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Establishing various frameworks for managing uncertainties in decision-making systems have been posing many fundamental
challenges to the system design engineers. Quantum paradigm has been introduced to the area of decision and control com-
munities as a possible supporting platform in such uncertainty management. Tis paper presents an overview of how a quantum
framework and, in particular, probability amplitude has been proposed and utilized in the literature to complement two classical
probabilistic decision-making approaches. Te frst such framework is based in the Bayesian network, and the second is based on
an element of Dempster–Shafer (DS) theory using the defnition of mass function. Te paper frst presents a summary of these
classical approaches, followed by a review of their preliminary enhancements using the quantum model framework. Particular
attention was given on how the notion of probability amplitude is utilized in such extensions to the quantum-like framework.
Numerical walk-through examples are combined with the presentation of each method in order to better demonstrate the
extensions of the proposed frameworks. Temain objective is to better defne and develop a common platform in order to further
explore and experiment with this alternative framework as a part of a decision support system.

1. Introduction

Design of autonomous systems or systems which can assist
or collaborate with people in a semiautonomous framework
has been gaining considerable attention for the past decades
[1, 2]. For the majority of these systems, a typical system
architecture involves a layer of sequenced sensing and
perception, followed by a layer of decision-making or ac-
tuations. Sensing and sequences of sensing in general gives
noisy measurement of information from the environment
which can then be used and be interpreted by the next stages
of decision-making [3, 4].

In order to construct a basis of such decision-making
frameworks in presence of uncertainties, two diferent sets of
axioms were proposed in the area of probability theory. One
formulation is based on Kolmogorov axioms (Kolmogorov,
1933/1950) and the other is based on von Neumann axioms
(von Neumann, 1932/1955). Former organized the princi-
ples underlying the classical probabilistic applications, and

the other was based on the probabilistic interpretation of
laws underlying quantum mechanics. At the conceptual
level, a key diference is that the classical probability theory
relies on a set-theoretic representation, whereas quantum
theory used a vector space representation. Tere have been
a number of interpretations of quantum mechanics in the
context of classical decision-making. In this paper, we
present an overview of two classical frameworks which have
been used in the context of decision-making and presents
how the quantum model and, in particular, quantum
probability amplitudes have been used within these two
classical models.

1.1. Background Review. Tere exist a number of method-
ologies proposed in the literature for decision-making under
uncertainties. In this section, we highlight a number of these
methods. Expected utility theory (EUT) is a traditional
method of decision-making that takes uncertainty into
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account by tying probabilities to potential outcomes. It
entails fguring out each alternative’s expected utility based
on its likelihoods and potential rewards. Te choice is then
made based on which option has the most projected use-
fulness. Prospect Teory: By taking into account how people
view and assess uncertainties, prospect theory expands on
the conventional expected utility theory. It takes into ac-
count the concepts of risk aversion and loss aversion, where
people choose losses over equal rewards. To account for
these biases, prospect theory includes value functions and
probability weighting. Fuzzy logic allows for degrees of truth
or membership rather than binary values in order to deal
with uncertainty. By designating linguistic phrases to express
uncertainty, it enables decision-makers to handle hazy or
ambiguous information. Fuzzy logic makes it easier to
reason and make decisions in challenging, unpredictable
situations. Making Robust Decisions: Robust decision-
making techniques look for tactics that work efectively in
a variety of conceivable future scenarios. Tese techniques
take into account the robustness or resilience of judgements
under diverse uncertainty rather than optimising for
a particular result. Techniques like robust optimisation and
sensitivity analysis are frequently applied in this situation.
Decision Trees: Decision trees are visual representations of
decisions and their outcomes in the form of a tree-like
structure. Decision trees make it easier to evaluate op-
tions when there are uncertainties by assigning probability
and values to various outcomes. Decision trees can be used
in conjunction with methods such as expected value analysis
and Monte Carlo simulation. Bayesian Decision Analysis:
Bayesian decision analysis uses decision theory and Bayesian
inference to make decisions in the face of uncertainty. It
entails re-evaluating prior assumptions in light of new in-
formation to derive posterior probabilities, which are then
used to determine the best course of action based on var-
iables like expected utility or expected regret. A mathe-
matical optimisation technique called stochastic
programming takes into account uncertainties modelled by
probabilistic distributions. It creates decision models with
specifed probabilistic aims and restrictions and then solves
them to get solid conclusions that hold up under a variety of
circumstances.

In the still-emerging discipline of quantum decision-
making, theories from quantum mechanics are applied to
the problem of decision-making. It ofers alternative models
for decision-making processes by utilising ideas and
mathematical frameworks from quantum physics. Tradi-
tional approaches to decision-making frequently rely on
conventional probabilities and logic. However, quantum
decision-making contends that the use of quantum phe-
nomena like superposition, entanglement, and interference
can be advantageous for decision-making processes. Tere
has been a number of work establishing fundamentals of
quantum mechanics within the notion decision-making
under uncertainties. For example, recently [5] applied the
quantum computational model to represents modelling the
human afective system and applying lessons learned to
human-robot interaction, in handling ambiguous emotional
states and probabilistic decisions using quantum logic on

fuzzy-sets hardware. Reference [6] presents some results in
exploring the notion of interference efect within the context
of Bayesian network and fuzzy set theory. In addition, they
have utilized the Dempster–Shafer’s evidence theory to
transform fuzzy number into probability. Reference [7]
argues that human decision-making follows Bayes proba-
bilistic reasoning and there are relationships between Bayes
probability, fuzzy sets, and quantum probability.

Tis paper presents a tutorial overview of how the
notion of quantum probability has been integrated within
the two classical approaches in the decision-making,
namely, Bayesian network and Dempster–Shafer theory
(in particular the notion of the mass functions). Trough
the step-by-step and break-down of basic approaches, it is
hoped that the reader can gain a better understanding of
such quantum extensions and allow for further study of
future extensions.

Te paper is organized as follows: Section 2 presents the
main results of this paper which starts with the Bayesian
network. It contains a defnition of naive Bayesian network
and the associated marginalization, followed by an example
of how quantummodel can be integrated within the classical
defnitions. Tis section also presents an overview of
Dempster–Shafer theory of combining information. In
particular, how the notion of the mass function, which is the
cornerstone of this formulation is used in the literature as
a basis of its extension to the quantum framework. Section 3
presents some discussions and concluding remarks.
Troughout the presentation, simple numerical examples
are used in order to better demonstrate both of these classical
methods and their extensions to the quantum framework
and quantum probability amplitudes. It is hoped that this
paper can provide a better understanding of some of these
example extensions in order to further investigate their
properties.

2. Proposed Approach: Overview of Probability
Amplitude Applications

Tis section presents the main results of this paper. Te
section is divided into two parts: Bayesian network and
Dempster–Shafer theory. Te contribution of this section is
a step-by-step discretion and walk-through examples of the
general methods which have been proposed in the literature
in defning how the notion of quantum probability ampli-
tude can be used to enhance these two classical methods.

2.1. Bayesian Network. Tis section presents an application
of the quantum paradigm and probability amplitude which
have been proposed in the literature in the construction of
the Bayesian network. First, we present a background review
of the general Bayesian networks in context of decision-
making, followed by an extension to the quantum-enhanced
Bayesian network.

Te Bayesian method ofers an approach for combining
evidence according to probability theory [8, 9]. Un-
certainties are represented using the conditional probability
and through Bayes rules. Te framework can also be defned
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in a sequential scheme where the degree of belief in a hy-
pothesis can be updated based on new information [10–12].

Naive Bayes model is proposed to represent the con-
ditional independence of parameters. Tis model states that
the random variables are conditionally independent given
the instances of the parent in the context of a graph model
representation. For example, the instance of the parent node
Y is given by the propagation instances of its children’s
random variables X1, X2, ·, Xn􏼈 􏼉 which can be represented
by the following conditional probability:

Pr Y | X1, X2, · · · Xn( 􏼁, (1)

which can further be expanded as follows:

Pr Y | X1, X2, · · · Xn( 􏼁 �
Pr X1, X2, · · · Xn | Y( 􏼁Pr(Y)

Pr X1, X2, · · · Xn( 􏼁
, (2)

where the probability representation presented in the de-
nominator can be assumed to be constant of proportionality
due to the fact that this joint probability do not dependent
on the instance of the parent node Y. As a result, equation
(2) can further be expressed as the reduced condition of joint
distributions, or

Pr Y | X1, X2, · · · Xn( 􏼁∝Pr X1, X2, · · · Xn | Y( 􏼁Pr(Y) � Pr Y, X1, X2, · · · Xn( 􏼁. (3)

Give the above joint probability distribution of equation
(3), it can be further expanded using the chain rule to obtain

Pr Y, X1, X2, · · · Xn( 􏼁 �Pr(Y)Pr X1 | Y( 􏼁Pr X2 | Y, X1( 􏼁Pr X3 | Y, X1, X2( 􏼁

· · ·Pr Xn( 􏼁 | Y, X1, X2, Xn−1􏼁.
(4)

Te Naive Bayesian assumption states that each feature
Xi defned in the above is conditionally independent of every
other feature Xj,∀i≠ j, given the instance of their parent
class Y. Tis as a result implies that

Pr Xi | Y, Xj􏼐 􏼑 �Pr Xi | Y( 􏼁∀i≠ j. (5)

With the above assumption, the joint probability dis-
tribution defned in equation (3) can be written as follows:

Pr Y | X1, X2, · · · Xn( 􏼁∝

Pr(Y)Pr X1 | Y( 􏼁Pr X1 | Y( 􏼁Pr X3 | Y( 􏼁, · · · Pr Xn( 􏼁 | Y∝

Pr(Y)􏽙
n

i�1
Pr Xi | Y( 􏼁,

(6)

where by using the naive independence assumption again in
the normalization factor, equation (6) can be written as
follows:

Pr Y | X1, X2, · · · Xn( 􏼁 � αPr(Y)􏽙
n

i�1
Pr Xi | Y( 􏼁. (7)

Te above equation can be extended to the case of the
Bayesian network which uses the conditional independence
and the Markov assumption [9]. Let X � X1, X2, . . . , Xn􏼈 􏼉 be
a set of n random variables of a Bayesian network graph
structure. Let Parents(Xi) be the parent of the random variable
Xi and NonDescendants(Xi) be the variables in the graph that
are nondescendants of Xi. Te Markov assumption states that
each variable Xi is independent of its nondescendant given its
parent XiΠNonDescendents(Xi) | Parents(Xi). Combining

the naive Bayes formula given in equation (7) with the def-
nition of local independences, we can write the following
relationship:

Pr X1, X2, . . . , Xn( 􏼁 � β􏽙

n

i−1
Pr Xi

􏼌􏼌􏼌􏼌Parents Xi( 􏼁􏼐 􏼑. (8)

2.1.1. Quantum-Enhanced Bayesian Network. Within the
past decades, there have been many interpretations of how
some of the basic defnitions of quantum mechanics can be
extended to the framework of Bayesian reasoning and
decision-making; see [13–17]. Using the Naive Bayesian
network reasoning, interpretations of quantum mechanics
have allowed various exploratory studies in generalization of
the Bayesian decision-making. Such studies can allow for-
malization of general tools which can further be enhanced
and complemented within the autonomous and/or human-
in-the-loop decision-making process.

In this section and through a descriptive example, we
explore how some of the basic reasoning in the classical
Bayesian network can be complemented with the quantum
type representation. Classical Bayesian network is repre-
sented by a directed acyclic graph structure where each node
is a representation of a random variable and each edge
represents a direct infuence of the parent on the child node.
Another interpretation of the graph is its representation of
the independence relationship in terms of conditional
probability over the values of a node given each possible
joint assignment of values of its parent.

As an example, let us considered a two-node Bayesian
network (N1 is the parent node and N2 the child node),
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where the probability distribution of node N2 is directly
infuenced by node N1. For example, node N1 can be as-
sociated with the state of a robot detecting an overhead light
and observing its color changes as it passes a certain location
along its discrete trajectory (e.g., light turning blue or or-
ange). Node N2 would be the decision that the robot will face
in turning left or right Table 1. Here, we are assuming that
the light will have an equal probability of changing its color
to either blue or orange.

Te right column of Table 2 shows the joint distributions
on the conditions of this two node example. As it can be seen
from the table, the full value of the sum of this joint dis-
tributions over all the values are equal to 1.

In general, and given two random variables X and Y, the
marginal probability of X is simply the probability of X

averaging over the information about Y [9]. For the discrete
random variables, such marginalization can be defned as
follows:

Pr(X � x) � 􏽘
y

Pr(X � x, Y � y)

� 􏽘
y

Pr(X � x | Y � y)Pr(Y � y).
(9)

Te full joint distribution of the Bayesian network is
defned based on equation (8), where Xi is a list of random
variables and Parent(Xi) corresponds to all parent nodes of
Xi. For example, after computing the joint distributions of
the two-node Bayesian network, we need to sum out all the
variables that are unknown, say the outcome of the N1 (i.e.,
light turning blue or orange). Tis can be accomplished by
applying the probability expansion shown in equation (9).
For example, the probability of the robot taking either of the
actions given that the observed information was the light
turning blue, e.g., Pr(N2 � Left | N1 � blue) can be computed
as follows:

Pr N2 �Left | N1 � blue( 􏼁 �
Pr N1 � blue, N2 � left( 􏼁

Pr N1 � blue( 􏼁

�
0.355

0.355+ 0.145
� 0.71,

(10)

with the negation probability of

Pr N2 � right N1
􏼌􏼌􏼌􏼌 � blue􏼐 􏼑 �

Pr N1 � blue, N2 � right( 􏼁

Pr N1 � blue( 􏼁

�
0.145

0.355+ 0.145
� 0.29,

(11)

which satisfying the requirement of: Pr(N2 � left
| N1 � blue) +Pr(N2 � right | N1 � blue) � 1.

Te marginal probability, e.g., the robot turning left or
turning right without detecting or knowing the outcome of
the observation which would be color change of light can be
computed from equation (9) as follows:

Pr N2 � left( 􏼁 � 􏽘
n∈N1

Pr N1 � n, N2 � left( 􏼁

� 􏽘
n∈N1

Pr N1 � n( 􏼁Pr N2 � left N1
􏼌􏼌􏼌􏼌 � n􏼐 􏼑

� Pr N1 � blue( 􏼁Pr N2 � left N1
􏼌􏼌􏼌􏼌 � blue􏼐 􏼑

+ Pr N1 � orange( 􏼁Pr N2 � left N1
􏼌􏼌􏼌􏼌 � orange􏼐 􏼑

� 0.355+ 0.25� 0.605.

(12)

Similarly, we can compute Pr(N2 � right) � 0.145 +

0.25� 0.395 which also satisfed condition of Pr(N2 � left) +

Pr(N2 � right) � 1.
In quantum representation of the probability, the fnite

choices in the example which are available at each node of
the graph can be represented by a state vector and as a su-
perposition of the corresponding basis representing each of
the choices (Appendix A–E), [18]). For example, for each of
the nodes of our simple Bayesian network, the corre-
sponding state vector in each of the Hilbert spaces
H1 andH2 can be defned at each node as follows:

|Ψ〉N1
� e

jθblue | blue〉 + e
jθorange | orange〉,

|Ψ〉N2
� e

jθleft | left〉 + e
jθright | right〉,

(13)

which can be represented the combined Hilbert space H of
the each of the subspaces as follows:H�H1 ⊗H2. Te basis
of this combined space can be defned using the following
tensor product (outer product) or

| blue〉N1
⊗ | left〉N2

; | blue〉N1
⊗ | right〉N2

; | orange〉N1
⊗ | left〉N2

; | orange〉N1
⊗ | right〉N2

. (14)

Table 2: Full joint distribution of the Bayesian network of Table 1.

N1 N2 Pr (N1, N2)

Blue Left 0.5 × 0.71� 0.355
Blue Right 0.5 × 0.29� 0.145
Orange Left 0.5 × 0.5� 0.25
Orange Right 0.5 × 0.5� 0.25

Table 1: Distribution of the action variables N2 given the observed
variables N1.

Pr (N2 � left) Pr (N2 � right)

Pr (N1 � blue) 0.71 0.29
Pr (N1 � orange) 0.5 0.5
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Te new combined state vector description |Ψ〉 ∈H
can then be defned as follows:

|Ψ〉 �ω1 | blue〉N1
⊗ | left〉N2

+ω2 | blue〉N1
⊗ | right〉N2

+ω3 | orange〉N1
⊗ | left〉N2

+ω4 | orange〉N1
⊗ | right〉N2

,

(15)

where ωi represents the corresponding probability ampli-
tude along each of the combined basis subspaces in the new
space. Referring to example defned in Table 2 and the
Bayesian model, the following probability amplitudes can be
defned:

ω1 �
���
0.5

√
e

θblue( ) ×
����
0.71

√
e

θleft( ),

ω2 �
���
0.5

√
e

θblue( ) ×
����
0.29

√
e

θright( 􏼁
,

ω3 �
���
0.5

√
e

θorange( 􏼁
×

���
0.5

√
e

θleft( ),

ω4 �
���
0.5

√
e

θorange( 􏼁
×

���
0.5

√
e

θleft( ),

(16)

along the corresponding bases space

| blue  left〉 �(1000)
T
,

| blue  right〉 �(0100)
T
,

| orange  left〉 �(0010)
T
,

| orange  right〉 �(0001)
T
,

(17)

|Ψ〉 represents a quantum superposition over all possible
states of the Bayesian network. Such superposition can be
view as a quantum-like joint full distribution. Table 3 shows
such distribution associated with the working example of
this section.

In the quantum-enhanced Bayesian network, marginal
probability can be carried by following a similar procedural
approach as highlighted above. However, in the quantum
framework, the procedure for computing marginal proba-
bility can follow the defnition of Feynman’s second rule for
combining probabilities in the associated probability path
diagram (Appendix A–E). Te second rule states that the
probability amplitude of transition from a state which is
defned as the initial node to the fnal state node, taking
multiple indistinguishable paths, is given by the sum of the
amplitudes of each path. For example, for the two-node
example in Table 3, the quantum-enhanced marginal
probability of the robot turning left can be computed as
follows:

Pr N2 � left( 􏼁 � 􏽘
n∈N1

|Ψ N1 � n( , N2 � left〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

�‖Ψ〉N1�blue,N2�left + Ψ〉N1�orange,N2�left

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

�
�����
0.355

√
e

jθ1 +
����
0.25

√
e

jθ3
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� |
�����
0.355

√
|
2

+ |
����
0.25

√
|
2

+ 2
�����
0.355

√ ����
0.25

√
cos θ1 − θ3( 􏼁.

(18)

Comparing the above computation with the classical
example of computing the marginal probability solved
previously, it can be seen that for the case when
cos(θ1 − θ3) � 0, the quantum enhanced marginal proba-
bility is the same as the classical computation. In the above
expansion, the term 2

�����
0.355

√ ����
0.25

√
cos(θ1 − θ3) is referred

to as the interference term.

2.2. Dempster–Shafer (DS) Formulation of Mass Function.
Another broad approach which has been proposed in the
literature in combining conditional information obtained
through various sources of sensing modalities is based on
Dempster–Shafer evidence theory, which also referred to as
the generalization of the Bayesian theory [19, 20]. It has been
used in various applications of data fusion in a sensor
network, e.g., [21]. It provides a formalism that could be used

to represent incomplete knowledge, updating beliefs, and
a combination of evidence for explicitly representing un-
certainty. In the following, we present frst an overview of DS
theory and its interpretation in the context of multiple
sensor fusion. Tis can ofer the reader a better sense of how
the enhanced model using quantum formulation is utilized
within a component of the DS formulation, namely the mass
function.

In Dempster–Shafer (DS) theory, each inquiry into a fact
has a degree of support between 0 and 1 (i.e., 0 no support
for the fact and 1 full support for the fact). Let a set of
possible conclusions be a mutually exclusive and exhaustive
set of all possible outcomes be given as: (for example, these
can be measurements from a collection of sensors moni-
toring a common event).

S� s1, s2, . . . , sn( 􏼁, (19)
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where S is referred to as the universe or frame of dis-
cernment, where at least one of the si must be true. DS theory
is concerned with pieces of evidence which support subsets
of outcomes in S which have 2S elements represented in its
power set over the frame of discernment. For example, for
a three element membership set defned in relation to
equation (19), the associated power set can be written as
follows:

A � 2S � 0/, s1, s2, s3, s1, s2( 􏼁, s2, s3( 􏼁, s1, s3( 􏼁, s1, s2, s3( 􏼁􏼈 􏼉,

(20)

where 0/ represents the empty set and has the probability of 0,
and each of the other elements in the power set has
a probability between 0 and 1.

Mass function for S is defned as a mapping of m from
0 to 1: m: 2S⟶ [0, 1]. Mass function of a member Ai of
the power set, or (Ai), is equal to the portion of all evi-
dence that supports the existence of the element Ai of the
power set. Te value of each m(Ai) is between 0 and 1,
where 􏽐

n
i m(Ai) � 1. Tis also implies the evidence tells us

the truth is in Ai ⊆S for sure and we also have a logical or
categorical mass function. Each element of the mass
function is called a focal element. m is said to be Bayesian
if all focal sets of m are singletons. Te value m(Ai)

represents the allocation of belief to the possibility that
looks for the true value of si belonging to S. As an ex-
ample, for our three sensor model example, i.e.,
S� (s1, s2, s3), let us defne the following values for the
members of the power set defned in equation (20):
m( s1􏼈 􏼉) � 0.4, m( s2􏼈 􏼉) � 0.3, and m(S) � 0.3.

Te belief β in one of the members of the power set A is
defned as the sum of the masses of subset of power set
(including the set itself ) that represents the existing evidence
supporting A. In the above example, β( s1􏼈 􏼉) � m( s1􏼈 􏼉) � 0.4.

Te plausibility of A, π(A), is defned as the sum of all
the masses in the power set that intersect with the set A. For
example, π( s1􏼈 􏼉) � m( s1􏼈 􏼉) + m( S{ }) � 0.4 + 0.3 � 0.7. Te
certainty which we can assign to a given subset of A is
defned by what is referred to as the interval, [β(A)π(A)].
For the working example, this is defned to be [0.4 0.7]. Tis
will imply that the probability of A, Pr(A) falls somewhere
between β(A) and π(A).

2.2.1. Combining Mass Functions. When diferent decision-
making agents are responsible in gathering information
from a shared sensed or observed data, various methodol-
ogies have been proposed in the literature in combining this
information based on the DS framework. For example, if two
mass functions m1 and m2 from two reliable and distinct
sources of information are available, conjunctive rule of
combination can be followed. If the sources are distinct but
only one of the sources is reliable (and we do not know
which one), the disjunctive rule of combination can be
followed to construct a combined mass function [22, 23].

For the cases, where m1 and m2 are two reliable and
distinct mass functions over C⊆S, Dempster’s rule of
conjunctive of combination ofers an approach for defning
such combination as follows [24]:

m(C) � m1 ⊕m2( 􏼁(S)

� m1⊕2(S)

�
1

1 − κ
􏽘

Ai∩Bj�C

m1 Ai( 􏼁 × m2 Bj􏼐 􏼑, ∀S≠ 0/,

(21)

where κ is referred to as the degree of confict defned as
follows:

κ� 􏽘
Ai∩bj≠0/

m1 Ai( 􏼁 × m2 Bj􏼐 􏼑.
(22)

As an example of utilization of the above rule, let us
assume that we have again three sensors, i.e., S� s1, s2, s3􏼈 􏼉

and let us assume that there exists two decision-making
modules which need to be fused in order to obtain their
combined information for determining the presence of an
object in the common monitoring. Let us defne the two
mass functions based on the power set description of the
sensor set as follows:

m1 � m1 s1􏼈 􏼉 � 0.3, m1 s2􏼈 􏼉 � 0.4, m1 s1, s2, s3􏼈 􏼉 � 0.3( 􏼁,

m2 � m2 s1, s2􏼈 􏼉 � 0.5, m2 s1, s3􏼈 􏼉 � 0.1, m2 s1, s2, s3􏼈 􏼉 � 0.4( 􏼁.

(23)

For this example, a measure (or degree) of confict κ
defned in equation (22) can be computed to be:

κ� 􏽘
Ai∩bj≠0/

m1 Ai( 􏼁 × m2 Bj􏼐 􏼑

� m1 s1􏼈 􏼉 × m2 s1, s3􏼈 􏼉( 􏼁

� 0.4 × 0.1.

(24)

Ameasure of common shared belief of the two decision-
makers given the measure or observed value of a sensor one,
i.e., s1 is computed as follows:

Table 3: Quantum-enhanced full joint distribution of the Bayesian
network.

N1 N2 ω

Blue Left
���
0.5

√
×

����
0.71

√
ej(θblue + θleft) �

�����
0.355

√
ejθ1

Blue Right
���
0.5

√
×

����
0.29

√
ej(θblue + θright) �

�����
0.145

√
ejθ2

Orange Left
���
0.5

√
×

���
0.5

√
ej(θorange + θleft) �

����
0.25

√
ejθ3

Orange Right
���
0.5

√
×

���
0.5

√
ej(θorange + θright) �

����
0.25

√
ejθ4
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m1 ⊕m2( 􏼁 s1( 􏼁 �
1

1 − κ
× m1 s1􏼈 􏼉 × m2 s1, s2􏼈 􏼉 + m1 s1􏼈 􏼉 × m2 s1, s3􏼈 􏼉 + m1 s1􏼈 􏼉 × m2 s1, s2, s3􏼈 􏼉(􏼂 􏼃

�
1

1 − 0.04
×[(0.3) ×(0.5) +(0.3) ×(0.1) +(0.3) ×(0.4)] � 0.312,

(25)

similarly, the shared belief for the second sensor s2 is
computed as follows:

m1 ⊕m2( 􏼁 s2( 􏼁 �
1

1 − κ
× m1 s2􏼈 􏼉 × m2 s1, s2􏼈 􏼉 + m1 s2􏼈 􏼉 × m2 s1, s2, s3􏼈 􏼉(􏼂 􏼃

�
1

1 − 0.04
×[(0.4) ×(0.5) +(0.4) ×(0.4) � 0.375.

(26)

Table 4 summarizes the complete combined shared
believes using the defnition of the two mass functions.

2.2.2. Quantum-Enhanced Mass Function. Tere have been
a number of approaches proposed in the literature to extend
the framework of DS evidence theory and, in particular, the
notion of the mass function within the context of quantum
probability construction [25–28].

Here we present an overview of one of the approaches
where the state description captures the quantized repre-
sentation of the mass function over the basis defned by the
Dempster combination rule of combining mass functions
[29]. Te representation is defned as a quantum state with
a well-defned quantum superposition.

Referring to the previous section, given a set of obser-
vations/measurements defned over S, its quantum repre-
sentation is written as: Sq � |S〉 � | s1〉, | s2〉, . . . , | sn〉􏼈 􏼉

(Appendix A–E). Tis quantum state can further be written
as follows: |S〉 � 􏽐

n
i�1ωi | si〉. Te probability of each basis

state | si〉 is |ωi | 2 where 􏽐
n
i�1 |ωi | 2 � 1.

Te quantum mass function m is defned on Sq as
follows:

|M〉 � ρ1e
jθ1 s1〉

􏼌􏼌􏼌􏼌 + ρ2e
jθ2 s2〉

􏼌􏼌􏼌􏼌 + · · · + ρne
jθn sn〉

􏼌􏼌􏼌􏼌 , (27)

where ρi ≥ 0, θi ∈ [−π, π], 􏽐si∈Sρ
2
i � 1, and

β(A)≤􏽐si∈Aρ
2
i ≤ π(A),∀A⊆S (where from the previous

section we have β(.) as the belief and π(.) as the plausibility
of an event) and ρie

jθi is the corresponding probability
amplitude.

Equation (27) represents the mass function |M〉 as
a superposition of state composed of | s1〉, | s2〉, . . . | sn〉 in
which ρie

jθi is the probability amplitude associated with
basis state | si〉, and ρi and θi are the modulus and phase
angle of this probability amplitude, respectively (Appendix
A–E). 􏽐si∈Sρ

2
i � 1 represents the normalization condition

required by the defnition of standard quantum state. In
addition, the modulus of each probability amplitude, i.e.,
ρi, i � 1, . . . , n, has to meet the DS constraint defned in the
previous section over the associated power set such that
β(A)≤􏽐si∈Aρ

2
i ≤ π(A),∀A⊆S.

As an example, let us again defne a frame of discernment
consists of outcome of three sensors S� (s1, s2, s3) with the
associated power set defned in the previous section. Let us
defned the following two mass functions over S as follows:
m1(s1) � 0.7, m1(s1, s2, s3) � 0.3 and m2(s1) � 0.4, m2(s2) �

0.5, m2(s3) � 0.1.
From defnition of equation (27), the frst mass function

in its quantum representation, |M1〉 over Sq is defned as
follows:

M1〉
􏼌􏼌􏼌􏼌 � ρ11e

jθ11 s1
􏼌􏼌􏼌􏼌 〉+ ρ12e

jθ12 s2
􏼌􏼌􏼌􏼌 〉+ ρ13e

jθ13 s3
􏼌􏼌􏼌􏼌 〉, (28)

with the following constraints on the modulus of each
probability amplitudes (i.e., using the belief and plausibility
constraints), we have 0.7≤ ρ211 ≤ 1, 0≤ ρ212 ≤ 0.3, 0≤ ρ213 ≤ 0.3,
0.7≤ ρ211 + ρ212 ≤ 1, 0.7≤ ρ211 + ρ213 ≤ 1, 0.0≤ ρ212 + ρ213 ≤ 0.4, and
ρ211 + ρ212 + ρ213 � 1 with ρ11 ≥ 0, ρ12 ≥ 0, ρ13 ≥ 0, and
θ11, θ12, θ13 ∈ [−π, π].

Te second example mass function |M2〉 over S is
defned as follows:

M2〉
􏼌􏼌􏼌􏼌 � ρ21e

jθ21 s1
􏼌􏼌􏼌􏼌 〉+ ρ22e

jθ22 s2
􏼌􏼌􏼌􏼌 〉+ ρ23e

jθ23 s3
􏼌􏼌􏼌􏼌 〉, (29)

with the following constraints on the modulus of the
probability amplitudes: ρ21 �

���
0.4

√
, ρ22 �

���
0.5

√
and ρ23 �

���
0.1

√

with θ21, θ22, θ23 ∈ [−π, π].

2.2.3. Combining Quantum Mass Functions. Tere exist
a number of approaches for obtaining the combined
(average) description of the quantum mass functions
which are extensions of classical methods [30]. Tis
section presents an overview example of a method which
is used to obtain such combined (average) description of
the quantum mass function proposed by [29]. Let the
frame of discernment be defne by S� s1, s2, . . . , sn􏼈 􏼉 and
similar to the previous section, let us defne the following
description of the quantum mass functions |M1〉 and
|M2〉 of the two pieces of evidence m1 and m2 with the
associated constraints on their modulus of the probability
amplitudes. Let us also defne w1 and w2 which correspond
to weight assignments to these information evidences,
Table 5.
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A weighted combination of the two quantum mass
functions can be defned as follows:

|M〉 �
1
ψ

􏽘

n

i�1
ρie

jθi si

􏼌􏼌􏼌􏼌 〉, (30)

subject to constraints defned in Table 5 and the following
additional constraints: ρi ≥ 0, ψ ≥ 0, and θi ∈ [−π, π] where

ψ2
� 􏽘

n

i�1
w

2
1ρ

2
1i + w

2
2ρ

2
2i + 2w1w2ρ1iρ2i cos θ1i − θ2i( 􏼁􏼐 􏼑∀i ∈ 1, 2, . . . , n{ }, (31)

ρ2i � w
2
1ρ

2
1i + w

2
2ρ

2
2i + 2w1w2ρ1iρ2i cos θ1i − θ2i( 􏼁, (32)

θi � arctan
w1ρ1i sin θ1i + w2ρ2i sin θ2i

w1ρ1i cos θ1i + w2ρ2i cos θ2i

􏼠 􏼡. (33)

Te probability amplitudes of the basis state | si〉 in M1
and M2 are ρ1ie

jθ1i and ρ2ie
jθ2i , respectively. Te quantum

averaging makes the weighted average of ρ1ie
jθ1i and ρ2ie

jθ2i

in order to generate the combined probability amplitude of
| si〉, i.e., ρie

jθi � w1ρ1ie
jθ1i + w2ρ2ie

jθ2i . Tis in turn can
further be defned as the square of the probability amplitude
defned in the relationship: ρ2i � w2

1ρ
2
1i + w2

2ρ
2
2i + 2w1

w2ρ1iρ2i cos(θ1i − θ2i).
Te term ϵ � 2ρ1iρ2i cos(θ1i − θ2i) defne in equation (32)

is referred to as the interference term between |M1〉 and
|M2〉 on | si〉 (Appendix A–E). Te phase diference | θ1i −

θ2i | represents the interaction of the mass functions on the
same sensed event | si〉which cannot be determined through
individual mass function. For the case when
| θ1i − θ2i | � (π/2), the above averaging reduced to the
classical averaging techniques. With reduction of this angle,
the efect of interference between the two mass function
increases. When | θ1i − θ2i | � 0, this can imply that there
exist a maximum information for mutual support between
the two mass functions. For the purpose of demonstration,
in the following example we assume that there exists
maximum information and mutual support between the

mass functions.Te quantum averaging of equation (30) can
be written as follows:

|M〉 �
1
ψ

􏽘

n

i�1
ρi si

􏼌􏼌􏼌􏼌 〉, (34)

subject to the constraints associated with the probability
amplitudes of each of the mass functions and simplifed
constraint relationships defned in equations (31) and (32),
or

ψ2
� 􏽘

n

i�1
w

2
1ρ

2
1i + w

2
2ρ

2
2i + 2w1w2ρ1iρ2i∀i ∈ 1, 2, . . . , n{ },

ρ2i � w
2
1ρ

2
1i + w

2
2ρ

2
2i + 2w1w2ρ1iρ2i.

(35)

Te following example presents a demonstration of
above algorithm in order to combine two quantum pre-
sentation of mass functions. Let S � (s1, s2, s3) be the frame
of discernment be where we have defned the two mass
functions m1 and m2, where m1(s1) � 0.7, m1(s2)� 0.1,
m1(s1, s2, s3)� 0.2, m2(s1)� 0.5, and m2(s2, s3)� 0.5.

Table 4: Example of Dempster’s rule of combining two mass functions.

m1 m2 m1 ⊕m2

0/
s1 0.3 0.312
s2 0.4 0.375
s1, s2 0.5 0.156
s3
s1, s3 0.1 0.031
s2, s3
s1, s2, s3 0.3 0.4 0.125

Table 5: Defnition of two quantum mass functions and constraints in their probability amplitudes.

First pieces of evedance Second pieces of evedance
|M1〉 � 􏽐

n
i�1ρ1ie

jθ1i | si〉 Subject to: |M2〉 � 􏽐
n
i�1ρ2ie

jθ2i | si〉 Subject to:

ρ1i ≥ 0, θ1i ∈ [−π, π], 􏽐si∈Sρ
2
1i � 1 ρ2i ≥ 0, θ2i ∈ [−π, π], 􏽐si∈Sρ

2
2i � 1

β(A)≤ 􏽐si∈Aρ
2
1i ≤ π(A),∀A⊆S β(A)≤ 􏽐si∈Aρ

2
2i ≤ π(A), ∀A⊆S
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Following the description of Table 5 the quantum repre-
sentation of these mass functions can be written as follows:

Using the defnition of the combined quantum mass
functions (equations (34) and (35)) with the weight
w1 � w2 � 0.5, we can defne an instant of the combined
quantum mass functions by satisfying the constraints as-
sociated with the individual and combined probability
amplitudes.

Te quantum combination of the twomass functions can
be written as follows:

|M〉 �
1
ψ

ρ1 s1
􏼌􏼌􏼌􏼌 〉+ ρ2 s2

􏼌􏼌􏼌􏼌 〉+ ρ3 s3
􏼌􏼌􏼌􏼌 〉􏼐 􏼑, (36)

with the following coefcients (Table 6)

ρ211 � 0.8; ρ221 � 0.6; ρ21 �(0.5)
2
(0.8) +(0.5)

2
(0.6) + 2(0.5)(0.5)(0.8)(0.6),

ρ212 � 0.1; ρ222 � 0.3; ρ22 �(0.5)
2
(0.1) +(0.5)

2
(0.3) + 2(0.5)(0.5)(0.1)(0.3),

ρ213 � 0.1; ρ223 � 0.2; ρ23 �(0.5)
2
(0.1) +(0.5)

2
(0.2) + 2(0.5)(0.5)(0.1)(0.2).

(37)

In the expansion of the above equation (and as high-
lighted in equations (31) and (35)), the term 2w1w2ρ1iρ2i

represents the interference term in the quantum combi-
nation of mass functions.

3. Discussion and Conclusions

Managing uncertainties in a decision-making process which
needs to incorporate many sources of information/sensing

Table 6: Numerical description example of two quantum mass functions.

􏽐
3
i�1ρ1ie

jθ1i | si〉 􏽐
3
i�1ρ2ie

jθ2i | si〉

Subject to: Subject to:
0.7≤ ρ211 ≤ 0.9 0.5≤ ρ221 ≤ 1
0.1≤ ρ212 ≤ .3 0≤ ρ222 ≤ 0.5
0.≤ ρ213 ≤ 0.2 0.≤ ρ223 ≤ 0.5
0.7≤ ρ211 + ρ212 ≤ 0.9 0.5≤ ρ221 + ρ222 ≤ 1
0.7≤ ρ211 + ρ213 ≤ 1 0.5≤ ρ221 + ρ223 ≤ 1
0.1≤ ρ212 + ρ213 ≤ 0.2 0.≤ ρ222 + ρ223 ≤ 0.5
ρ211 + ρ212 + ρ213 � 1 ρ221 + ρ222 + ρ223 � 1

|Ψ

|Lo m

|La m

|Lo

|La

M2

M1

D1

D2

S

Figure 1: Probability path diagram starting with state initial Smapped to probabilistic measurements ofM which is then mapped to fnal
probabilistic stateD. Tis diagram encapsulates the double-slit experiment which was proposed by [37]. In the example of this section, the
state probabilityS, or |Ψ〉 can have somemeasure or information available to it, namely, | Lo〉m and | La〉m while deciding between the two
choices of motion fnal movements, namely, | Lo〉 and | La〉.
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as a part of the process is a challenging task. Te difculty of
this challenge is further compounded when, for example,
dealing with a design of an autonomous decision-making
system involving multiple sensing modalities mounted on
robots responsible for monitoring movements and activities
of people. Historically, a number of decision-making
frameworks have been proposed in the literature based on
deterministic reasoning and various extensions of Bayesian/
fuzzy reasoning. Tis paper presents an overview of ex-
amples proposed in the literature in extending the basis of
the classical framework of decision-making with various
interpretations of quantum mechanics. Tese extensions
which may be viewed as parsimonious models can ofer
frameworks to further study various similarities, limitations
of the classical decision-making methods. In this paper, we
focus only on review of two of the classical methods, namely,
the Bayesian network and Dempster–Shafer theory. For both
approaches, we frst present a review of each method, fol-
lowed by their proposed quantum counterpart.Te review of
the quantum extensions presented here also only focuses on
the probability amplitude part defned in quantum frame-
work. Te paper highlights through various walk-through
examples on where the quantum framework difer from the
classical one. Tere still remain many questions regarding
the feasibility of the quantum framework within the
decision-making paradigms. Recently, there have beenmany
initiatives which try to explore relationships between human
way of reasoning, fuzzy concepts, and quantum mechanics.

Appendix

A. Quantum State

Outcomes or events which are associated with random
phenomenon or experiments are defned within the sample
space which is usually represented by Ω. As a descriptive
example, let us consider a planar movement of an object is
constrained to move in the horizontal plane and we are
interested in tracking this object. Te sample space can be
defned as the instantiation (probability) of movements that
the object can take which can be either of the independent
directions of movements namely, movement to the left/right
(lateral) (La) or movement to the left/right (longitudinal)
(Lo) incremental (discrete) movements, e.g., Ω� La, Lo{ }.
We refer to these instances of example movements as
mutually exclusive events. Tis means that the choices that
the tracked object has in selecting either direction is mu-
tually exclusive or does not dependent on each other. Or in
another words, at any instant, the decision that the object
makes are in a superposition of these basic primitives
(states).

In the quantum framework, outcomes and events are
defned within the fnite dimension Hilbert space H. In
general, this would be a vector space of complex numbers
embedded with the structure of inner product which allows
defning a distance function. Similar to Euclidean space, this
space is also defned within the span of the basis vectors
which are orthonormal to each other. For the working
example of this paper, this can be the choices of movement if

an object in a room where its space is defned as
H� | La〉, | Lo〉{ } ( | (.)〉 is a column vector and is referred
to as a ket or, | La〉 � [1 0]T and | Lo〉 � [0 1]T are the two
bases that defnes the instantaneous choices of movements.

Outcomes and events are given geometrical meaning.
Uncertainties in selection for the possible direction of
movements by the object is represented by a state vector
defned by |Ψ〉, which can capture the occurrence of all
events [31]. Tis would be in contrary to classical probability
theory where at any instance, the occurrence of each event is
represented in a sequential order belonging to a set. In the
quantum framework, we can represent all possible occur-
rences of events at the same time through vector repre-
sentation. Similar to classical theory, the mutual
exclusiveness of events is represented by orthonormal
vectors. In our example, an instance of state |Ψ〉 can be
defned as a superposition of choices for the probability of
movements.

|Ψ〉 �
e

iθLa
�
4

√ | La〉 +

�
3

√
e

iθLo
�
4

√ | Lo〉, (A.1)

where θLa and θLo are the instances of the relative position
angles that the state can make with respect to each of the
basis in the unit sphere (ball) description. (eiθLa /

�
4

√
) and

(
�
3

√
eiθLo /

�
4

√
) are generally referred to as probability am-

plitudes along each of the basis space. Tese amplitudes are
now can be used to defne the probability of subject in
selecting either of the directions. Te magnitude of these
probabilities is obtained by squaring the associated projected
magnitude along a given basis subspace through utilization
of Born’s rule (see the following). To compute such prob-
ability, each of the probability amplitudes can be multiplied
by its corresponding complex conjugate. For example, the
probability (Pr) of the tracked subject moving in the lateral
direction, i.e., Pr (La), at the instant of measurement can be
obtained as follows [18, 32]:

Pr(La) �
eiθLa

�
4

√

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

�
e

iθLa
�
4

√􏼠 􏼡 ·
eiθLa

�
4

√􏼠 􏼡

∗

�
e

iθLa
�
4

√ ·
e

− iθLa
�
4

√

� e
θLa− θLa( ) 1

�
4

√􏼠 􏼡

2

� 0.25.

(A.2)

Te quantum state description, such as the one described
above, is rotating in a unit circle (as seen from the quantum
theory framework) and requires by one of its axioms to have
the sum of the squared magnitudes of each amplitude
(projections) to be equal to one, or

eiθLa
�
4

√

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+

�
3

√
eiθLo
�
4

√

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

� 1. (A.3)
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Tis axiom is called the normalization axiom (Unitarily)
[33] and also corresponds to the classical probability theory
that constraint that the probability of all events in a sample
space to sum-up to one. Give the quantum state |Ψ〉, the
probability of an event along any of the independent sub-
spaces can also be obtained by squaring the magnitude of the
projection of the state onto the corresponding subspace. As
an example, for the quantum state defned above, projection
operators PLa and PLo of the state onto each of the subspaces
are defned by exterior product, or

PLa � | La〉〈La | �
1 0

0 0
􏼢 􏼣,

PLo � | Lo〉〈Lo | �
0 0

0 1
􏼢 􏼣,

(A.4)

which are the outer product (tensor product) of the basis
states (subspaces) | La〉 and | Lo〉, respectively. Te square
measure of the length of the vector (i.e., probability mea-
sure), which is the square of the resultant projection of the
superposition state vector |Ψ〉 to a desired subspace can
now be computed. For example, the projection of the state
onto subspace | Lo〉 is [32]

PLo |Ψ〉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

� PLo |Ψ〉( 􏼁
∗

PLo |Ψ〉( 􏼁

� |Ψ〉PLo |Ψ〉.
(A.5)

Using complex angle description and expansion, the
probability of the along the longitudinal direction is

Pr(Lo) � PLo |Ψ〉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

�

�
3

√
eiθLo
�
4

√

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

� 0.75.

(A.6)

Te collapse of the state |Ψ〉 (or the wave function) onto
a subspace gives the probability of associating a measure-
ment (or observation) along the subspace. An interpretation
of the above can be that until the autonomous object
committee to a direction of movement, it is in the state of
superposition of all the choices (subspaces) (for example, the
probability of choosing a movement along the Lo direction
would be 0.75%).

B. L€uder9s Rule

Probabilities are assigned to histories or sequences of events
based on an interpretation L€uder′s Rule [34]. Tis rule states
that in order to compute the probability of an ordered
events, say events E1 and E2 which are spanned by two
diferent basis in two spaces H1 and H2, one should
compute the probability of frst observing/measuring the
event E1 and then calculating the probability of occurrence
of E1, followed by E2. Te following extensions presents the
associated sequences for such computation which are based
on the results presented in [35, 36].

Let E1 be the frst sensor having basis of | La〉H1
and

| Lo〉H1
that are spanned in H1 and let E2 be the sensor

which has spanned basis of | La〉H2
and | Lo〉H2

spanned in

H2. After observing/measuring the movement of the subject
|Ψ〉 corresponding to the event E1, we can compute the
following probability which would be also the new defnition
of the revised state of the subject, i.e., |Ψ〉H1

:

Pr(La)H1
� PLaH1

|Ψ〉

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

2
, (B.1)

with the revised state

ΨH1

􏼌􏼌􏼌􏼌􏼌 〉�
PLaH1

|Ψ〉

PLaH1
|Ψ〉

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

. (B.2)

Te probability of an event E2 given that we have ob-
served/measured event E1 is given by square of the pro-
jection of the revised state vector |Ψ〉H1

corresponding to
event E1, onto the subspace related to event E2. Tis is
equivalent to Pr(E2 |E1) � | PLoH2

|ΨH1
〉 | 2. According to

L€uder′s rule, the probability of E2, followed by E1 is given by
P(E1) · P(E2 |ΨH1

), or

Pr E1( 􏼁 · Pr E2 ΨH1

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 � PLaH1
|Ψ〉

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

2
· PLoH2

|Ψ〉H1

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

2

� PLaH1
|Ψ〉

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

2
· PLoH2

PLaH1
|Ψ〉

PLaH1
|Ψ〉

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

� PLaH1
|Ψ〉

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

2
·

1

PLaH1
|Ψ〉 |

2
􏼌􏼌􏼌􏼌􏼌􏼌

· | PLoH2
PLaH1

|Ψ〉 |
2

� PLoH2
PLaH1

|Ψ〉

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

2
,

(B.3)

the above equation is the projection of the initial state |Ψ〉

onto the subspace of the frst sensor measurement through
the projection operator PLaH1

. Tis is then results in the new
state |Ψ〉H1

which is then followed by the projection of this
new state onto the subspace of the second sensor | Lo〉H2
given be the projector operator PLoH2

.

C. Probability Path Diagrams

Path diagrams are very important visualization approach for
describing the interconnection and dependencies between
set of event uncertainty variables. It is a description which
was originally inspired by the efect of interference observed
using the famous double slit experiment and the associated
probability distributions [36, 37].

Using the example set-up of this paper, an interpretation
of the interference efect can be stated as follows. Given the
state of the tracked subject as described above S, suppose
that the subject is at the instance of selecting between the
directions of movement D and has available to it in-
formation/measurementM (with a probability distribution)
(here, by default we are assuming that outcome of mea-
surement from any sensing modality has associate to it some
uncertainty (probability distribution)) that can be used to
assist in deciding between the choices in the incremental
movements. Given this information, the subject will then
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decide on whether or not to use it in order to decide on the
direction of movement. Tis interpretation can also be
extended to the case where the subject decides on the di-
rection of movement not knowing (or having access to) to
such available information or simply ignores the availability
and presence of such distribution of the information [31, 36].

In order to capture and compute the probability model
of the subject given various path confgurations which can
arise from the above scenarios (see Figure 1). Feynman [37]
devices number of rules for asserting the probability of
transition between various nodes. For example, the frst rule
for asserting the probability for a sequence of events along
a single path state that, the probability amplitude of the path
is the product of the amplitudes of each of the transition
paths. Tis is equivalent to the classical product of the
conditional probability P(· | ·) of transitions between each of
the node along a single path, or

S⟶M1⟶ D1

Pr M1 |S( 􏼁 · Pr D1 M1
􏼌􏼌􏼌􏼌􏼐 􏼑,

(C.1)

or the computation of the probability using the associate
projection operator P(.) can be written as follows:

PLom
|Ψ〉

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

· Plo PLom
|Ψ〉􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
or

ψM1 |S

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

· ψD1 M1|

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
,

(C.2)

where the symbol ψ is used to represent complex probability
amplitude. For such single paths, the probability of the path
is similar to the Markov model where the square of am-
plitudes replacing the magnitudes for the conditional
probabilities.

An indistinguishable path is referred to the case when
the subject arrives on decision onmoving either to the lateral
direction or longitudinal direction having some measure of
information available to it in regard to the selection of the
direction. But the subject does not consider using these
information (or not being aware of the presence of such
information). Referring to Figure 1, an example can cor-
respond to the case where the subject starts at initial state S
and arrives at the fnal state D1 by transiting from multiple
possible paths without knowing for certain which path was
taken to reach the goal state.

Quantum probability theory states that when the path is
undistinguishable, then the goal state can be reached
through a superposition of paths trajectories. Tis is known
as Feynman’s second rule. It states, for example, that the
amplitude of transition from an initial state S to the fnal
stateD1, taking multiple indistinguishable paths, is given by
the sum of all amplitudes for each path. Tis rule is in
accordance with the law of total amplitude and the prob-
ability and computed by taking the squared magnitude of
this sum, or

Pr S⟶ D1( 􏼁 � PLom
|Ψ〉 · PLo PLom

|Ψ〉􏼐 􏼑 + PLam
|Ψ〉 · PLo PLam

|Ψ〉􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
. (C.3)

Contrary to the above decomposition, if the above
mentioned paths were observed/measured, the defnition of
the quantum probability theory is the same asMarkovmodel
(which is also known as Feynman’s third rule). Te rule
states that the probability amplitude of observed/measured

multiple path trajectories is the sum of the amplitudes of
each individual paths. Following Born’s rule, the probability
of each path is the squaredmagnitude along the path. For the
case example mentioned above, this can be written as
follows:

Pr S⟶ D1( 􏼁 � Pr M1 |S( 􏼁 · Pr D1 M1
􏼌􏼌􏼌􏼌􏼐 􏼑 + Pr M2 |S( 􏼁 · � Pr D1 M2

􏼌􏼌􏼌􏼌􏼐 􏼑 PLom
|Ψ〉 · PLo PLom

|Ψ〉􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ PLam
|Ψ〉 · PLo PLam

|Ψ〉􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
.

(C.4)

D. Born’s Rule

Te following interpretation of the Born rule is partly based
on the results presented in [38]. Let M be a quantum-
mechanical model of a system which is observable and can
be represented by a self-adjoint operator on H with inner
product 〈 | · | 〉. Assume that M has nondegenerated dis-
crete spectrum which in our case of self-adjoint operator
which implies that M has an orthonormal basis of eigen-
vectors ei with corresponding eigenvalues λi, i.e.,Mei � λiei.

A fundamental assumption underlying the Born rule is
that in M and measurement of the observable M will

produce one of its eigenvalues λi. LetΨ ∈H be a unit vector,
then the Born rule states: if the system in a state Ψ, then the
probability Pr(M� λi, |Ψ〉) that the eigenvalue λi of M is
found when M is measured is

Pr M� λi, |Ψ〉( 􏼁 � ei |Ψ〉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
. (D.1)

In other words, if |Ψ〉 � 􏽐i�1ωiei〉 (with 􏽐i�1 |ωi | 2 � 1),
then,

Pr M� λi, |Ψ〉( 􏼁 � ωi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
. (D.2)
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E. Interference Effects

As stated previously, the relationship between the classical
probability density function and a quantum probability
amplitude is given by Born’s rule, or:

Pr(A) � e
iθAψ(A)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
, (E.1)

| eiθAψ(A) | 2 is the square magnitude of a complex am-
plitude which is obtained as follows: | eiθAψ(A) | 2 � eiθAψ
(A)e− iθAψ(A).

Given a set of disjointed events A1, A2, · · · An, the law of
total probability can be formulated as follows [39]:

Pr(B) � 􏽘
n

i�1
Pr Ai( 􏼁Pr B Ai

􏼌􏼌􏼌􏼌􏼐 􏼑where 􏽘
N

i�1
Ai � 1. (E.2)

Te quantum probability equivalent of the above total
probability can be written as follows:

Pr(B) � 􏽘
n

i�1
e

iθiΨ Ai( 􏼁Ψ B Ai

􏼌􏼌􏼌􏼌􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

,with 􏽘
n

i�1
e

iθiψ Ai( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� 1.

(E.3)

Multiplying the expression with its complex conjugate
and simplifying, the expression for P(B) can be written as
follows:

P(B) � 􏽘

n

i�1
ψ Ai( 􏼁ψ B Ai

􏼌􏼌􏼌􏼌􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ 2 􏽘

n−1

i�1
􏽘

n

j�i+1
ψ Ai( 􏼁ψ B Ai

􏼌􏼌􏼌􏼌􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ψ Aj􏼐 􏼑ψ B Aj

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
cos θi − θj􏼐 􏼑. (E.4)

As it can be seen from the above, when cos(θi − θj) � 0,
the quantum probability theory converges to its classical
counterpart because the interference term will be zero. For
nonzero values, this interference term can afect de-
structively the classical probability or constructively.
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