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Tere are substantial methods of degree reduction in the literature. Existingmethods share some common limitations, such as lack
of geometric continuity, complex computations, and one-degree reduction at a time. In this paper, an approximate geometric
multidegree reduction algorithm of Wang–Ball curves is proposed. G0-, G1-, and G2-continuity conditions are applied in the
degree reduction process to preserve the boundary control points. Te general equation for high-order (G2 and above) mul-
tidegree reduction algorithms is nonlinear, and the solutions of these nonlinear systems are quite expensive. In this paper,
C1-continuity conditions are imposed besides the G2-continuity conditions. While some existing methods only achieve the
multidegree reduction by repeating the one-degree reduction method recursively, our proposed method achieves multidegree
reduction at once. Te distance between the original curve and the degree-reduced curve is measured with the L2-norm.
Numerical example and fgures are presented to state the adequacy of the algorithm. Te proposed method not only outperforms
the existingmethod of degree reduction ofWang–Ball curves but also guarantees geometric continuity conditions at the boundary
points, which is very important in CAD and geometric modeling.

1. Introduction

Te Wang–Ball curve was proposed by Wang [1] as an
extension of the cubic Ball basis pioneered by Ball [2–4].
A. Ball introduced the basis for a cubic polynomial in the
CONSURF system at the British Aircraft Corporation [2].
Te basis was generalized independently by Wang [1] and
Said [5] in 1987 and 1989, respectively. Since then, the
generalization by Wang and Said is, respectively, called the
Wang–Ball curve and the Said–Ball curve (or simply the
generalized Ball curves).

Degree reduction plays a vital role in computer-aided
geometric design (CAGD). Given a curve Wn of a degree n,
degree reduction is a process of approximating the given
curve Wn by a lower degree curve Rm of a degree m, (where
m< n). If geometric continuity conditions are applied in the

degree reduction process, such a degree reduction is called
geometric degree reduction. In geometric degree reduction,
the information at both boundaries of the given curve is
preserved using the geometric continuity conditions.

Te highest degree of a polynomial that the CAD system
handles varies from one CAD system to another.Te problem
of degree reduction mainly occurs if data are exchanged
between diverse CAD systems. Tus, due to the variation of
the highest degree allowed between diferent CAD systems,
higher degree Wang–Ball curves are approximated by lower
degree Wang–Ball curves. Wang–Ball curves are much more
suited to degree reduction than the classical Bézier curves.
Degree reduction is an important issue in CAD, and it fa-
cilitates data transfer, exchange, and compression.

Tere are substantial methods of degree reduction in the
literature, and most of the existing methods share some
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common limitations, such as lack of geometric continuity
and complex computations; some existing methods only
achieve the multidegree reduction by repeating the one-
degree reduction method recursively. Our proposed method
uses the geometric continuity conditions to preserve the end
points of the given curve; i.e., the boundary control points of
the degree reduced curve are obtained using geometric
continuity. Te interior control points are obtained by
solving a linear system. Te general equation for high-order
(G2 and above) multidegree reduction algorithms is non-
linear, and the solutions of these nonlinear systems are quite
expensive. To overcome this obstacle, C1-continuity and
G2-continuity are imposed at the endpoints. While some
existing methods only achieve the multidegree reduction by
repeating the one-degree reduction method recursively, the
proposed method can achieve multidegree reduction at
once. Moreover, the proposed method can be extended to
high-order geometric continuity.

Te problem of degree reduction was tackled by some
authors using metaheuristic algorithms. Hu et al. [6] pro-
posed a method of degree reduction of the SG–Bézier curve
using the grey wolf optimizer algorithm. Lu and Qin [7]
transformed the degree reduction problem into the function
optimization problem and applied the genetic simulated
annealing algorithm to solve the problem. Liu et al. [8]
presented a method of degree reduction of Q–Bézier curves
using the swarm intelligence-based squirrel search algo-
rithm. Moreover, Cao et al. [9] solved the problem of
multidegree reduction of the Ball–Bézier curve using an
improved squirrel search algorithm. Hu et al. [10] applied an
enhanced hybrid chameleon swarm algorithm to solve the
issue of degree reduction of disk Wang–Ball curves. Te
problem to approximate multidegree reduction of the
Said–Ball curve was tackled by Hu et al. [11, 12] using an
enhanced chimp optimization algorithm and an improved
chimp optimization algorithm, respectively. Some re-
searchers proposed diferent techniques for degree reduction
of Bézier curves and its variants. Chen and Wang [13]
proposed an algorithm of degree reduction of the Bézier
curve with endpoint constraints. Woźny and Lewanowicz
[14] developed a method of degree reduction of the Bézier
curve based on dual constrained Bernstein basis poly-
nomials. Hu et al. [15] presented an approximate degree
reduction scheme of the λ-Bézier curve using C0 and C1

constraint conditions.
Shi [16] solved the problem of degree reduction of ra-

tional Bézier curves using weighted least squares and qua-
dratic programming. Te issue of degree reduction for the
disk Bézier curve was considered in [17] by Chen and Yang.
If the geometric continuity condition is required in degree
reduction of the disk Bézier curve, the approximation error
could be high at the center of the degree-reduced disk Bézier
curve. Rababah and Hamza [18] developed weighted degree
reduction of disk Bézier curves to tackle this problem.
Generalized Ball curves are much more suited to degree
reduction than the classical Bézier curves [19]. Degree re-
duction of Said–Ball curves was presented in [20] by Hu and

Wang. Dong et al. [21] presented a multidegree reduction
method for Wang–Ball curves using dual basis polynomials.
Geometric degree reduction is an important issue in CAGD,
but most existing methods of geometric degree reduction are
nonlinear. Te main contributions of this paper are as
follows:

(i) Te proposed method introduced explicit linear
methods of reduction of Wang–Ball curves with G0-,
G1-, and G2-continuity at the endpoints

(ii) Te proposed method can achieve multidegree re-
duction at once.

Te remainder of this paper is arranged as follows: Basic
defnitions and statement of the problem are given in Section
2. G0-, G1-, and G2-degree reduction of theWang–Ball curve
is demonstrated in Section 3. Numerical examples are dis-
played in Section 4. Finally, conclusions are given in
Section 5.

2. Definitions and Statement of the Problem

In this section, some defnitions and statement of the
problem are given as follows:

Defnition 1. Te Wang–Ball curve based on the points
wi􏼈 􏼉

n

i�0 of the degree n is defned as follows:

Wn(t) ≔ 􏽘
n

i�0
wiB

n
i (t), (1)

where Bn
i (t), i � 0, 1, . . . , n is theWang–Ball basis defned by

B
n
i (t) �

2i
t
i
(1 − t)

i+2
, 0≤ i≤ ⌊n/2⌋ − 1,

2n−i
t
n+2−i

(1 − t)
n−i

⌊(n + 1)/2⌋ + 1≤ i≤ n,

⎧⎨

⎩

(2)

in addition if n is even then

B
n
n/2(t) � 2n/2

t
n/2

(1 − t)
n/2

, (3)

and if n is odd,

B
n
((n−1)/2)(t) � 2((n− 1)/2)

t
((n− 1)/2)

(1 − t)
((n+1)/2)

,

B
n
((n+1)/2)(t) � 2((n− 1)/2)

t
((n+1)/2)

(1 − t)
((n− 1)/2)

,
(4)

where ⌊x⌋ is the greatest integer less than or equal to x.
Let Mm,n be the Gram matrix of the dimension

(m + 1) × (n + 1), whose elements are computed as

gij � 􏽚
1

0
W

m
i (t)W

n
j(t)dt, i � 0, 1, . . . , m, j � 0, 1, . . . , n.

(5)

Computing the Wang–Ball curve in (1) at t � 0, 1 gives

Wn(0) � w0,

Wn(1) � wn.
(6)
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Evaluating the derivatives of the Wang–Ball curve in (1)
yields

dk

dt
k
Wn(0) �

n!

(n − k)!
∆k

w0,

dk

dt
k

Wn(1) �
n!

(n − k)!
∆k

wn−k,

(7)

where

∆0wi � wi,

∆k
wi � ∆k− 1

wi+1 − ∆k− 1
wi, i � 0, 1, . . . , n − k, k � 1, 2, . . . , n.

(8)

Defnition 2. Wn(t) and Rm(t) are Gk-continuous at t � 0, 1
if a strictly increasing parametrization α(t): [0, 1]⟶ [0, 1]

exists with α(0) � 0, α(1) � 1 and R(l)
m (t) � W(l)

n (α(t)), t �

0, 1, l � 0, 1, . . . , k.
Te degree reduction of the Wang–Ball curve problem

can be stated as follows.
Given control points wi􏼈 􏼉

n

i�0 of the Wang–Ball curve (1),
we fnd control points rj􏽮 􏽯

m

j�0 of the Wang–Ball curve
(m< n):

Rm(t) ≔ 􏽘
m

j�0
rjB

m
j (t). (9)

Such that, the L2-distance between Wn(t) and Rm(t) is
minimum, and Wn(t) and Rm(t) satisfy Gk-continuity at the
endpoints, t � 0, 1. For the sake of simplicity, let

Wn(t) � 􏽘
n

i�0
wiB

n
i (t) ≔ BnWn, 0≤ t≤ 1,

Rm(t) � 􏽘
m

j�0
rjB

m
j (t) ≔ BmRm, 0≤ t≤ 1,

(10)

where Bn and Bm are row vectors formed by the Wang–Ball
basis and Wn and Rm are column vectors formed by the
Wang–Ball points of the degree n and m, respectively.

3. Degree Reduction of the Wang–Ball Curve

In this section, we demonstrate the degree reduction of
Wang–Ball curves with G0-, G1-, and G2-continuity using
the L2-norm.

3.1. G0-Degree Reduction of the Wang–Ball Curve. When
considering G0-degree reduction, we need to satisfy
G0-continuity between the two curves Wn(t) and Rm(t) at
t � 0, 1, i.e.,

Rm(t) � Wn(α(t)), t � 0, 1. (11)

By evaluating (5), it is easy to obtain:

r0 � w0,

rm � wn.
(12)

Te elements of Rm are split up into two categories: the
category of boundary control points Rc

m � [r0, rm]T which is
obtained by G0-continuity conditions and the part of free
control points Rf

m � (Rm/Rc
m) � [r1, . . . , rm− 1]

T. Similarly,
Bm is split up into Bc

m and Bf
m.

Te error of approximating Wn(t) by Rm(t) is given by
the L2-norm as follows:

ϵ � 􏽚
1

0
BnWn − BmRm

����
����
2dt

� 􏽚
1

0
BnWn − B

c
mR

c
m − B

f
mR

f
m

�����

�����
2
dt.

(13)

Diferentiating with respect to the unconstrained control
points Rf

m, we have

zε
zR

f
m

� 2􏽚
1

0
BnWn − B

c
mR

c
m − B

f
mR

f
m

�����

�����.B
f
mdt. (14)

Let (zε/zRf
m) � 0, and evaluating the integral to obtain:

zε
zR

f
m

� M
w
m,nWn − M

c
m,mR

c
m − M

f
m,mR

f
m

� 0,

(15)

where

M
w
m,n ≔Mm,n(1, . . . , m − 1; 0, 1, . . . , n),

M
c
m,m ≔Mm,m(1, . . . , m − 1; 0, m),

M
f
m,m ≔Mm,m(1, . . . , m − 1; 1, . . . , m − 1),

(16)

and the submatrix Mm,n(. . . ; . . .) contains the specifed rows
and columns of the matrix Mm,n.

To analyze the method and to have a better insight, the
points are rewritten in terms of x and y parts. Te system
can be expressed explicitly by rewriting the control points in
the vector form as follows:

Wn � x0, . . . , xn, y0, . . . , yn􏼂 􏼃
t
,

R
F
m � 􏽥x1, . . . , 􏽥xm− 1, 􏽥y1, . . . , 􏽥ym− 1􏼂 􏼃

t
,

R
C
m � 􏽥x0, 􏽥xm, 􏽥y0, 􏽥ym􏼂 􏼃

t
.

(17)

Te following matrices are defned by the direct sum ⊕
as follows:

M
W
m,n � M

w
m,n ⊕M

w
m,n,

M
C
m,m � M

c
m,m ⊕M

c
m,m,

M
F
m,m � M

f
m,m ⊕M

f
m,m.

(18)

Tus, the system in (15) is written as

M
F
m,mR

F
m � M

W
m,nWn − M

C
m,mR

C
m. (19)

Te matrix MF
m,m has full rank; then, from (19), the

unknowns can be obtained as follows:

R
F
m � M

F
m,m􏼐 􏼑

− 1
M

W
m,nWn − M

C
m,mR

C
m􏼐 􏼑. (20)
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Te matrix MF
m,m is real, symmetric, and positive def-

nite; therefore, the solution of the system always exists, and
the numerical computations are numerically stable.

3.2.G1-DegreeReduction of theWang–Ball Curve. Rm(t) and
Wn(t) are G1-continuous at the points corresponding to t �

0, 1 if they are G0-continuous, and the following additional
conditions are satisfed:

Rm
′ (t) � α′(t)Wn

′(α(t)), α′(t)> 0, t � 0, 1. (21)

Rababah and Hamza in [22] discussed the same issue for
disk Bézier curves: as in this work, they substitute α′(i) � β2i
and i � 0, 1 to always have α′(i)≥ 0 and obtain

Rm
′ (i) � β2i Wn

′(i), i � 0, 1. (22)

Tis method yields a system of nonlinear equations. To
get rid of annoying nonlinearity, we substitute α′(i) � βi and
i � 0, 1. Tis substitution for the case of the Wang–Ball
curves yields

Rm
′ (i) � βiWn

′(i), i � 0, 1. (23)

Using α′(0) � β0 and α′(1) � β1 and solving (11) and
(23) in terms of the control points at both the endpoints, we
obtain

r0 � w0,

rm � wn,

r1 � w0 +
n

m
∆w0β0,

rm−1 � wn −
n

m
∆wn−1β1.

(24)

Accordingly, we proceed by splitting Rm into two parts,
Rc

m and Rf
m. Let Rc

m � [r0, r1, rm− 1, rm]T be the part of
constrained control points which is obtained by G1-conti-
nuity and Rf

m � (Rm/Rc
m) � [r2, . . . , rm− 2]

T be the part of
unconstrained control points. Similarly, we split up Bm in
the same way. Hence, the error term becomes

ε � 􏽚
1

0
BnWn − BmRm

����
����
2dt

� 􏽚
1

0
BnWn − B

c
mR

c
m − B

f
mR

f
m

�����

�����
2
dt.

(25)

Te error ε ≔ ε(Rf
m, β0, β1) is a function of Rf

m, β0 and β1.
It follows that

zε
zR

f
m

� 2􏽚
1

0
BnWn − B

c
mR

c
m − B

f
mR

f
m

�����

�����.B
f
mdt. (26)

Let (zε/zRf
m) � 0, and we evaluate the integral to obtain

zε
zR

f
m

� M
w
m,nWn − M

c
m,mR

c
m − M

f
m,mR

f
m

� 0,

(27)

where

M
w
m,n ≔Mm,n(2, . . . , m − 2; 0, 1, . . . , n),

M
c
m,m ≔Mm,m(2, . . . , m − 2; 0, 1, m − 1, m),

M
f
m,m ≔Mm,m(2, . . . , m − 2; 2, . . . , m − 2),

(28)

and the submatrix Mm,n(. . . ; . . .) contains the specifed rows
and columns of the matrix Mm,n.

We diferentiate equation (25) with respect to βi and
equate to zero to get

zε
zβ0

� M
1
m,nWn − M

1;c
m,mR

c
m − M

1;f
m,mR

f
m􏼐 􏼑 ∙ ∆w0

� 0,

(29)

zε
zβ1

� M
m−1
m,n Wn − M

m−1;c
m,m R

c
m − M

m−1;f
m,m R

f
m􏼐 􏼑 ∙ ∆wn−1

� 0,

(30)

where

M
j
m,n ≔Mm,n(j; 0, 1, . . . , n),

M
j;c
m,m ≔Mm,m(j; 0, 1, m − 1, m),

M
j;f
m,m ≔Mm,m(j; 2, . . . , m − 2), j � 1, m − 1.

(31)

To analyze the method and to have a better insight, the
points are rewritten in terms of x and y parts. Terefore, the
variables of our system of equations are 􏽥xk, 􏽥yk, k � 2,

. . . , m − 2, β0, and β1. Also, we have to decompose each of r1
and rm−1 into two parts: a constant part and a part involving
the parameters β0 and β1, respectively. Let u1 and um−1 be the
constant parts of r1 and rm−1, respectively. Hence,

u1 � w0,

um−1 � wn.
(32)

To write the linear system in compact shape, we defne

Wn � x0, . . . , xn, y0, . . . , yn􏼂 􏼃
t
,

R
F
m � 􏽥x2, . . . , 􏽥xm− 2, 􏽥y2, . . . , 􏽥ym− 2, β0, β1􏼂 􏼃

t
,

R
C
m � 􏽥x0, u

x
1 , u

x
m− 1, 􏽥xm, 􏽥y0, u

y
1 , u

y
m− 1, 􏽥ym􏼂 􏼃

t
.

(33)

Also, the matrices Q, Lm,n, Lc
m,m, and Lf

m,m are defned as
follows:
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Q �
∆w0 0

0 ∆wn−1
􏼢 􏼣

Mm,m(1, 1) Mm,m(1, m − 1)

Mm,m(m − 1, 1) Mm,m(m − 1, m − 1)
􏼢 􏼣

∆w0 0

0 ∆wn−1
􏼢 􏼣,

Lm,n �
M

1
m,nΔx0 M

1
m,nΔy0

M
m−1
m,n Δxn−1 M

m−1
m,n Δyn−1

⎡⎢⎢⎣ ⎤⎥⎥⎦,

L
c
m,m �

M
1;c
m,mΔx0 M

1;c
m,mΔy0

M
m−1;c
m,m Δxn−1 M

m−1;c
m,m Δyn−1

⎡⎢⎢⎣ ⎤⎥⎥⎦,

L
f
m,m �

M
1;f
m,mΔx0 M

1;f
m,mΔy0

M
m−1;f
m,m Δxn−1 M

m−1;f
m,m Δyn−1

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(34)

Te following matrices are defned by the direct sum ⊕
as follows:

M
w++
m,n � M

w
m,n ⊕M

w
m,n,

M
c++
m,m � M

c
m,m ⊕M

c
m,m,

M
f++
m,m � M

f
m,m ⊕M

f
m,m.

(35)

After some calculations, the system in (27) together with
(29) and (30) is written as

M
F
m,mR

F
m � M

W
m,nWn − M

C
m,mR

C
m, (36)

where

M
W
m,n �

M
w++
m,n

Lm,n

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

M
C
m,m �

M
c++
m,m

L
c
m,m

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

M
F
m,m �

M
f++
m,m

n

m
L

f
m,m􏼐 􏼑

t

L
f
m,m

n

m
Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(37)

Te matrix MF
m,m consists of the matrices Mf++

m,m,

(Lf
m,m)t, Lf

m,m, and Q. Te matrix Mf++
m,m is a positive defnite,

and the matrix Q, excluding ∆w0, and ∆wn−1 parts, is also
positive defnite. Terefore, the matrix MF

m,m is nonsingular.
From (36), the solution is given as follows:

R
F
m � M

F
m,m􏼐 􏼑

− 1
M

W
m,nWn − M

C
m,mR

C
m􏼐 􏼑. (38)

Te matrix MF
m,m is real, symmetric, and positive def-

nite; therefore, the solution of the system always exists, and
numerical computations are numerically stable.

3.3. G2-Degree Reduction. Rm(t) and Wn(t) are G2-con-
tinuous at the points corresponding to t � 0, 1 if they are G0-
and G1-continuous (i.e. (24) fulflled) and satisfy the fol-
lowing additional conditions:

Rm
″ (t) � α′(t)􏼒 􏼓

2
Wn
″(α(t))

+ α″(t)Wn
′(s(t)),  α′(t)> 0, t � 0, 1.

(39)

Tese equations are simplifed by setting α′(i) � β2i ,
α″(i) � ηi, and i � 0, 1 to get the following system of
equations:

Rm
″ (i) � β4i Wn

″(i) + ηiWn
′(i). (40)

To get rid of nonlinearity, we set βi � 1, i � 0, 1.
Substituting these in (40) and applying (8) yield

r2 � 2r1 − r0 +
n(n − 1)

m(m − 1)
∆2w0 +

n

m(m − 1)
∆w0η0,

rm−2 � 2rm−1 − rm +
n(n − 1)

m(m − 1)
∆2wn−2 +

n

m(m − 1)
∆wn−1η1.

(41)

Tus, the two curves Rm(t) and Wn(t) are G2-contin-
uous if they satisfy (11), (23), and (40); i.e., the following are
obtained:

r0 � w0,

rm � wn,

r1 � w0 +
n

m
∆w0,

rm−1 � wn −
n

m
∆wn−1,

r2 � 2r1 − r0 +
n(n − 1)

m(m − 1)
∆2w0 +

n

m(m − 1)
∆w0η0,

rm−2 � 2rm−1 − rm +
n(n − 1)

m(m − 1)
∆2wn−2 +

n

m(m − 1)
∆wn−1η1.

(42)

Accordingly, we proceed by splitting Rm into two parts,
Rc

m and Rf
m. Let Rc

m � [r0, r1, r2, rm− 2, rm− 1, rm]T be the part
of constrained control points which is obtained by
G2-continuity and Rf

m � (Rm/Rc
m) � [r3, . . . , rm− 3]

T be the
part of unconstrained control points. Similarly, we split up
Bm in the same way. Hence, the error term becomes
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ε � 􏽚
1

0
BnWn − BmRm

����
����
2dt

� 􏽚
1

0
BnWn − B

c
mR

c
m − B

f
mR

f
m

�����

�����
2
dt.

(43)

Te error ε ≔ ε(Rf
m, η0, η1) is a function of Qf

m, η0, and
η1. We diferentiate with respect to the points Rf

m to get

zε
z Rm( 􏼁

f
� 2􏽚

1

0
BnWn − B

c
mR

c
m − B

f
mR

f
m

�����

����� · B
f
mdt. (44)

Let (zε/zRf
m) � 0, and we evaluate the integral to obtain

zε
zR

f
m

� M
w
m,nWn − M

c
m,mR

c
m − M

f
m,mR

f
m

� 0,

(45)

where

M
w
m,n ≔Mm,n(3, . . . , m − 3; 0, 1, . . . , n),

M
c
m,m ≔Mm,m(3, . . . , m − 3; 0, 1, 2, m − 2, m − 1, m),

M
f
m,m ≔Mm,m(3, . . . , m − 3; 3, . . . , m − 3),

(46)

and the submatrixMm,n(. . . ; . . .) contains the specifed rows
and columns of the matrix Mm,n.

We diferentiate (43) with respect to ηi and equate it to
zero to get

zε
zη0

� M
2
m,nWn − M

2;c
m,mR

c
m − M

2;f
m,mR

f
m􏼐 􏼑 · Δw0

� 0,

(47)

zε
zη1

� M
m−2
m,n Wn − M

m−2;c
m,m R

c
m − M

m−2;f
m,m R

f
m􏼐 􏼑 · ∆wn−1

� 0,

(48)

where for j � 2, m − 2:

M
j
m,n ≔Mm,n(j; 0, 1, . . . , n),

M
j;c
m,m ≔Mm,m(j; 0, 1, 2, m − 2, m − 1, m),

M
j;f
m,m ≔Mm,m(j; 3, . . . , m − 3).

(49)

To facilitate the discussion, we expand the Wang–Ball
curve into the x and y components. Hence, our unknowns
are 􏽥xk, 􏽥yk, k � 3, . . . , m − 3, η0, and η1. Furthermore, we
separate each of r2 and rm−2 into two parts: a constant part
and a part involving the parameters η0 and η1, respectively.
Let u2 and um−2 be the constant part of r2 and rm−2, re-
spectively. Hence,

u2 � 2r1 − r0 +
n(n − 1)

m(m − 1)
∆2w0,

um−2 � 2rm−1 − rm +
n(n − 1)

m(m − 1)
∆2wn−2.

(50)

Consequently, the following vectors are defned:

Wn � x0, . . . , xn, y0, . . . , yn􏼂 􏼃
t
,

R
F
m � 􏽥x3, . . . , 􏽥xm− 3, 􏽥y3, . . . , 􏽥ym− 3, η0, η1􏼂 􏼃

t
,

R
C
m � 􏽥x0, u

x
2 , u

x
m− 2, 􏽥xm, 􏽥y0, u

y
2 , u

y
m− 2, 􏽥ym􏼂 􏼃

t
.

(51)

We defne thematricesQ, Lm,n, Lc
m,m, andLf

m,m as follows:

Q �
∆w0 0

0 Δwn−1
􏼢 􏼣

Mm,m(2, 2) Mm,m(2, m − 2),

Mm,m(m − 2, 2) Mm,m(m − 2, m − 2).
􏼢 􏼣

∆w0 0

0 ∆wn−1
􏼢 􏼣,

Lm,n �
M

2
m,n∆x0 M

2
m,n∆y0

M
m−2
m,n ∆xn−1 M

m−2
m,n ∆yn−1

⎡⎢⎢⎣ ⎤⎥⎥⎦,

L
c
m,m �

M
2;c
m,m∆x0 M

2;c
m,m∆y0

M
m−2;c
m,m ∆xn−1 M

m−2;c
m,m ∆yn−1

⎡⎢⎢⎣ ⎤⎥⎥⎦,

L
f
m,m �

M
2;f
m,m∆x0 M

2;f
m,m∆y0

M
m−2;f
m,m ∆xn−1 M

m−2;f
m,m ∆yn−1

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(52)
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Te following matrices are defned by the direct sum ⊕
as follows:

M
w++
m,n � M

w
m,n ⊕M

w
m,n,

M
c++
m,m � M

c
m,m ⊕M

c
m,m,

M
f++
m,m � M

f
m,m ⊕M

f
m,m.

(53)

After some calculations, the coordinate system of the
expansion of (45) together with (47) and (48) is given by

M
F
m,mR

F
m � M

W
m,nWn − M

C
m,mR

C
m, (54)

where

M
W
m,n �

M
p++
m,n

Lm,n

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

M
C
m,m �

M
c++
m,m

L
c
m,m

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

M
F
m,m �

M
f++
m,m

n

m(m − 1)
L

f
m,m􏼐 􏼑

t

L
f
m,m

n

m(m − 1)
Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(55)

From (54), unknowns can be computed as.

R
F
m � M

F
m,m􏼐 􏼑

− 1
M

W
m,nWn − M

C
m,mR

C
m􏼐 􏼑. (56)

3.4. Te Algorithm for Geometric Degree Reduction of
Wang–Ball Curves. Te step-by-step procedure of geo-
metric degree reduction of Wang–Ball curves is presented in
Algorithm 1 to guide the reader and facilitate the imple-
mentation of the numerical example. It should be clear that
the end control points and the interior control points of the
degree reduced curve are obtained based on the required
geometric continuity condition.

4. Numerical Examples

In this section, we provide an example to illustrate the ef-
fectiveness of the proposed method. Deng et al. [21] solved
the problem of degree reduction of the Wang–Ball curve
using basis transformation. To compare our proposed
method with the existing method of degree reduction of the
Wang–Ball curve, we employed an example from Deng et al.
[21] and compared our result with that of Deng et al. [21].
Given a planer Wang–Ball curve of degree eight Wn(t)

which is an outline of a hill, whose control points are (see
[21]): (−1, −3), (11, 33), (14, 1), (−6, −8), (1, −54), (11, −109),
(3, 17), (−1, 48), and (11, 0), it is reduced to a planer
Wang–Ball curve of degree fve Rm(t). WB, G0-, G1-, and
G2-degree reduction methods are employed to reduce the
degree of Wn(t), where WB stands for degree reduction
without any boundary condition. Te degree reduced curves
by WB, G0, G1, and G2 methods and the original curve are
depicted, respectively, in Figures 1(a), 1(c), 1(e), and 1(g),
and their corresponding error functions are shown in
Figures 1(b), 1(d), 1(f ), and 1(h), respectively. Te original
curve is depicted in the blue line, while the red dotted line
represents the degree reduced curve. Te error of the degree
reduction is given by

e � max
0≤t≤1

Wn(t) − Rm(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (57)

From Figure 1(b), it can be seen that the error of WB
degree reduction is higher at the boundaries; this is because
no boundary condition is required. Tus, the initial and last
control points of the given curve do not coincide with those
of the degree-reduced curve. Due to the geometric conti-
nuity conditions required at the boundaries (G0, G1, and G2),
the initial and last control points of the given Wang-Ball
curve coincided with those of the degree-reducedWang-Ball
curve. Tus, the boundary information of the given curve is
preserved. From Figures 1(d), 1(f), and 1(h), it can be seen
that the error is zero at the boundaries. Note that the error in
Figure 1(g) is higher than in the rest of subfgures. Tis
occurs because the original given Wang–Ball curve is re-
duced to the degree fve Wang–Ball curve using G2-conti-
nuity; in this case, all the control points of the degree-

Input: (1) Degree of the initial curve n and its control points w0, w1, . . . , wn􏼈 􏼉;
(2) Geometric continuity condition k;
(3) Degree of the reduced curve m;

1 Draw the initial curve and its control polygon;
2 Compute the constraint control point using:
(12), for G0-continuity,
(24), for G1-continuity,
(42), for G2-continuity;

3 Compute the interior control points using:
(20), for G0-continuity,
(38), for G1-continuity,
(56), for G2-continuity;

Output: Draw the degree-reduced curve.

ALGORITHM 1: Algorithm of geometric degree reduction of Wang–Ball curves.
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Figure 1: Continued.
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reduced Wang–Ball curve are obtained using the G2-con-
tinuity condition, and we cannot get the interior control
points since all the control points of the degree-reduced
curve are exhausted by the G2-continuity condition; that is
why the error is higher especially at the center. Table 1
presents the comparison of the maximum error of the
proposed method with that of [21]. Te maximum error
produced by the proposed method is less than that of [21]
except for G2-degree reduction. Our proposed method is
linear, and it does not consist of any basis transformation
unlike the method presented in [21]. Te computational
complexity of the proposed method is cheaper than that
of [21].

5. Conclusion

In this paper, we presented a new method for multidegree
reduction of Wang–Ball curves with G0-, G1-, and
G2-continuity at the boundary points. Te general equation
for high-order (G2 and above) multidegree reduction al-
gorithms is nonlinear, and the solutions of these nonlinear
systems are quite expensive. To avoid nonlinearity, we re-
quired C1-continuity in addition to G2-continuity. While
some existing methods only achieve the multidegree re-
duction by repeating the one-degree reduction method
recursively, our proposed method achieves multidegree
reduction at once. Te distance between the original curve
and the degree-reduced curve is measured in the L2-norm. A
numerical example and fgures are provided to demonstrate
the efectiveness of the proposed method. Our proposed
method not only outperforms the existing method of degree

reduction of Wang–Ball curves but also guarantees geo-
metric continuity conditions at the boundary points, which
is very important in CAD and geometric modeling.
Moreover, the proposed method can be extended to con-
ditions of higher order geometric continuity.
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Figure 1: Example of degree reduction: (a) the original curve and WB-degree-reduced curve; (b) error function for WB-degree reduction;
(c) the original curve and G0-degree-reduced curve; (d) error function for G0-degree reduction; (e) the original curve and G1-degree-
reduced curve; (f ) error function for G1-degree reduction; (g) the original curve and G2-degree-reduced curve; (h) error function for
G2-degree reduction.

Table 1: Comparison of our method with [21].

# Points Max. error of [21]
Max. errors of our method

WB G0 G1 G2

9 1.0999 0.2485 0.1601 0.1819 3.88319
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