of attempts. Both
the MS and QS algorithms exhibit unstable behaviour, with
the MS algorithm doing signifcantly better than the QS
algorithm across the board. Tese fndings make it

abundantly evident that the MS algorithm is superior to the
QS algorithm.TeMAC algorithm exhibits stable behaviour
for all pattern lengths and outperforms the MS and QS
algorithms. Te BFM algorithm performs better than MAC,
MS, and QS algorithms, but for some patterns (such as

3 5 10 20 30 40 50 60 70 80 90 100150200
Pattern length

HAPM
HqUF

EHM
BFM

0

5000000

10000000

15000000

20000000

25000000

N
um

be
r o

f A
tte

m
pt

s

Figure 6: Average number of attempts using DNA sequence.

3 5 10 20 30 40 50 60 70 80 90 100 150 200
Pattern Length

HAPM
HqUF

EHM
BFM

0

5000000

10000000

15000000

20000000

25000000

30000000

N
um

be
r o

f C
ha

ra
ct

er
 C

om
pa

ris
on

s

Figure 7: Average number of character comparisons using DNA
sequence.

3 5 10 20 30 40 50 60 70 80 90 100 150 200
Pattern Length

HAPM
HqUF

EHM
BFM

0

50

100

150

200

250

Ex
ec

ui
to

n 
Ti

m
e

Figure 8: Average execution time using DNA sequence.

Applied Computational Intelligence and Soft Computing 13



pattern lengths 20, 50, and 90), it shows results almost close
to the MAC algorithm. Te reason for this is that the MAC
algorithm is index-based. If the frst character of patterns is
less frequent in the text, then it requires less number of
searches.Te EHMalgorithm ofers better performance than
the BFM algorithm. Our proposed HAPM algorithm out-
performs EHM, BFM, MAC, MS, and QS algorithms for all
pattern lengths.

Figure 10 displays the average number of comparisons.
Te results indicate that the performance of the MS algo-
rithm surpasses that of the QS algorithm, while the MAC
algorithm exceeds both the MS and QS algorithms across all
pattern lengths. Te BFM method performs better than the
MAC algorithm, except for pattern length 20. In the context
of the MAC algorithm, specifc patterns exhibit fewer at-
tempts when utilizing the indexing strategy. Tis phe-
nomenon is the underlying cause of the reduced character
comparisons required in particular patterns. Conversely, the
EHM algorithm shows superior outcomes to the BFM al-
gorithm across all pattern lengths. Our suggested HAPM
algorithm outperforms the EHM, BFM, MAC, MS, and QS
algorithms across all pattern lengths.

Figure 11 displays the average number of execution time.
From these results, it is seen that the execution time of the
QS algorithm is highest for all pattern lengths. Te MS
algorithm performs better than QS and MAC algorithms.
Although the execution time and character comparison of
the MAC algorithms are lower than the MS algorithm, the
execution time is higher because the MAC algorithm is an
index-based method. Te preprocessing step of the MAC
algorithm takes more time to index the alphabet. Te exe-
cution time of the BFM algorithm is lower than MAC, MS,
and QS algorithms for all patterns and lower than the EHM
algorithm for all extensive pattern lengths but higher or
almost equal to the EHM algorithm in execution time for
some small patterns. Te EHM algorithm is a substring-
based hashing method whose execution time is higher than
the BFM algorithm despite the small number of attempts
and character comparisons. Hashing of text substrings takes
longer for longer pattern lengths. Our proposed HAPM

algorithm shows stable behaviour and better results than all
algorithms for all pattern lengths.

5. Conclusion

In computer science, string matching has grown signif-
cantly in popularity and will be crucial to future technology
development. Hashing-based string-matching algorithms
are increasing daily, but the most vital objective is reducing
hash collisions. We have proposed a hashing-based algo-
rithm that has reduced hash collisions. Tree diferent data
types are used to test our proposed algorithm’s performance,
and 20 distinct patterns for each pattern length are randomly
selected from the dataset. Teir average value is taken after
executing each of them 20 times. We implemented six al-
ternative algorithms to evaluate the performance of our
approach and tested them on the dataset. 73.04% speed-up,

3 5 10 20 30 40 50 60 70 80 90 100 150 200
Pattern Length

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

N
um

be
r o

f A
tte

m
pt

s

HAPM
EHM
BFM

MAC
MS
QS

Figure 9: Average number of attempts using protein sequence.

3 5 10 20 30 40 50 60 70 80 90 100 150 200
Pattern Length

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

N
um

be
r o

f C
ha

ra
ct

er
 C

om
pa

ris
on

s

HAPM
EHM
BFM

MAC
MS
QS

Figure 10: Average number of character comparisons using
protein sequence.

3 5 10 20 30 40 50 60 70 80 90 100 150 200
Pattern Length

HAPM
EHM
BFM

MAC
MS
QS

0

10

20

30

40

50

60

70
Ex

ec
ut

io
n 

Ti
m

e

Figure 11: Average execution time using protein sequence.

14 Applied Computational Intelligence and Soft Computing



31.04%, and 28.69% improvement have been achieved for
average run time, the average number of shifts, and com-
parisons, respectively, comparing our proposed HAPM al-
gorithm with the HqUF method on the E. coli dataset. Our
algorithm performs better for DNA and protein datasets
than the previous algorithms in terms of an average number
of attempts and comparisons. Still, some cases show worse
results for some short patterns regarding an average number
of execution times. In future research, we will create fresh
strategies based on the suggested hash function to speed up
the execution of short patterns.

Data Availability

All the data used to support the fndings of this study are
made available online.

Conflicts of Interest

Te authors declare that there are no conficts of interest.

Acknowledgments

Tis work was funded by the division of Information and
Communication Technology (ICT), Ministry of Posts,
Telecommunications and Information Technology, Gov-
ernment of People’s Republic of Bangladesh.

References

[1] K. Vayadande, M. Ram, K. Paralkar, D. Pawal, S. Deshpande,
and V. Sonkusale, “Pattern matching in fle system,” In-
ternational Journal of Computer Application, vol. 975,
no. 2022, p. 8887.

[2] P. Neamatollahi, M. Hadi, and M. Naghibzadeh, “Simple and
efcient pattern matching algorithms for biological se-
quences,” IEEE Access, vol. 8, pp. 23838–23846, 2020.

[3] P. Niroula and Y. Nam, “A quantum algorithm for string
matching,” Npj Quantum Information, vol. 7, no. 1, p. 37,
2021.

[4] F. Mohammed and N. H. Al-Kumaim, “A survey of the hybrid
exact string matching algorithms,” Advances on Intelligent
Informatics and Computing: Health Informatics, Intelligent
Systems, Data Science and Smart Computing, vol. 127, p. 173,
2022.

[5] A. D. Baxevanis, “Biological sequence databases,” Bio-
informatics, JohnWiley & Sons, New York, NY, USApp. 1–18,
2020.

[6] O. A. S. Ibrahim, B. A. Hamed, and T. A. El-Hafeez, “A new
fast technique for pattern matching in biological sequences,”
Te Journal of Supercomputing, vol. 79, no. 1, pp. 367–388,
2023.

[7] V. Y. Gudur and A. Acharyya, “Hardware-software codesign
based accelerated and reconfgurable methodology for string
matching in computational bioinformatics applications,”
IEEE/ACM Transactions on Computational Biology and Bio-
informatics, vol. 17, no. 4, pp. 1198–1210, 2020.

[8] B. A. Hamed, O. A. S. Ibrahim, and T. Abd El-Hafeez, “A
survey on improving pattern matching algorithms for bi-
ological sequences,” Concurrency and Computation: Practice
and Experience, vol. 34, no. 26, Article ID e7292, 2022.

[9] Q.-Y. Jiang and W.-J. Li, “Asymmetric deep supervised
hashing,” Proceedings of the AAAI Conference on Artifcial
Intelligence, vol. 32, no. 1, 2018.

[10] O. Jafari, P. Maurya, P. Nagarkar, K. Mushfqul Islam, and
C. Crushev, “A survey on locality sensitive hashing algorithms
and their applications,” 2021, https://arxiv.org/abs/2102.
08942.

[11] S. I. Hakak, A. Kamsin, P. Shivakumara et al., “Exact string
matching algorithms: survey, issues, and future research di-
rections,” IEEE Access, vol. 7, pp. 69614–69637, 2019.

[12] I. Markić, M. Štula, M. Zorić, and D. Stipaničev, “Entropy-
based approach in selection exact string-matching algo-
rithms,” Entropy, vol. 23, no. 1, p. 31, 2020.

[13] S. Faro and S. Scafti, “A weak approach to sufx automata
simulation for exact and approximate string matching,”
Teoretical Computer Science, vol. 933, no. 2022, pp. 88–103,
2022.

[14] J. Rekha, “Approximate multiple string matching algorithm,”
Journal of Teoretical and Applied Information Technology,
vol. 98, no. 11, 2020.

[15] C. Someswara Rao and K. Butchi Raju, “Single and multiple
pattern string matching algorithm,” Indian Journal of Science
and Technology, vol. 10, p. 3, 2017.

[16] S. Song, G. Gu, C. Ryu, S. Faro, T. Lecroq, and K. Park, “Fast
algorithms for single and multiple pattern Cartesian tree
matching,” Teoretical Computer Science, vol. 849, no. 2021,
pp. 47–63, 2021.

[17] A. Cinti, F. M. Bianchi, A. Martino, and A. Rizzi, “A novel
algorithm for online inexact string matching and its FPGA
implementation,” Cognitive Computation, vol. 12, no. 2,
pp. 369–387, 2020.

[18] M. Waga, I. Hasuo, and K. Suenaga, “Efcient online timed
pattern matching by automata-based skipping,” in Pro-
ceedings of the International Conference on Formal Modeling
and Analysis of Timed Systems, pp. 224–243, Berlin, Germany,
September 2017.

[19] P. Mahmud, A. Rahman, and K. H. Talukder, “An efcient
hashing method for exact string matching problems,” in
Proceedings of the Data Intelligence and Cognitive Informatics:
Proceedings of ICDICI 2021, pp. 289–301, Tirunelveli, India,
July 2022.

[20] T. Fukač, J. Matoušek, K. Jan, and L. Kekely, “Increasing
memory efciency of hash-based pattern matching for high-
speed networks,” in Proceedings of the 2021 International
Conference on Field-Programmable Technology (ICFPT),
pp. 1–9, IEEE, Auckland, New Zealand, December 2021.

[21] A. M. Al-Ssulami, A. M. Azmi, H. Mathkour, H. Aboalsamh,
and H. Aboalsamh, “LsHASHq: a string matching algorithm
exploiting longer q-gram shifting,” Information Processing
and Management, vol. 59, no. 5, Article ID 103057, 2022.

[22] A. A. Karcioglu and H. Bulut, “Te WM-q multiple exact
string matching algorithm for DNA sequences,” Computers in
Biology and Medicine, vol. 136, no. 2021, Article ID 104656,
2021.

[23] C. Baturu and Naufal abdi, “Brute force algorithm imple-
mentation of dictionary search,” Jurnal Info Sains: Informa-
tika dan Sains, vol. 10, no. 1, pp. 24–30, 2020.

[24] Layustira, V. Ardelia, and W. Istiono, “Comparative analysis
of brute force and boyer moore algorithms in word suggestion
search,” International Journal, vol. 9, no. 8, 2021.

[25] D. Purba, Z. Matondang, H. Manalu, L. Sitorus, and
M. Sagala, “Te application Boyer Moore algorithm to an-
swered crossword puzzle,” AIP Conference Proceedings,
vol. 2798, no. 1, 2023.

Applied Computational Intelligence and Soft Computing 15

https://arxiv.org/abs/2102.08942
https://arxiv.org/abs/2102.08942


[26] A. A. Ojugo, D. A. Oyemade, and D. A. Oyemade, “Boyer
moore string-match framework for a hybrid short message
service spam fltering technique,” IAES International Journal
of Artifcial Intelligence, vol. 10, no. 3, p. 519, 2021.

[27] Y. Duan, H. Long, and Q. Yu, “Application of improved BM
algorithm in string approximate matching,” Procedia Com-
puter Science, vol. 166, pp. 576–581, 2020.

[28] R. K. Pandey and S. Taruna, “Prevalent exact string-matching
algorithms in natural language processing: a review,” Journal
of Physics: Conference Series, vol. 1854, no. 1, Article ID 12042,
2021.

[29] A. A. Almazroi, F. Mohammed, M. A. Qureshi et al., “A
hybrid algorithm for pattern matching: an integration of
berry-ravindran and raita algorithms,” in Proceedings of the
International Conference of Reliable Information and Com-
munication Technology, pp. 160–172, Jaipur, India, September
2021.

[30] M. O. Al-Faruk, K. M. A. Hussain, M. A. Shahriar,
S. M. Tonni, and S. Mahjabin Tonni, “BFM: a forward
backward string matching algorithm with improved shifting
for information retrieval,” International Journal on In-
formation Technology, vol. 12, no. 2, pp. 479–483, 2020.

[31] Al-Dabbagh, S. S. Mahmood, and Y. M. Abdal, “Parallel
hybrid string matching algorithm using CUDA API func-
tion,” in Proceedings of the 2021 International Conference on
Computing and Communications Applications and Technol-
ogies (I3CAT), pp. 66–70, IEEE, Ipswich, UK, September 2021.

[32] Kadhim, H. Adil, and N. A. AbdulRashidx, “Maximum-shift
string matching algorithms,” in Proceedings of the 2014 In-
ternational Conference on Computer and Information Sciences
(ICCOINS), pp. 1–6, IEEE, Kuala Lumpur, Malaysia, June
2014.

[33] P. Mahmud, M. S. Rana, and K. Hasan Talukder, “An efcient
hybrid exact string matching algorithm to minimize the
number of attempts and character comparisons,” in Pro-
ceedings of the 2018 21st International Conference of Computer
and Information Technology (ICCIT), pp. 1–6, IEEE, Dhaka,
Bangladesh, December 2018.

[34] A. Dilobar and S. J. Karimovich, “RABIN-KARP algorithm in
algorithms,” Journal of Integrated Education and Research,
vol. 2, no. 9, pp. 94–99, 2023.

[35] A. Putera Utama Siahaan, S. Aryza, E. Hariyanto,
A. Hasudungan Lubis, A. Ikhwan, and P. Len Eh Kan,
“Combination of levenshtein distance and rabin-karp to
improve the accuracy of document equivalence level,” In-
ternational Journal of Engineering & Technology, vol. 7,
no. 2.27, pp. 17–21, 2018.

[36] C. Ryu, T. Lecroq, and K. Park, “Fast string matching for DNA
sequences,” Teoretical Computer Science, vol. 812, pp. 137–
148, 2020.

[37] A. A. Karcioglu and H. Bulut, “q-frame hash comparison
based exact string matching algorithms for DNA sequences,”
Concurrency and Computation: Practice and Experience,
vol. 34, no. 9, Article ID e6505, 2022.

[38] A. A. Karcioglu and H. Bulut, “Improving hash-q exact string
matching algorithm with perfect hashing for DNA se-
quences,” Computers in Biology andMedicine, vol. 131, Article
ID 104292, 2021.

[39] A. R. Chayapathi, “Survey and comparison of string matching
algorithms,” Turkish Journal of Computer and Mathematics
Education (TURCOMAT), vol. 12, no. 12, pp. 1471–1491, 2021.

[40] B. Branchini, S. Breschi, A. Zeni, and M. D. Santambrogio,
“Fast genome analysis leveraging exact string matching,” in
Proceedings of the 2022 IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW),
pp. 136–139, IEEE, Lyon, France, June 2022.

[41] K. Duvvuri, P. N. Reddy, D. R. Harshitha Kanisettypalli, and
T. V. Nidhin Prabhakar, “Comparative analysis of pattern
matching algorithms using DNA sequences,” in Proceedings of
the 2022 IEEE 2nd Mysore Sub Section International Con-
ference (MysuruCon), pp. 1–5, IEEE, Mysuru, India, October
2022.

[42] Ncbi, “National center for biotechnology information,” 2023,
https://www.ncbi.nlm.nih.gov/genome/?term=Aloe+vera+
chloroplast.

[43] Pizzachili, “Te Text Collection,” 2023, http://pizzachili.dcc.
uchile.cl/texts.html.

[44] G. Plunkett, “Escherichia coli str. K-12 substr. DH10B,
complete sequence dataset, NCBI data,” 2023, https://www.
ncbi.nlm.nih.gov/nuccore/NC_010473.1.

16 Applied Computational Intelligence and Soft Computing

https://www.ncbi.nlm.nih.gov/genome/?term=Aloe+vera+chloroplast
https://www.ncbi.nlm.nih.gov/genome/?term=Aloe+vera+chloroplast
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/texts.html
https://www.ncbi.nlm.nih.gov/nuccore/NC_010473.1
https://www.ncbi.nlm.nih.gov/nuccore/NC_010473.1



