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Te solid waste collection problem refers to truck route optimisation to collect waste from containers across various locations.
Recent concerns exist over the impact of solid waste management on the environment. Hence, it is necessary to fnd feasible routes
while minimising operational costs and fuel consumption. In this paper, in order to reduce fuel consumption, the number of
trucks used is considered in the objective function along with the waste load and the travelling time. With the current com-
putational capabilities, fnding an optimal solution is challenging. Tus, this study aims to investigate the efect of well-known
metaheuristic methods on this problem’s objective function and computational times. Te routing solver in the Google OR-tools
solver is utilised with three well-knownmetaheuristic methods for neighbourhood exploration: a guided local search (GLS), a tabu
search (TS), and simulated annealing (SA), with two initialisation strategies, Clarke and Wright’s algorithm and the nearest
neighbour algorithm. Results showed that optimal solutions are found in faster computational times than using only an IP solver,
especially for large instances. Local search methods, notably GLS, have signifcantly improved the route construction process. Te
nearest neighbour algorithm has often outperformed the Clarke and Wright’s methods. Te fndings here can be applied to
improve operations in Saudi Arabia’s waste management sector.

1. Introduction

Solid waste management is a challenging task that is
common across cities worldwide [1]. Households generate
solid waste, as do commercial and industrial organisations,
institutions such as schools, hospitals, care homes, and
individuals, and public spaces such as streets, markets,
slaughterhouses, public toilets, bus stops, parks, and gardens
[2]. Tis paper considers the solid waste collection problem
(SWCP) as managing the waste collection process by loading
waste into waste collection trucks from various collection
facilities, transporting it, and unloading it at the available
disposal sites.

Te increasing signifcance of the management of solid
waste is caused by the negative efects of waste buildup on
the environment, such as air and water pollution, habitat
destruction, and climate change (vergara 2012 municipal).
Additionally, it requires considerable costs, as it necessitates

the allocation of fnancial, human, and technical resources
for its handling [1]. Poor waste management practices can
lead to economic losses through reduced resource recovery,
increased healthcare costs due to pollution-related illnesses,
and potential damage to tourism industries. Note that the
transport sector accounts for around 27% of the overall
carbon dioxide emissions [3].

SWCP is critical for cities in urban areas within met-
ropolitan regions, as well as in cities that are responsible for
organising signifcant sporting, entertainment, or religious
gatherings [4]. To decrease the carbon footprint of the waste
collection process, this problem considers minimising the
travelling cost and fuel usage by reducing the waste load
while using the lowest number of trucks possible [5].
Terefore, the implementation of an efective waste col-
lection system that minimises fuel usage is essential [6].

Regarding computational complexity, SWCP is con-
sidered an extension of the vehicle routing problem (VRP)
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and the vehicle routing problem with time windows
(VRPTW). Both problems are considered NP-hard prob-
lems [7]. Tat is, there is no known polynomial-time al-
gorithm to solve the problem. Terefore, SWCP is
considered an NP-hard problem. Even for small instances,
fnding an optimal solution is hard for commercial solvers
[8]. Real-world instances are always a challenge to solve,
especially in metropolitan areas. Tus, a heuristic method
must be used to obtain at least a feasible solution. Tis paper
aims to investigate well-known metaheuristic methods to
generate feasible solutions to the SWCPwhile considering all
conditions and limitations. A guided local search (GLS),
a tabu search (TS), and simulated annealing (SA) are all
tested with two initialisation strategies: Clarke and Wright’s
algorithm as well as the nearest neighbour algorithm. Te
routing solver in the Google OR-tools solver is used. To this
end, the specifc objectives of this study are as follows:

(i) To investigate the performance of local search-based
metaheuristic methods for SWCP that tackle real-
world instances from Mecca city.

(ii) To complete illustrative computational trials to es-
tablish the utility of the proposed approach.

Te subsequent sections of the study are structured as
follows. After the introduction, an analysis of the relevant
literature is presented. Ten, the problem and the instances
used in this paper are described. Following that, the methods
used are explained. Next, the experimental tests are presented,
followed by a discussion of the obtained results. At last, the last
part serves to provide a conclusive ending to the article.

2. Related Work

In this section, current and relevant research on SWCP-
related works is examined including the constraints, ob-
jectives, and metaheuristic application.

Considerable research has been carried out in the feld of
efcient waste collection, focusing on typical optimisation
problems such as VRP and VRPTW, particularly in applying
metaheuristic techniques to solve these problems [1, 6, 9]. Te
interest in developing metaheuristic approaches for difcult
combinatorial optimisation problems such as the one tackled in
this paper was to reduce the computational cost of these
problems. Terefore, it is essential to consider the similarities
that some of these problems have with SWCP, since some ideas
and experiences can prove helpful in this research area.

Common elements between VRP and SWCP included
having a homogenous feet of vehicles, i.e., trucks. Tere are
common elements between VRP and SWCP. For instance,
VRP has a homogenous feet of vehicles and a set of col-
lection sites in a specifc region. SWCP has a feet of trucks
and a set of containers in a city. A truck must collect
a quantity within its capacity. Trucks should also start from
a central depot, and after completing their collection route,
they should end at the waste dumping area and then return
to the central depot [10–12].

Truck assignment according to a time window was also
considered in SWCP [13], i.e., the earliest and latest hours
during which the collection service was permitted. Tus,

SWCP could also be considered an extension of VRPTW.
Researchers have also defned time-window constraints in
connection with the containers’ demands, such as in the
work by [14–16].

To date, current research has focused on solution
methods that tackle the objective function of VRPTW in the
context of SWCP by minimising route length [17], waste
content [18], or travel time [13, 15, 19]. However, this is only
sometimes synonymous with minimising fuel use. Tus,
previous studies would have been more valuable if they had
focused on the negative impact on the environment of the
waste collection process.

For example, the study by the authors of [20] presented
a capacitive routing model for SWCP using a particle swarm
optimisation (PSO) algorithm. A number of local im-
provement algorithms were also applied to improve the
PSO’s performance. Te objective was to minimise opera-
tional costs while addressing environmental concerns.
However, the study has only been conducted on VRP
datasets rather than real-world scenarios.

Te work by the authors of [21] minimised the total fuel
consumption by using a tabu search (TS) with a random
variable neighbourhood descent (RVND) procedure and an
adaptive parallel route construction heuristic (APRCH).
Using three diferent variations of the mathematical model,
fuel consumption was reduced when time-window con-
straints were relaxed as a result of using fewer vehicles. A
minimal-distance model performed better than a minimal-
time model at reducing fuel usage. Nonetheless, a minimal-
time model reduced the number of vehicles used, mainly
when there were more nodes and tighter time windows.
Hence, in this paper, the number of trucks used is considered
in the objective function along with the waste load and the
travelling time to reduce fuel consumption.

One potential area of solution methods for trans-
portation management systems is heuristic algorithms. Ef-
fcient routing plays a critical role in optimising the delivery
process and minimising costs.Tis was due to their potential
to operate inside a constrained search area while still gen-
erating optimal solutions within a restricted computational
timeframe [22]. Such as local search (LS) algorithms [12],
adaptive large neighbourhood search (ALNS) heuristic, TS
[23], simulated annealing (SA) approach [12], variable
neighbourhood search (VNS), variable neighbourhood tabu
search (VNTS) [15], and various initial solution strategies
were also studied to improve the metaheuristic methods’
performance such as the greedy heuristic [16], Clarke and
Wright’s savings algorithm, and the sweep algorithm [15].

For example, the work by [12] presented a priority-
considered green VRP model for China’s urban garbage
collection and transportation problems. A local search hybrid
algorithm was used to fnd the best solution using PSO as an
initialisation strategy. Ten, the SA was applied as a repair
algorithm to the best initial solution. Te method improved
the quality of the results. Hence, local search algorithms were
an efcient method to tackle waste collection.

In this paper, some elements of the VRPTW are con-
sidered while tackling the problem including capacity, de-
mand, service times, and time window constraints. At the
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same time, we are aiming to minimise travel time, the
number of trucks used, and fuel consumption. Local search
methods have proven to be efective on VRP and VRPTW.
Tis paper focuses on investigating the efect of minimising
the objective function while reducing the computational
times for SWCP using metaheuristic methods.

3. Problem Definition

To fnd feasible routes for the SWCP, this paper extends the
mixed integer programming (MIP) model, described in
detail in [4]. Te objective function minimises the total
travelling cost. Nevertheless, the work by [20, 21] has
proposed methods for reducing fuel consumption including
reducing the waste load for each route and the number of
trucks used. In this paper, the objective function minimises
the waste collection process’s total efect on the environment
along with the travel costs. In addition, constraints are
adapted from the literature of VRP and VRPTW to suit the
problem defnition [13, 15, 19]. Te following sections de-
scribe in detail the model’s notations, as shown in Table 1.

SWCP is defned as a graph G � (N, A), where N �

0,1,2 . . . , n + 1{ } is the set of nodes and
A � (i, j) | i, j ∈ N, i≠ j  is the set of arcs. Each route is
a sequence of nodes connected with arcs.

Node 0 ∈ N is the starting depot, i.e., camp, which serves
as the base where the trucks start, while node n + 1 ∈ N is the
dumping facility, i.e., dump, where all truck routes ulti-
mately conclude. Other nodes are noted as a set
C � 1,2, . . . , n{ }, which are the locations of containers. Tus,
for each arc (i, j) ∈ A, there are parameters dij and tij that
denote the travel distance and time between nodes i to j,
respectively.

In a route plan for SWCP, a set of trucks
K � 1,2 . . . , k|K|  are assigned to collect waste from a set of
containers C � 1,2, . . . , n{ }, where each container has an
amount of waste load qi. Te time duration required for
a truck to fully empty the contents of a container i is defned
as the service time, denoted as vi. For each container, time
windows are formally defned as intervals denoted by [li, ui],
where li represents the minimum permissible time for
visiting a container i may be visited. At the same time, ui is
the maximum permissible time for visiting a container i.
Both capacity and time windows are considered hard
constraints. Given the variable and parameter defnitions,
the SWCP model is formulated as follows:

Minimise,

z � cd 
i∈N


j∈N


k∈K

Tijxijk + 
i∈N


k∈K

ctwik 
i∈N


k∈K

ckyik, (1)

s.t. 
j∈N


k∈K

xijk � 1, i ∈ C,
(2)


i∈N

xihk − 
j∈N

xhjk � 0, h ∈ C, k ∈ K, (3)


i∈C

qi 
j∈N

xijk ≤Qyik, k ∈ K, (4)


j∈N\ 0{ }

x0jk � 1, k ∈ K,
(5)


i∈N\ n+1{ }

xi,n+1,k � 1, k ∈ K, (6)

si + Tij − U0 1 − xijk ≤ sj, i, j ∈ N, k ∈ K, (7)

li ≤ si ≤ ui, i ∈ N, (8)

xijk ∈ 0, 1{ }, i, j ∈ N, k ∈ K. (9)

In the objective function shown in (1), there are three
decision variables and four parameters. A binary variable
xijk is equal to one if, while using a truck k, a container j is
the successor of a container i; otherwise, zero. A continuous
variable wik that indicates the amount of waste load k has
when it arrives at i. A continuous variable yik indicates
a truck k has arrived at i. For each container, i and container
j, parameter Tij is calculated as the total travel time tij added
to the service time duration vi and vj. It is important to note
that Tij must take into account the service start time,
denoted as si, and the time after leaving i and arriving to j,
i.e., departure time, denoted as U0. Where U0 is a large
number, defned as the sum of all ui, i.e., the latest time
window. All values are bounded by the time windows, as
shown in (7) and (8). On the other hand, parameters cd, ct,
and ck are the costs of travelling per distance unit, per time
unit, and per truck, respectively. Tese values act as weights
to transform the objective function into a scalar objective
function [24]. Hence, these weights tackle the model’s
tendency to have earlier visits, a lower waste load, and fewer
trucks.

Constraints (2) and (3) guarantee that exactly one truck
arrives/leaves one container.While constraint (4) ensures that
the maximum capacity of a truck Q is never exceeded. Note
that all vehicles have the same value of Q in this setting.
Constraints (5) and (6) guarantee that each truck starts from
the camp and fnishes its route at the dump. Finally, the binary
restriction on the route decision variables is shown in (9).

3.1. Case Study of SWCP. Instances of real-world Mecca
SWCP are considered here.Mecca has visitors from around the
world throughout the year to perform religious tasks and visit
historic sites. Daily, a substantial quantity of waste is generated
that requires efectivemanagement. During religious occasions,
the typical amount of waste produced is estimated to be about
three kilogrammes per individual. [25, 26]. At the same time,
Mecca’s resident population is increasing yearly, with 2,150
million residents reported in 2023 [27]. Furthermore, fnding
an optimal route for SWCP is critical. Mecca’s urban areas with
historical districts are challenging to manoeuvre, with narrow
streets, and lots of pedestrians.
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Te format of the problem instances is described in
detail in [4]. Each container has a pair of coordinates,
consisting of an x-coordinate representing the latitude
location and a y-coordinate representing the longitude
location. Terefore, the distance matrix is computed for
every pair of containers. Since the matrix exhibits asym-
metry, the distances between two containers are computed
in kilometres. Te distance matrix incorporates the earth’s
curvature to address real-world scenarios as it estimates the
straight-line distance between geographic places. On the
other hand, the lower and upper bounds of the service time
parameters set a limit on service time. In the aforemen-
tioned scenarios, there are three distinct shifts that may be
chosen: 4:00 a.m. to 12:00 p.m., 7:00 a.m. to 3:00 p.m., and
4:00 p.m. to 11:59 p.m. Furthermore, the current demand
levels for nodes in these instances are currently unknown.
Hence, the waste load was randomly generated within the
range [1, 1.2] to simulate the stochastic nature of the
demands.

Te daily transportation routes for waste collection
often include sequentially visiting each container
throughout the city, regardless of whether they are flled
with waste or not. In a deterministic scenario, it is as-
sumed that the value of qi remains constant for all con-
tainers. Tis means that all containers have the same
capacity. Hence, the value of capacity Q remains constant
across all instances. On average, the container capacity is
around 20 tonnes, whereas the average truck capacity is
approximately 60 tonnes.

4. Solution, Method, and Implementation

A metaheuristic method is a near-optimal algorithm
designed to tackle complicated problems. Teir wide use in
recent years for combinatorial problems is due to their
capability to address diferent parts of the problem and reach
a feasible solution [28].

In this paper, the routing solver in the Google OR-
tools solver is used as follows: (i) two initialisation
heuristics generate good potential vehicle tours sepa-
rately; (ii) three local search metaheuristics methods
improve the generated solutions separately to guide the
search; and (iii) a constraint programming (CP) engine
improves the quality of the best solution. Te aim is to
compare their performance in the optimisation process
for the SWCP model. Te following are the details of the
implemented methods.

4.1. Initial Solution. To obtain approximations of solutions
to combinatorial optimisation problems, local search algo-
rithms begin with a candidate solution and then iteratively
navigate to a neighbouring solution. Te collection of all
potential solutions close to the current solution is known as
a neighbourhood [15].

Te move to the following solution is defned by the
acceptance movement. Te action that reduces the objective
value the most is selected at each stage of the search. Te
method cannot reduce the number of routes if no feasible
solution is found.

Table 1: Model notation table.

Notations Description
Sets
N Set of nodes
A Set of arcs
C Set of containers
K Set of waste collection trucks
Parameters
dij Integer parameter to indicate the travelling distance between node i and node j

tij Integer parameter to indicate the travelling time between node i and node j

vi Integer parameter to indicate the service time for container i

Tij

Integer parameter to indicate the travelling time between node i and node j in
addition to vi and vj

cd Travel cost from node i to node j in regards to distance
ct Travel cost from node i to node j in regards to time
ck Travel cost from node i to node j in regards to the number of trucks
qi Container i maximum capacity
Q Waste collection trucks maximum capacity
li Earliest time to visit container i

ui Latest time to visit container i

Variables

xijk

Decision variable to indicate that a node j is visited right after node i by a waste
collection truck k

si Integer variable to indicate the service starting time for node i ∈ N

wik

Integer variable to indicate the amount of load in a truck k when arriving at
container i

yik

Integer variable to indicate the total number of trucks used when arriving at
container i
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Generally, a construction method is used to produce an
initial feasible solution, and then a heuristics is used to
maintain the feasibility. Local search algorithms are used to
escape the local minima as a result of guiding the search [15].

Two heuristic methods are applied to fnd the frst so-
lution for the SWCP: Clarke and Wright’s algorithm as well
as the nearest neighbour algorithm.

TeClarke andWright’s algorithm is themost widely known
heuristic for theVRP. It was frst proposed by [29]. It beginswith
each truck serving two containers in a single trip. Ten, the
savings cost is calculated s(i, j) � d(D, i) + d(D, j) − d(i, j)

for every pair of containers (i, j) by satisfying the demands.
Ten, the savings s(i, j) are ranked in descending order in the
savings list. For the savings s(i, j) under consideration, the link
is included if there are no route violations of the capacity re-
strictions and there exists one of the following cases:

(i) If neither i nor j has already been assigned to
a route, a new route with both i and j is started.

(ii) Or, if either i or j has already been included in an
existing route and that container is not interior to
that route, the link between i and j is added to that
same route.

(iii) Or, both i and j have already been included in two
diferent existing routes, and neither container is
interior to its route, in which case the two routes are
merged. Te algorithm merges the containers in the
savings list corresponding to the highest saving
value without exceeding the capacity restriction.

Te algorithm continues to execute until no more route
additions or merges are available. Note that each node has at
least one neighbouring node. Tus, the arc cost used to
calculate the saving value has a coefcient of 1 [30].

Te nearest neighbour algorithm generates routes one at
a time, by attaching the container j, which is the container i’s
closest unrouted neighbour in terms of the objective value,
to the container i.

It starts at the starting camp in the frst phase and
connects to an unrouted node after that. Te chosen node
must provide the cheapest route arc to initialise a single
route. Te procedure connects the current node to the
following unrouted node in step two until the last node is
included in the route. A new route is initialised if all nodes
have yet to be incorporated into the routes. [30].

Te neighbourhood is assessed following the generation
of the current solution’s neighbourhood. Te local search
employs a move strategy to choose at most one solution from
the neighbourhood as the new current solution [11]. All
techniques switch between solutions using the group of
operators stated next [30].

4.2. Operators. During the search, the algorithm uses the
following operators:

(i) Operators for the allocation of customers to routes
(inter-route optimisation)

(a) 2-opt replaces two edges from the route under
consideration with two new edges to create a new
route [31].

(b) Or opt improves the existing route by frst
changing the placement of a sequence of three
successive vertices until no more improvement is
possible. Next, the same procedure is repeated
on a chained series of two successive vertices,
and fnally, on single vertices [32].

(c) Lin Kernighan (LK) operator searches for
a shorter route in a neighbourhood, then uses
that shorter route as a starting point and repeats
the procedure until it reaches a local minimum.
Since LK is an adaptive approach, there is no
limit on how many edges can be replaced at one
time [32].

(ii) Operators for the optimisation of each route (intra-
route optimisation)

(a) Relocate operator, where a single container is
removed from its route and placed on another
route [30].

(b) Swap-exchange operator exchanges two con-
tainers from two diferent routes [30].

(c) Cross-exchange operator exchanges substrings
connected to the camp. As a result, the substrings
may have to be inverted [33].

5. Local Search-Based Metaheuristic Methods

Combinatorial problems are solved using well-known
metaheuristics, rather than by customising the approach
for each problem. Hence, this paper implemented three well-
known local search metaheuristic methods, presented by
[28], to tackle SWCP.

5.1. Guided Local Search. Te guided local search (GLS) is
a metaheuristic algorithm [34]. GLS escapes local minima by
penalising a solution with the distance arc that it considers
should not occur in a near-optimal solution, based on the
experience the search has gained [35]. Solution features are
defned if there is a direct arc between two containers.
Features are used to distinguish between solutions with
various properties. Tis allows for identifying and avoiding
regions of similarity around local optimums. Algorithm 1
gives an outline of the method [28].

In this study, an edge is penalised with a λ � 0.1 co-
efcient during the search, and the interroute operators are
applied to this edge. Tus, only moves that begin with the
removal of the relevant edge are taken into account. Te
move that decreases the objective value by the most amount
is used as the move [11].

Ten, the intraroute operator is used to optimise the
changed routes. Te combination of inter- and intraroute
optimisation is applied in each iteration until the solution is
not improved or the time limit is exceeded [30].
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5.2. Tabu Search. A local search metaheuristic known as Tabu
Search (TS) was frst published by Glover [36]. In order to
explore the search space, TS iteratively moves from one solution
to the next until it locates the best solution in a subset of its
neighbourhood. Te tabu list keeps track of recent actions or
visits to solutions. Te algorithm is forbidden from making any
of themoves on the tabu list.Tis forces the algorithm to look at
alternative options. Tabu factor is an acceleration parameter to
explore diferent moves in the neighbourhood. Te method
presented by [28] is outlined in Algorithm 2.

Te interroute operators are applied to the current so-
lution after each iteration. Te best solution is selected.
Either a tabu or nontabu solution exists. It is tabu if the
action that results in the solution is also tabu. However, an
aspiration criterion may override the tabu status (the best
total cost seen so far). When the tabu status expires or is
overridden by the aspiration criterion [30], the opposite
move is then classifed as tabu for the next p � 5 iterations.

5.3. Simulated Annealing. Simulated annealing (SA) was
introduced by [37]. Material is heated to a high temperature
in a technique modelled after the physical annealing process.
Te temperature (T) is gradually lowered to get the material
to a state of minimal energy, i.e., reach a thermodynamic
equilibrium, avoiding local energy minima in the process.
Similar to the system’s energy, the objective function in the
optimisation context must be minimised. SA is a meta-
heuristic that attempts to escape local minima by exploring
the solution space. Improving candidate solutions is always
accepted, while nonimproving candidate solutions are ac-
cepted with a certain probability. In this case, the control
parameter (T) lowers gradually and tends to be zero
according to a deterministic cooling schedule. Te search is
initially diverse, and the solution space is explored more
globally. As the value of T decreases, the search becomes
more focused on specifc areas of the search space. Te
approach presented by [28] is described in the Algorithm 3.

6. Computational Results

Using default settings, the implementation has been eval-
uated using Windows 10 and 64 bit operating system with
Gurobi Solver 9.5 [38] and OR-Tools solver for vehicle
routing problems [39]. Te model is coded in C# in the MS
Visual Studio environment. To assess the results, each run
was executed 8 times, seeded with the same random number,
and all methods had the same amount of computation time.

OR-Tools are an open-source solver developed by
Google. All heuristic methods generate a solution for the
Gurobi solver, which enables the solver to escape a local
minimum, i.e., a solution shorter than all nearby routes but
not the global minimum. After moving away from the local
minimum, the solver continues the search, thus, allowing
iterative improvements to the solution.

Te parameters used in this paper were as follows: Te
tabu factor for the TS was 0.8, the keep iterations were 10,
and the forbid iterations were 10. T�100 for the SA, where T
at iteration i is Ti � T0/i.

Fixed parameters were qi and Q, i.e., container and truck
capacity, respectively. When a truck is empty, it weighs 20
tonnes. Random variables, demand, were seeded to be able
to range between 0 and 10 tonnes. In order to conduct the
experiments with the random variables, eight trials were
executed, and the average computational times of these trials
were used.

Table 2 presents the results of the IP solver on 13 dif-
ferent instances. For each problem instance, the table shows
the total distance in Km, noted as Distance; the total trav-
elling time in Seconds, noted as Time; the cumulative vehicle
load in Tonnes, noted as Veh. Load; the number of trucks
used per route, noted as Routes, solution quality, noted as
Obj; and the computational time in Seconds, noted as Cpt, in
which the best solution was found, and the gap to the op-
timal, noted as Gap%.

Tere were no violations. Hence, the proposed model
obtained optimal solutions for all instances within an ac-
ceptable amount of time. Additionally, minimising the
number of trucks used means less fuel consumption and,
henceforth, fewer daily routes. Tus, not all trucks were
used. On the other hand, the size of the problem has afected
the objective values. Te larger the problem, the more time
was required to fnd an optimal solution. As in the cases of
15–50, 20–60, 30–60, 30–70, and 30v75, the model obtained
optimal solutions that required more computational time.
Te more containers added, the greater the computational
time. Tis occurrence was due to the fact that succeeding
nodes have higher load levels. Hence, the model prioritised
the collection of lighter nodes frst and heavier nodes af-
terwards to minimise the overall weight. Terefore,
a number of nodes were disregarded during the execution of
the algorithm and thereafter needed to be added at a sig-
nifcant cost. Terefore, the model was examined for further
experiments using metaheuristic methods.

Table 3 presents the results of the three local search
methods (GLS, TS, and SA) with two diferent initialisation
algorithms (Clarke and Wright’s and the nearest neighbour)
using the MIP model. For each problem instance, the table
shows the total distance in Km, noted as Distance; the total
travelling time in Seconds, noted as Time; the cumulative
vehicle load in Tonnes, noted as Veh. Load; the number of
trucks used per route, noted as Routes, solution quality,
noted as Obj; the average computational time in Seconds for
all runs, noted as Cpt, in which the best solution was found;
and the gap to the optimal, noted as Gap%. Te best
computational times are highlighted in bold.

All methods have obtained optimal solutions. Local
search methods obtained the results faster when using the
nearest neighbour initialisation algorithm on 77% of all the
problems.

Each subfgure in Figure 1 corresponds to a problem
instance to illustrate the overall computational time (in
seconds) used. Search algorithms using the Clarke and
Wright’s strategy are indicated with∗, while algorithms using
the nearest neighbour algorithm are indicated by (’). Black
solid bars when using GLS∗, grey bars with stripped lines
when using GLS’, blue bars with dots when using TS∗, red
bars with right inclined lines when using TS’, green bars with
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(1) Initialise penalties pi: � 0 and costs ci

(2) Generate initial solution x

(3) while stopping criterion is not met do
(4) Find a local minimum x∗ of the augmented objective function using local search starting from x

(5) Compute the utility ui of each feature Fi of x

(6) j← argmaxi ui

(7) pj←pi + 1
(8) x←x∗

(9) end while
(10) return best solution found

ALGORITHM 1: Guided local search.

(1) Generate initial solution x

(2) Initialise empty tabu list
(3) while stopping criterion is not met do
(4) Generate new solution x′ ∈ N(x) not in the tabu list
(5) x←x′

(6) Update tabu list
(7) end while
(8) return best solution found

ALGORITHM 2: Tabu search.

(1) Generate initial solution x

(2) Set initial temperature T

(3) while stopping criterion is not met do
(4) repeat
(5) Generate new solution x′ ∈ N(x)

(6) if f(x′)≤f(x) then
(7) x←x′

(8) else
(9) x←x′ with probability exp − f(x′) − f(x)/T
(10) end if
(11) until thermodynamic equilibrium
(12) Decrease T
(13) end while
(14) return best solution found

ALGORITHM 3: Simulated annealing.

Table 2: Objective values for the optimal solution obtained by the MIP model.

Ins. Solutions obtained by solver

#Veh #Cont. Distance Time Veh.
load Routes Obj Cpt % gap

3 5 125.58 73.58 16.10 1.00 77.83 0.10 0.0%
5 10 196.98 82.15 29.51 1.00 87.95 0.13 0.0%
5 15 199.61 85.31 43.06 1.00 92.11 0.25 0.0%
6 10 229.11 82.15 29.51 1.00 87.95 0.14 0.0%
9 15 328.13 85.31 43.06 1.00 92.11 0.24 0.0%
9 20 330.82 88.54 50.77 1.00 95.57 0.29 0.0%
10 25 386.49 116.79 66.51 1.00 124.25 0.55 0.0%
10 35 385.69 154.38 85.08 2.00 162.37 1.23 0.0%
15 50 566.07 178.05 117.55 2.00 186.53 2.43 0.0%
20 60 740.06 194.07 139.19 2.00 202.68 34.27 0.0%
30 60 1061.36 194.07 139.19 2.00 202.67 21.88 0.0%
30 70 1073.77 208.96 163.67 2.00 217.66 1891.78 0.0%
35 75 1235.82 210.64 173.56 2.00 219.50 5888.39 0.0%
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left inclined lines when using SA∗, yellow bars with a grid
when using SA, and fnally orange bars with vertical lines
when using MIP. Te lower the bar, the better, i.e., the less
computational time.

Computational times were reduced compared to the
solver on instances 10–25, 10–35, 15–50, 20–60, 30–60,
30–70, and 35–75. Tis was due to the algorithm’s greedy
nature, which allowed fast computation of the operational
cost. On the other hand, results obtained by the Clarke and
Wright’s algorithm as an initialisation strategy were only
faster than the other algorithms on instances 3–5, 5–10, and
5-15. Still, the computation times obtained by the solver on
those instances were better. Hence, fnding a feasible initial
solution, especially for large problems, to an SWCP is
critical.

Diferent algorithms have diferent strategies for route
construction. Nevertheless, a better initial solution will help
the algorithm search for a better solution with faster
computational times. Tis was clear with both initialisation
strategies: SA fnds the optimal solutions faster than TS,

especially when combined with the nearest neighbour al-
gorithm. Tis was due to the number of neighbourhoods
considered for each move. In SA, only one neighbourhood
per move. However, in TS, n number of neighbourhoods
were considered. Tus, more time was spent exploring the
neighbouring solutions.

GLS with the Clarke and Wright algorithm was the
slowest out of the six methods, with 38% of all problem
instances. In contrast, GLS obtained the highest number of
best computation times, with 69% overall solutions using the
two initialisation methods. Combined with the Clarke and
Wright algorithm, GLS was faster for small problems.
Combined with the nearest neighbour algorithm, GLS was
faster for larger problems. Tis was due to the GLS penal-
isation process. Each time the GLS was trapped in a local
minimum, the penalty parameter increased. Hence, unfav-
oured features were penalised, and solutions with these
features were avoided, which improved the efciency and
robustness of the underlying local search algorithms. Hence,
GLS was a very competitive algorithm for this problem.
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Figure 1: Computational times (in seconds).
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7. Conclusion

Tis paper investigated the performance of well-known
metaheuristic methods to generate feasible solutions to
SWCP while considering all conditions. Two initialisa-
tion strategies were used: Clarke and Wright’s and the
nearest neighbour algorithms. After the frst route was
generated, three well-known metaheuristic methods
were used for neighbourhood exploration, including
guided local search (GLS), tabu search (TS), and simu-
lated annealing (SA). Te aim was to minimise the ob-
jective function by reducing travel times, waste loads,
and the number of trucks used while reducing
computational time.

Tese metaheuristic methods signifcantly improved the
efciency of the route optimisation process, leading to re-
duced fuel consumption and better overall performance.
Optimal results were found faster than using only an IP
solver, especially for large instances. In this paper, using local
search methods with the nearest neighbour algorithm was
more efcient since it outperformed the Clarke and Wright
method in most instances. Overall, GLS outperformed TS
and SA most of the time. Te fndings here can be applied to
improve operations in Saudi Arabia’s waste management
sector.

Using Google OR-tools allowed modelling the problem
while using diferent search strategies. However, constraint
handling methods were not incorporated into the existing
OR-tools search strategies, and only general algorithms were
used. Tis was enough for the instances in this paper;
however, problem-specifc information must be used to
solve problems with more than 100 vehicles. In order to
further optimise the search process, a hybrid algorithm can
be applied to enhance the local search and population
management strategy, such as hybridising metaheuristics
methods with genetic algorithms (GAs) [40] or ant colony
optimisation (ACO) algorithm [41]. Te application of
problem-specifc knowledge in the design of heuristics can
be benefcial in solving larger problem instances [42]. Also,
hybridisation methods that consider problem-specifc
knowledge are required to improve solution quality
[12, 43]. Tus, another future direction can be utilising
a hybrid heuristic algorithm to reduce the number of nodes
and vehicles by splitting the problem into manageable
clusters and solving the routing problem within each cluster.
Tis method combines the intensifcation process by using
LS operators with the diversifcation of using constructive
heuristics [44]. Te algorithm adopted in this study can be
compared with the hybrid algorithms to evaluate their
efectiveness.
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