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Sign language is a unique communication tool helping to bridge the gap between people with hearing impairments and the general
public. It holds paramount importance for various communities, as it allows individuals with hearing difficulties to communicate
effectively. In sign languages, there are numerous signs, each characterized by differences in hand shapes, hand positions, motions,
facial expressions, and body parts used to convey specific meanings. The complexity of visual sign language recognition poses
a significant challenge in the computer vision research area. This study presents an Arabic Sign Language recognition (ArSL)
system that utilizes convolutional neural networks (CNNs) and several transfer learning models to automatically and accurately
identify Arabic Sign Language characters. The dataset used for this study comprises 54,049 images of ArSL letters. The results of
this research indicate that InceptionV3 outperformed other pretrained models, achieving a remarkable 100% accuracy score and
a 0.00 loss score without overfitting. These impressive performance measures highlight the distinct capabilities of InceptionV3 in
recognizing Arabic characters and underscore its robustness against overfitting. This enhances its potential for future research in

the field of Arabic Sign Language recognition.

1. Introduction

Sign language (SL) is a nonverbal and natural language with
the same functions as spoken language [1]. Deaf and hard-
of-hearing individuals use SL to interact with others through
a vocabulary of signs and gestures [2]. In the past, people
with disabilities did not receive global attention. However,
today’s technologies offer tools designed to enhance the
quality of life for individuals with disabilities [3]. Recog-
nizing Arabic Sign Language (ArSL) is a significant area of
research due to its complex nature. Moreover, sign language
recognition has become an essential application in deep
learning and artificial intelligence [4]. In this study, we aim
to develop an Arabic Sign Language Identification System
(ArSL) using deep convolutional neural networks (CNNs) to
assist deaf people with hearing problems. Sign language and
spoken language have the same work roles [5]; it is used to
deal with those who cannot speak or hear, as it depends on
the language of the hands with specific movements [6]. The

signs differ according to each letter of the alphabet and other
movements to form sentences [7].

Recent advances in deep learning (DL) and computer
vision have shown great promise in the fields of gesture
recognition that significantly improve communication be-
tween individuals who use sign language and those who do
not [8, 9]. Furthermore, hand shape features can be detected
using many approaches such as using CNNs [10, 11] and
histograms of orientation gradient feature extraction [12].
Sign language employs signals and body dialects such as hand
shapes, facial expressions, and lip patterns to communicate
meaning [13]. It consists of manual gestures represented by
hand position, direction, form, and path—nonmanual ges-
tures representing facial expressions and body movement
[14]. However, most researchers focus on hand signals be-
cause they contain raw information [15]. There are two prime
approaches to Sign Language Recognition (SLR) systems
which are image-based and sensor-based. The first approach
is based on the use of SLR images, movements, and marks in
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the cameras’ vision [16], while in the second approach, instead
of adopting the cameras’ basis, the sensors use fixed gloves to
capture the marks with the probes [16].

This study develops an Arabic Sign Language Identifi-
cation System (ArSL) using six different pretrained archi-
tectures with pretrained weights: MobileNetV2, VGGI1S6,
InceptionV3, ResNet50V2, ResNet152, and Xception. Ex-
perimentally, to enhance the robustness and effectiveness of
pretrained models, we employed early stopping [17] and
data augmentation techniques. These practices are essential
to facilitate better generalization of the model on unseen
data. Striking the appropriate balance and iterating through
experimental iterations are crucial steps to fine-tune the
model and mitigate overfitting.

The sections of this paper are organized as follows.
Section 2 provides a comprehensive overview of existing
research in the field. Section 3 explains the aim of the study.
Section 4 illustrates the materials and methods proposed in
this research. Moreover, Section 5 presents various exper-
iments and their results, while the final section, Section 6,
provides the conclusion of this paper.

2. Related Work

Nowadays, the power of deep learning technologies is applied
in the field of sign language to improve the quality of life for
people with disabilities. Many works have been proposed to
enhance the sign language recognition system in different
languages using diverse techniques [8, 18]. Several surveys
provide a comprehensive overview of sign language recog-
nition systems utilizing deep learning [19]. The survey, in [20],
has reviewed sign language recognition and ArSL. The survey
encompassed an evaluation of various classifiers and their
respective performances across different sign languages, ul-
timately reporting the most effective classifier tailored to each
specific sign language used for optimal sign language rec-
ognition systems. In this section, we provide an overview of
the most pertinent research related to the Arabic Sign Lan-
guage recognition systems. Table 1 provides a summary of the
prior research discussed in this study.

Saleh and Issa [24] proposed models that match the
VGG16 and the ResNet152 structures and employed transfer
learning and fine-tuning of deep convolutional neural net-
works (CNNs) to enhance the accuracy in recognizing 32
hand signs from Arabic Sign Language. The proposed method
was applied to 2D images of diverse Arabic Sign Language
data, achieving an impressive accuracy rate reaching a vali-
dation accuracy of 99.6% for the ResNet152 and 99.4% for the
VGG1é6. ElBadawy et al. [32] employed a deep behavior-based
feature extractor to capture the finer details in Arabic Sign
Language effectively. A 3D convolutional neural network
(CNN) was also utilized for the recognition of 25 gestures
from the Arabic Sign Language dictionary. The recognition
system was fed with data obtained from depth maps. The
system demonstrated an accuracy rate of 98% for observed
data and 85% for the new data.

In [31], Hayani et al. proposed a new approach based on
convolutional neural networks and fed the applied approach
with a real dataset. The approach is used to automatically
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recognize numbers and letters of Arabic Sign Language.
Then, a comparative study was conducted to demonstrate
the effectiveness and robustness of the proposed approach
compared to traditional models, particularly, K-nearest
neighbors (KNN) and support vector machine (SVM).
The recognition rate for the proposed system is 90.02%
surpassing both SVM at 88% and KNN at 66%. Kamruz-
zaman in [25] introduced a vision-based approach utilizing
convolutional neural networks (CNNs) for the recognition
of Arabic hand sign-based letters and translating them into
spoken Arabic. The accuracy achieved by this approach
equals 90%, which ensures that this system is demonstrated
to be highly reliable and efficient. Almasre and Al-Nuaim
[26] developed a dynamic prototype model (DPM) utilizing
Kinect in order to recognize specific dynamic words in
Arabic Sign Language (ArSL). In this work, the DPM in-
tegrated eleven predictive models employing three machine
learning models (SVM, RF, and KNN) with varying pa-
rameter configurations. The results in this research dem-
onstrated that the SVM models utilizing a linear kernel with
a cost parameter of 0.035 performed the highest accuracy
rates in recognizing the dynamic words.

Elatawy et al. [27] introduced a novel approach employing
the neutrosophic technique [33] and fuzzy c-means for the
detection and recognition of Arabic Sign Language alphabet.
The system employed a Gaussian filter to eliminate noise and
prepare the input image for further processing. Then, images
were transformed into the neutrosophic domain, and the
features were extracted to commence the classification stage.
Experimental results showed the system’s commendable
performance, and it achieved a total classification accuracy of
91%. The study in [28] proposed a new framework for signer-
independent sign language recognition, leveraging a combi-
nation of deep learning architectures. The proposed frame-
work encompasses hand semantic segmentation, hand shape
feature representation, and a deep recurrent neural network.
The framework is evaluated on a challenging Arabic Sign
Language database, encompassing 23 isolated words recorded
from three different users. The experimental results dem-
onstrated that the applied framework significantly out-
performs other state-of-the-art methods in the context of
signer-independent testing strategies with an accuracy of
89.5% using DeepLabv3+ semantic hashing of the hand.

Alnahhas et al. [29] introduced an approach for rec-
ognizing words in Arabic Sign Language utilizing the Leap
Motion device. The device facilitates the creation of a 3D
model of the human hand through infrared technology. The
proposed methodology intends to analyze mathematical
features derived from the Leap Motion controller. The
gesture is also represented as a series of frames to reflect its
temporal nature, using the LSTM layer-based neural net-
work classifier to encode the sequence and find the matching
gesture. The highest rating was 89% for one-handed gestures
and 96% for hand gestures. The study [30] proposed an
affordable smart glove system capable of recognizing hand
gestures in Arabic Sign Language. The proposed approach
integrated the flex sensors and a tilting sensing module for
both the right and left hands. Additionally, an Android
application called “Smart Glove” has also been developed to
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translate gestures into textual speech. The glove system was
designed to accommodate both word level and sentence level
and showed an impressive 90% recognition rate. The work in
[24] applied transfer learning and fine-tuning deep con-
volutional neural networks (CNNs). The pretrained model
weight values are first fed into the layers of each network
according to the proposed methodology, which then creates
models that correspond to the VGG16 and ResNetl52
structures. Finally, their town softmax classification layer is
added as the final layer following the last fully connected
layer. The networks were able to deliver an accuracy of
around 99% when they were fed typical 2D images of various
Arabic Sign Language data.

The study [34] also proposed a framework based on
a variety of deep learning models for the automatic rec-
ognition of Arabic Sign Language, specifically by using
AlexNet, VGGNet, and GoogLeNet/Inception models in
training and evaluating the effectiveness of shallow learning
techniques using nearest neighbors and SVM algorithms as
baselines. The suggested algorithm provided encouraging
results in detecting Arabic Sign Language with a 97% ac-
curacy rate. A recent fully labeled dataset of images in Arabic
Sign Language is used to evaluate the proposed models. The
goal of work [35] is to solve the recognition problem for
Arabic Sign Language while assuring a trade-off between
improving classification performance and condensing the
deep network’s design to lower computational costs. To
categorize Arabic Sign Language motions, AlKhuraym et al.
specifically modified Efficient Network (EfficientNet)
models and created lightweight deep learning algorithms. In
addition, an actual dataset of hand motions for thirty distinct
Arabic alphabets recorded by numerous signers was de-
veloped. The classification results generated by the suggested
lightweight models were then evaluated using the proper
performance indicators. Mahmoud et al. [23] developed an
architecture that integrates transfer learning (TL) models
and recurrent neural network (RNN) models for ArSL
recognition. The results achieved in this work have a peak
recognition accuracy of 93.4%.

The work in [36] reviewed the literature on deep learning
techniques used for Arabic POS tagging during the previous
two decades. The Preferred Reporting Items for Meta-
Analyses and Systematic Reviews (PRISMA) methodology
was used to perform the review. To extract all DL methods
used to create POS taggers for the Arabic language, more
than 4,000 publications were examined. Twelve articles were
chosen for a thorough examination after numerous exclu-
sion procedures. According to the reviewed publications,
long short-term memory (LSTM) and Bi-LSTM models are
the most popular DL approaches for Arabic POS tagging and
produce the best results. On the other hand, in this work [37]
on Arabic Sign Language detection, the images have been
through a number of preprocessing and data augmentation
procedures. On the ArASL dataset, tests have been run using
a variety of pretrained models. Most of them performed
rather typically, and in the last stage of the analysis, the
EfficientNetB4 model was determined to be the best fit.
Models other than EcientNetB4 performed poorly given the
complexity of the dataset due to their lightweight
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construction. EcientNetB4 is a heavyweight architecture
with a higher level of complexity. The best model is revealed
with a 98% training accuracy and a 95% testing accuracy.

In paper [38], El Zaar et al. introduced a CNN-based
highly efficient deep learning architecture. The suggested
architecture is effective because it can recognize and analyze
various datasets in sign language with a high degree of ac-
curacy. One of the most crucial tasks that transform the lives
of the deaf by making daily life and social inclusion easier is
the recognition of sign language. Their system beats state-of-
the-art methods, with a recognition rate of 99% for ASL and
ISL and 98% for ArASL. It was trained and tested on datasets
for American Sign Language (ASL), Irish Sign Alphabet (ISL),
and Arabic Sign Language Alphabet (ArASL). The study in
[22] provided a dataset of 20 Arabic words and proposed
a deep learning architecture that combines convolutional
neural networks (CNNs) and recurrent neural networks
(RNNs). The supplied dataset showed that the suggested
architecture has a 98% accuracy rate. The top-1 accuracy on
the UCF-101 dataset was reported to be 98.8%. Aldhahri et al.
[21] employed convolutional neural networks to construct
a model aimed at recognizing Arabic alphabet signs. The
study utilized the Arabic alphabet’s Sign Language Dataset
(ArASL2018). The results from this model showed a recog-
nition accuracy of 94.46%.

Prior research has explored various approaches in sign
language recognition systems, aiming to facilitate effective
communication for individuals with hearing and speech im-
pairments. In this context, our study stands out by focusing on
the development of an Arabic Sign Language Identification
System (ArSL) using six distinct pretrained architectures:
MobileNetV2, VGG16, InceptionV3, ResNet50V?2, ResNet152,
and Xception. The critical aspect of our study is to distinguish
our proposed model from the existing ones clearly. We
thoroughly evaluate and compare the performance of these
pretrained models, highlighting the superior accuracy achieved
by ResNet50V2 and InceptionV3, both reaching 100% accu-
racy which is the highest achieved accuracy. This distinction
allows us to emphasize the uniqueness and effectiveness of our
approach in the realm of Arabic Sign Language recognition.

3. Aim of the Study

This study aims to advance Arabic Sign Language recognition
utilizing state-of-the-art transfer deep learning techniques,
with a focus on improving various research domains. The
objective is to develop an accurate Arabic Sign Language
Identification System (ArSL) leveraging deep neural networks.
The motivation behind this work is to distinguish Arabic Sign
Language by subjecting a neural network to diverse orienta-
tions and lighting conditions associated with images of hand
gestures. The goal is to achieve higher accuracy compared to
existing techniques, reduce training time with fewer epochs,
and effectively handle images of varying sizes. To evaluate and
identify the most effective approach, we employ six distinct
pretrained architectures: MobileNetV2, VGG16, InceptionV3,
ResNet50V2, ResNet152, and Xception. The aim is to attain
the highest accuracy possible, ultimately assisting individuals
who are “deaf and mute” and ensuring the removal of
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communication barriers they often encounter. The model
utilizes a dataset composed of Arabic sign images for training,
translating each sign image to an Arabic letter, making in-
teraction with the broader population more accessible. The
proposed model’s key contribution lies in its automatic rec-
ognition of Arabic letters in sign language. The dataset utilized
for this purpose is the “Arabic Alphabets Sign Language
Dataset (ArASL),” comprising 32 labels, including 28 for the
letters and 4 for standard Arabic signs. This dataset comprises
54,049 images of ArSL letters contributed by over 40 in-
dividuals, encompassing the full spectrum of standard Arabic
Sign Language. In the pursuit of creating an efficient ArSL
system, it is vital to distinguish our proposed model from
existing ones. This involves highlighting the unique features,
advantages, and outcomes achieved through the utilization of
our carefully selected pretrained architectures. Importantly, we
conduct a comparative analysis of our model’s performance
against other established models, underscoring the efficacy
and relevance of our approach.

4. Materials and Methods

In this section, we present the dataset, utilized neural net-
work models, data preparations, and processing.

4.1. Dataset. We utilized the Arabic Alphabets Sign Lan-
guage Dataset (ArASL) (https://data.mendeley.com/
datasets/y7pckrw6z2/) in this study. The used dataset
comprises 54,049 images depicting Arabic Sign Language
letters. These images were contributed by over 40 individuals
and cover 32 standard Arabic signs and letters. It is worth
noting that each class within the dataset contains a varying
number of images. To organize and label the data, we
employed a CSV file that associates each Arabic Sign Lan-
guage image with its corresponding class label based on the
image file’s name. For visual reference, you can see some
examples of the training data in Figure 1 [39].

4.2. Adopted Methodology. The adopted methodology sec-
tion serves as a guide for how this work was carried out,
encompassing the entire process from data collection to the
production of study findings. We will delve into the major
steps of the methodology as depicted in the flowchart,
providing detailed explanations. Additionally, we will pro-
vide brief explanations of the pretrained models that were
utilized in our study.

As depicted in Figure 2, we first import the essential
packages and libraries, including Keras, Pandas, and Mat-
plotlib. Then, the ArASL image data were loaded directly
from the Kaggle website. As mentioned earlier, the dataset
contains 54,049 images for 32 Arabic Sign Language char-
acters. The first step after loading the dataset is to prepare the
data to enter the model by implementing some pre-
processing steps. Due to the dataset’s imbalance issue, which
means that every category holds a varying number of images,
it may result in biased detection outcomes; hence, we solve
this issue by aiming to avoid any inconsistencies and biases
in the testing results. We allocated a fixed number of samples

for each category in the dataset. Moreover, to complete
preparing the dataset to enter the model, another data
preprocessing step is performed, which is image resizing.
The ArASL images are in different sizes, so all images were
resized to a standard resolution of 64 x 64 pixels. In addition,
image normalization is conducted to make the images more
consistent in terms of contrast, color, and brightness. After
that, data augmentation was applied. It is the process of
generating new data from existing data to increase the data
size and variety, thereby achieving better results. In our
study, we implemented different augmentation techniques,
including rescaling, zooming, flipping, and shifting.
Moving on to model development, the dataset was di-
vided into training and testing sets with a 70% ratio for
training and 30% for testing. The training set was entered
into six chosen pretrained models, leveraging their efficiency
and robustness in extracting complex patterns from data.
These models are MobileNetV2, VGG16, InceptionV3,
ResNet50V2, ResNet152, and Xception. The models’ weights
are loaded using the ImageNet model, and the prediction
layer is added using the softmax activation function after the
last fully connected layer. We then fine-tuned these models
using various settings by adjusting hyperparameters, in-
cluding different learning rates and different number of
epochs. After fine-tuning these models, we validate the ef-
fectiveness of the models on the validation set by measuring
the accuracy score and visualizing the results for better
understanding. Finally, we choose the best model.

4.3. Models. Pretrained models have found extensive ap-
plication in the field of computer vision [40] due to their
remarkable capacity to uncover hidden patterns and gen-
eralize effectively, even with small datasets and limited re-
sources. In this section, we will explain the utilized
pretrained models in our methodology.

(i) VGG16: The VGG16 neural network has a resolu-
tion of 70.5% and is computationally more ex-
pensive than neural networks [41]. The VGG16
network is an embedded system with more com-
plexity because it consists of 16 layers, in which the
convolutional layers (13) are stacked with 3x3
filters, which are adopted to improve the mesh
depth, improve the mesh effect to a certain extent,
and reduce the number of weight parameters [41].
Also, it has 2x2 assembly layers as maximum.
Between these layers, the ReLU activation function
is applied. Next, three fully connected layers contain
most of the network parameters. Finally, the soft-
max function is used to produce the probabilities for
each category [41].

(ii) InceptionV3: InceptionV3, also known as Inception-
v3, represents the third version of Google’s con-
volutional neural network, which was showcased
during the ImageNet Identification Contest. Goo-
gleNet is particularly well-suited for processing
extensive data, especially in scenarios where there
are constraints on memory or computing resources.
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FIGURE 1: Samples of ArSL letters from the training data.
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(v) Xception: Xception [47] expands upon the Inception
It excels in tasks such as image analysis, object architecture by replacing the standard Inception
detection, and object classification [42]. Incep- modules with deeply separable convolutions. In this

tionV3 consists of 48 layers, and the network’s architecture, deeply separable convolutions replace
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the Inception modules. The original deep separable
convolution consists of a depthwise convolution
followed by a pointwise convolution, while the sep-
arable convolution starts with a pointwise convolu-
tion followed by a depthwise convolution. This
modification is introduced in the starting module of
InceptionV3, where a (1 x1) convolution precedes
any (n x n) spatial convolutions. As a result, Xception
differs slightly from the original Inception architec-
ture. Notably, the Xception architecture maintains the
same number of parameters as InceptionV3, aiming
for improved performance through more effective
utilization of the model’s parameters, rather than
merely increasing capacity [47].

(vi) MobileNetV2: MobileNetV1 [48] emerged as a family
of computer vision neural networks designed to
support classification and detection in standard
functions primarily built for mobile devices. It can run
these networks on mobile devices, enhancing user
experiences by providing benefits such as always-on
access, privacy, security, and power eﬂﬁciency.
Subsequently, MobileNetV2 was introduced to
power the next generation of mobile computer
vision applications. MobileNetV2 represents a sig-
nificant improvement over MobileNetV1 and in-
corporates the latest technology for mobile optical
recognition, including support for various con-
volutional neural network applications such as
object detection, classification, and semantic seg-
mentation [49]. Released as part of the TensorFlow-
Slim image classification library, MobileNetV2
builds on ideas from MobileNetV1 [49], using
separate depthwise convolutions as efficient build-
ing blocks. Additionally, MobileNetV2 introduces
new architectural features, including linear bottle-
necks between layers and shortcut connections
between bottlenecks.

5. Experiments and Results

Due to the remarkable success of convolutional neural
networks (CNNs) in the field of sign language recognition,
we conducted a comprehensive study to compare the per-
formance of several pretrained models. Our goal was to
determine the most effective model for recognizing signs
using transfer learning. We used the ArASL dataset [39] in
the training and validation phases, which consisted of
a substantial 54,049 images, each depicting one of 32
Arabic signs.
Our proposed technique comprised several key steps:

(i) Preprocessing: we initiated the process by carefully
preprocessing the images.

(ii) Fine-tuning: the pretrained models underwent a fine-
tuning process using the preprocessed images.

(iii) Data augmentation: to improve the model’s gen-
eralization and mitigate overfitting, we applied data
augmentation techniques.

(iv) Monitoring performance: at the end of each epoch,
we assessed the performance of each network using
accuracy as a key metric.

(v) Varied experiments: we conducted multiple ex-
periments, exploring different numbers of epochs,
batch sizes, and learning rates to comprehensively
evaluate each model’s performance.

(vi) Early stopping: to prevent overfitting, we imple-
mented early stopping strategies during training.

The dataset was divided into two subsets: a validation set
comprising 30% of the data and a training set with the
remaining 70%. The results of our evaluation revealed that
ResNet50V2 and InceptionV3 outperformed the other models.
Both achieved an exceptional accuracy rate of 100%, with an
error rate of 0%. ResNet50V2 was trained for 10 epochs, and
InceptionV3 was trained for 6 epochs, both using a batch size of
32. Our application of early stopping and data augmentation
techniques contributed to preventing overfitting and en-
hancing the models’ ability to generalize. In summary, the
experiments indicated that InceptionV3, ResNet50V2, Mobi-
leNetV2, Xception, and VGG16 exhibited superior perfor-
mance when compared across various hyperparameters and
network settings. This comparison revealed significant im-
provements in the models” speed and accuracy. Furthermore,
we fine-tune these models for 3 epochs, 6 epochs, and 10
epochs. Table 2 shows the results of these models after 3 epochs.

Table 2 shows the differences in the results after the training
of these models finished with three epochs. As we see,
ResNet50V2 and Xception show the highest accuracy scores
equal to 98% and 97% with the loss equal to 0.01 and 0.03,
respectively. However, in ResNet50V2, we used an adoptive
learning rate (decreasing the value of LR every three epochs)
while the Xception model used a 0.001 learning rate. Figure 3 is
an overview of accuracy scores on three epochs for all models.

Table 3 shows the differences in models’ performance on 6
epochs; the primary interpretation is that InceptionV3 and
ResNet50V2 achieved 100% accuracy score with a 0.01 loss
score. These two models are optimized through Adam op-
timizer and with batch size 32. In addition, setting an adaptive
learning rate, e.g., by reducing the learning rate (LR) value
after a certain number of epochs, leads to an improvement in
the performance of the models such as in ResNet50V2where
the LR is reduced from 0.001 to 0.005 on epoch 2.

Table 4 shows the differences in model performance over
10 epochs; the highest accuracy was again achieved by
ResNet50V2 which achieved an accuracy score of 100% with
a loss score of 0.01. As we can see in the table, Xception and
VGG16 results achieved less accuracy in this iteration. Also,
the lowest error rates were also achieved in VGG16, Incep-
tionV3, and ResNet50V2 compared to other models. Figure 4
visualizes the accuracy for these six models after 10 epochs.
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TABLE 2: Performance of pretrained models after 3 epochs.

Model name Test accuracy Test loss Optimizer LR
VGGl6 0.96 0.11 Adam 0.0001
InceptionV3 0.89 0.3 Adam 0.001
ResNet50V2 0.98 0.01 Adam 0.001
ResNet152 0.46 0.3 Adam 0.0001
Xception 0.97 0.03 Adam 0.001
MobileNetV2 0.95 0.17 Adam 0.001
Accuracy on the test set (After 3 E pochs)
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Ficure 3: Differences in accuracy between different pretrained models after 3 epochs.

TABLE 3: Performance of pretrained models after 6 epochs.

Model name Test accuracy Test loss Optimizer LR

VGGl6 0.97 0.1 Adam 0.0001
InceptionV3 1 0.01 Adam 0.001
ResNet50V2 1 0.01 Adam 0.001
ResNet152 0.87 0.4 Adam 0.0001
Xception 0.97 0.13 Adam 0.001
MobileNetV2 0.98 0.01 Adam 0.001

TABLE 4: Performance of pretrained models after 10 epochs.

Model name Test accuracy Test loss Optimizer LR

VGG16 0.95 0.04 Adam 0.0001
InceptionV3 0.97 0.08 Adam 0.001
ResNet50V2 1 0.0 Adam 0.001
ResNet152 0.86 0.35 Adam 0.0001
Xception 0.93 0.12 Adam 0.001
MobileNetV2 0.96 0.11 Adam 0.001

Figure 4 shows on the left the accuracy through the
epochs at test time for the best model (ResNet50V2) as well
as shows the loss on the right.

Figure 5 shows the best results of the models across dif-
ferent number of epochs and different batch sizes; InceptionV3
achieved a 100% accuracy on 6 epochs with loss value equal to
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FIGURE 4: Differences in accuracy between different pretrained models after 10 epochs.
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FIGURE 5: Optimal performance of models across varied epochs and batch sizes.

0.01 and batch size = 32; ResNet50V2 also achieved the same
results but on 10 epochs and 98% on 3 epochs with 0.01 loss
and the same batch size; VGG16 and InceptionV3 attained the
same results of accuracy on 6 and 10 epochs, but we are in-
terested in training the network on smaller number of epochs
with the best result. So, we prefer InceptionV3 on 3 epochs over
the VGG16 on 6 in this case.

The primary contribution of this study lies in the ex-
ceptional performance demonstrated by ResNet50V2 and
InceptionV3 in fitting our model to our dataset. These
models achieved outstanding results with 100% accuracy
and zero errors, showcasing their remarkable ability to
classify sign language images into Arabic letters effectively.

Throughout the training phase of InceptionV3, we diligently
applied early stopping mechanisms and, when applicable,
data augmentation techniques. These strategies played
a pivotal role in enhancing the model’s generalization to
previously unseen data. Our approach focused on achieving
the right balance through iterative experimentation, en-
suring the model was finely tuned and effectively mitigated
overfitting.

The variance in the number of epochs required for
convergence comes from several factors related to the
model’s training, including the initialization conditions,
hyperparameter adjustments, and the difference in model
complexity. During our experimentation, we adjusted
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different hyperparameters, such as the learning rate, early
stopping criteria, and batch size. These adjustments impact
convergence directly. Moreover, based on the particular
model complexity, it might have different convergence
behaviors; more complex models require a larger number of
epochs to fine-tune the high number of parameters and
reach convergence. In conclusion, it is evident that Incep-
tionV3 outperformed other pretrained models in our
comparison.

6. Conclusion

In our research, our goal was to accurately classify Arabic
Sign Language images using advanced artificial intelligence
techniques. We achieved this by harnessing the power
of pretrained models, including MobileNetV2, VGG16,
InceptionV3, ResNet50V2, ResNet152, and Xception. The
dataset comprised a vast collection of Arabic Sign Language
images. To ensure a fair evaluation, we split the dataset into
two portions: 70% for training and 30% for validation. After
conducting extensive experiments, particularly fine-tuning
of the pretrained models, we observed exceptional perfor-
mance from ResNet50V2 and InceptionV3. These models
achieved an impressive 100% accuracy with zero errors. The
training process involved 10 and 6 epochs, with a batch size
of 32. To further enhance the model’s performance and
prevent overfitting, we applied techniques like early stopping
and data augmentation. In summary, InceptionV3 consis-
tently outshone the other pretrained models across various
experiments with different number of epochs. What is really
interesting here is that they achieved this remarkable ac-
curacy without falling into the trap of overfitting. This
highlights the effectiveness of incorporating techniques like
early stopping and data augmentation, which played a cru-
cial role in enabling InceptionV3 to generalize exceptionally
well while maintaining its high accuracy and avoiding the
risk of overfitting.
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The data used to support the findings of this study are
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