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Tis paper investigates the performance enhancement of base classifers within the AdaBoost framework applied to medical
datasets. Adaptive boosting (AdaBoost), being an instance of boosting, combines other classifers to enhance their performance.
We conducted a comprehensive experiment to assess the efcacy of twelve base classifers with the AdaBoost framework, namely,
Bayes network, decision stump, ZeroR, decision tree, Naı̈ve Bayes, J-48, voted perceptron, random forest, bagging, random tree,
stacking, and AdaBoost itself. Te experiments are carried out on fve datasets from the medical domain based on various types of
cancers, i.e., global cancer map (GCM), lymphoma-I, lymphoma-II, leukaemia, and embryonal tumours. Te evaluation focuses
on the accuracy, precision, and efciency of the base classifers in the AdaBoost framework.Te results show that the performance
of Naı̈ve Bayes, Bayes network, and voted perceptron is highly improved compared to the rest of the base classifers, attaining
accuracies as high as 94.74%, 97.78%, and 97.78%, respectively. Te results also show that in most cases, the base classifers
perform better with AdaBoost compared to their performance, i.e., for voted perceptron, the accuracy is improved up to
13.34%.For bagging, it is improved by up to 7%. Tis research aims to identify such base classifers with optimal boosting
capabilities within the AdaBoost framework for medical datasets. Te signifcance of these results is that they provide insight into
the performance of the base classifers when used in the boosting framework to enhance the classifcation performance of
classifers in scenarios where individual classifers do not perform up to the mark.

1. Introduction

Boosting inmachine learning (ML) is achievedwith the ability
of the ML technique to boost the functionality of other
classifers when combined [1]. Boosting is a very efective
technique for solving bi-class classifcation problems [2]. Te
boosting technique enhances the functioning and improves
the correctness of any given learning algorithm by adding new
modules. Tis procedure forms a new classifer, an ensemble
of both classifers with improved accuracy on a given training
set [2]. For this reason, the name Boosting is assigned to such
techniques as they boost the performance of other classifers.

An example of a boosting technique, namely, adaptive
boosting (AdaBoost), has a mechanism for training the data
set based on allocating weights. Uniform weights are

assigned to the datasets, and the probability of data selection
is based on these weights. Te training set, once classifed
accurately for one classifer, reduces the chance of the
training set being utilized in the successive classifer [3].
Terefore, the selection of the training set is based on
a classifer trained on it and the assigned weights. AdaBoost
trains the classifer on benefcial, informative, and compli-
cated patterns by iteratively running its algorithm. After
each iteration, the training error is calculated, and the
weights are allocated for the classifer.

Schapire and Freund purported the frst solid algorithm
for Adaboost, which is by AdaBoost’s methodology [4, 5].
Viola and Jones proposed an updated version of the Ada-
Boost technique by taking the weak classifers with weak
features [6, 7]. Terefore, the Viola and Jones version of the
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AdaBoost technique is a repetitive process combining
multiple weak classifers that approximate the base classifers
[8]. Te AdaBoost classifer is mathematically expressed in
the following equation:

C(x) � argmaxk 􏽘

M

m�1
α(m)

. II T
m

(x) � k( 􏼁􏼐 􏼑, (1)

where C(x) represents a linear classifer, i.e., a linear se-
quence of all the constituent classifers; α(m) and II (T(m) (x))
represent the arguments for the base classifers. AdaBoost
has a huge margin and generalization capability, making its
performance better than other boosting techniques. Tere
are some limitations with the AdaBoost technique, such as
considerations taken for each constituent classifer and the
range that infuences the performance simplifcation of the
constituent classifers [9]. AdaBoost has an accuracy and
diversity calamity, which means attaining higher accuracy
with two-component classifers increases the chance for
them to disagree. Maintaining a balanced trade-of between
accuracy and diversity is required to accomplish an ac-
ceptable generalization for performance.

Te rest of the paper is organized as follows: Section 2
provides details of the related materials, experimental setup,
and methods. Section 3 gives details about the experimental
setup. Similarly, Section 4 provides an insight into the results
of the proposed algorithms and their comparisons with
recent algorithms. Lastly, Section 5 concludes the paper and
provides insight on the future enhancements.

2. Materials and Methods

As mentioned earlier, we conducted 60 experiments on fve
medical datasets with about 12 base classifers. Tese results
are prepared to analyze the base classifers with the Ada-
Boost framework based on their percentage accuracy, error,
precision, F-measure, and recall. Initially, the datasets are
extracted and preprocessed to be employed by the machine
learning algorithms. Te data is cleaned by removing re-
dundant information and empty cells, replacing missing
records, and normalizing the data to be presented in
a uniform format. Essential features are extracted from the
data based on evaluating the ML techniques used to train the

algorithms. Te performance of the ML techniques is
evaluated, and the most efcient ML techniques are selected
for the allocation of suitable base classifers in a given
scenario. Tis process ultimately selects the optimal base
classifer for a given problem. Te proposed methodology is
depicted in Figure 1 as a block diagram.

Tis diagram provides an overview of our proposed
algorithm for the performance evaluation of base classifers
in the AdaBoost Framework for given medical datasets. Te
algorithms are monitored to attain the best accuracy. Te
model attaining the best accuracy is then deployed to classify
the tumors for best performance in a given scenario. Te
details for base classifers and the setups used for these base
classifers are given in Section 2.1.

2.1. Base Classifers. Te performance of AdaBoost with the
base classifers is evaluated in this research with twelve base
classifers in combination with AdaBoost in almost sixty
experiments. Te base classifers are chosen from almost all
the major categories of classifers, such as Bayes, Functions,
Rules, Networks, Trees, and Meta Functions. In this way, all
the major classifer groups have been evaluated, and
therefore, these experiments comprehensively illustrate the
role of base classifers in the AdaBoost framework. Te
details of the base classifers are provided in the following
sections.

2.1.1. Naı̈ve Bayes. Naive Bayes (NB) classifcation is a su-
pervised learning technique used as a statistical method for
classifcation. NB has good performance in classifcation and
pattern recognition [10]. NB acquired its name from the
well-known Tomas Bayes theorem that categorizes the
training set by opting for the class with the closest relation to
the dataset. Bayes proposed that there is no connection
between the existence and nonexistence of input features
with each other [11]. All the properties are supposed to
contribute independently and equally to the output prob-
ability. NB uses a maximum likelihood method for pa-
rameter estimation [12]. Tis is called an NB assumption
that is mathematically illustrated in the following equations:

v � maxcj�C P cj | x1, x2, . . . xn􏼐 􏼑, (2)

� maxcj�C

P x1, x2, . . . xn | cj􏼐 􏼑P vj􏼐 􏼑

P x1, x2, . . . xn( 􏼁
, (3)

� maxcj�C P x1, x2, . . . xn | cj􏼐 􏼑P cj􏼐 􏼑, (4)

P x1, x2, . . . xn | cj􏼐 􏼑 � 􏽙
i

P xi | vj􏼐 􏼑, (5)

fnb(E) �
p(C � +)

p(C � − )
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p xi | C � +( 􏼁

p xi | C � −( 􏼁
, (6)
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where the classifcation value of the classes is given by C, P is
the probability, E is the expectation, functionfnb (E) is the
NB classifer, and x1, x2, x3, x4, . . . , xn are attribute values.
Each attribute node has only one parent, i.e., the primary
parent node C in NB. All attributes do not necessarily de-
pend on other attributes in NB [13]. Hence, knowing class
variables is enough in NB to conduct the classifcation
procedure. Moreover, all the attributes are statistically in-
dependent and equally essential in NB. NB classifer requires
only moderate training data for mean, variance, and other
classifcation parameter approximation [14]. Depending
upon the characteristics of the probability model in su-
pervised learning settings, the NB classifer with the most
signifcant value leads the hypothesis.

2.1.2. Voted Perceptron. Voted Perceptron (VP) is a linear
classifer used under the supervised classifcation scenario.
Frank Rosenblatt proposed the VP classifcation technique
in 1957 [15]. VP works with the online learning technique
by processing the training set individually and making

predictions based on linear predictor functions. Te
weights are set as zero and initially act as parameter vectors.
Te VP algorithm stores the parameter vectors by passing
over the training set [16]. Te errors, for example, are
handled with modifcations in the parameter vectors on the
fy. Hence, the technique for VP uses f(x) to map a single-
valued input vector x to output y. Te mathematical ex-
pression for the binary classifer VP is given in the fol-
lowing equation:

f(x) �
1, w.x + b> 0,

0, otherwise.
􏼨 (7)

VP accumulates more information in the training phase,
and improved predictions are generated with highly
structured information on the test data. Te VP algorithm
uses the batch training mechanism for learning purposes,
and it runs iteratively over the training set while waiting for
it to locate a prediction vector [17, 18]. Te prediction vector
makes accurate learning on all the training sets and is used to
estimate the labels on the training set.

Medical Data 
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Figure 1: Block diagram for implementation of the proposed techniques.
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2.1.3. Bayes Network. Bayes network (BN) is a simple net-
work structure comprising nodes and edges, which was
proposed in 1988 by Pearl [19]. Te network assumes that
every attribute, i.e., the leaf, is independent of every other
attribute in the given state of the classifer [20]. Random
variables represent the BN nodes, including variables, un-
known parameters, observable quantities, or hypotheses.
Disconnected nodes characterize the short-term independent
variables, and the edges represent conditional dependencies.
Additional edges are formed between the attributes in BN to
grab correlations. All possible edge combinations that form
the whole network must be searched by BN. Te combined
probability distribution of random variables is used for
training, as shown mathematically in the following equation:

PB X1, X2, . . . . Xn( 􏼁 � 􏽙
n

i�1
PB Xi | πi( 􏼁 � 􏽙

n

i�1
θXi|πi

. (8)

BN takes its shape in various kinds of acyclic networks
depending upon the problem state for efciently searching the
whole network space. BN comprises the two-stage learning
process of natural division, giving it a dual nature [21]. Te
frst stage learns a network structure, and the second learns
probability tables. BN has an infuence diagram structure that
represents and resolves the decision problems [22, 23]. BN
forms sequences of variables known as dynamic BN in speech
signals or protein sequence applications.

2.1.4. Decision Stump. A decision stump (DS) is a single-
layered decision tree (DT) that makes it comparatively easier
to build. Instances in DS are classifed by assembling them
with feature values [24, 25]. DS has a fnite number of splits
on the attributes, so only one attribute is necessary for its
network. In DS classifers, an instance feature to be classifed
is represented by a node, and a node value represents the
corresponding branch [26]. Te learning model of DS is
based on a single internal root node. Te architecture of the
network is such that the root is instantaneously connected to
the terminal nodes that make its leaves. Te leaves further
expand in the network and form a vast tree-like structure.
Hence, it makes decisions based on a single input feature,
also known as one-rules [27].

DS is often used as a module (called “weak learners”) in
ML ensemble methods, such as bagging and boosting [27].
DS may be constructed with a leaf for each potential trivial
feature, one for ftting with some chosen group and another
for the rest of the categories. Stated scenarios are analogous
to binary features andmay be considered a diferent category
if a feature is unavailable. Treshold levels are used for
features to classify them into two diferent leaves if they are
above or below the threshold value and multiple leaves with
multiple threshold levels.

2.1.5. Random Tree. A random tree (RT) classifer was in-
troduced by Cutler and Breiman to address regression and
classifcation problems [28]. RT has a network of tree
predictors, also known as an ensemble and decision splits,
which efciently model the data on attributes. Te RT

algorithm requires the input feature space, and each tree
classifes inputs in the forest. Ultimately, the class label that
makes the most votes is produced, and decisions are taken
based on the weights assigned to the nodes.

RT is a very efcient decision algorithm that outperforms
in terms of accuracy [29]. In the case of noisy data sets, this
classifer is observed to have inadequate performance. If
a signifcant portion of data is misplaced, RT approximates
missing data with its inbuilt technique and retains accuracy.

2.1.6. Boosting and Bagging. Breiman developed the bagging
technique as a procedure to enhance the performance of
classifcation under ML methods [30]. Te bagging title is
attained from “bootstrap aggregating” terminology, as bag-
ging is a clustering technique. Bagging generates individual
classifers for its clusters from each classifer based on
a random distribution of the training dataset [31]. To create
a classifer training set, the data is randomly taken with the
replacement of examples, and the resultant data is equal in
size to that of the original training set. Signifcant variations
are refected in the model from small changes in training data,
which means this classifer has an unstable predictor. Bagging
amalgamates multiple hypotheses with huge errors and
generates a classifer with reduced errors in the training set.

Boosting is a collection of methods that primarily aims to
produce and combine a series of classifers [32]. It combines
hypotheses generated by related learning methods that in-
voke various distributions of the training set. Boosting at-
tains improvement in recognition for unstable classifers and
smoothing over discontinuities by similar. A boosting
classifer is comparatively more prolifc and efcient and has
a trouble-free group learning approach [33]. Bagging and
boosting have methods trained on dissimilar data estab-
lished with Bootstrap, which resamples the original data.
Bagging and boosting algorithms combine base classifers
whose outputs are assessed to determine the ultimate output.

2.1.7. Random Forest. Random forest (RF) is one of the
fnest classifcation techniques for massive data [34]. A large
number of inputs do not afect the input variable when the
RF technique is used. Compared to other techniques, it deals
with huge amounts of data without much adverse efect on
accuracy. Te RF technique efciently approximates the
missing data, and because of this, it preserves accuracy even
with a large amount of missing data. RF solves the issues
with unbalanced data and balances the error in the class
population [35]. Tis classifer has great potential to resolve
the problems associated with vague data sets, which helps
deal with unsupervised clustering, outlier detection, and
data views. Te RF method calculates the proximities be-
tween pairs of clusters that aid in locating the outliers in
clustering. Te RF technique also proposes an experimental
method for detecting variable interactions in data [35].

2.1.8. ZeroR. ZeroR is based on a rule that works with
a straightforward classifcation method on the target and
prediction of the majority class. ZeroR ignores all predictors
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and relies on its decisions based on the majority of occur-
rences of an instance [36]. Te predictability power of ZeroR
is negligible, but it has a signifcant role as a standard
baseline for other classifers. ZeroR maintains a frequency
table for the target class and selects it based on the majority
frequency. ZeroR uses the most common class values for
classifcation after identifying them. ZeroR is often
employed as a baseline for other ML algorithms to evaluate
their results since it returns a value for each instance.

2.1.9. J-48. J-48 is based on Quinlan’s C4.5 DT algorithm,
which is the most frequently used. Te J-48 technique has
a much more common approach than DT, which divides the
data into small subsets based on a decision criterion [37].
Leaves in J-48 represent similar subclasses, and the potential
data gains are associated with the attributes based on the test.
Instances are categorized in the same class or leaf they are
associated with, and each attribute’s potential data is tested on
attributes that provide the gain on data. Eventually, the se-
lection parameter is used to select the best-suited attribute
[38].Tere are some limitations to the J-48 algorithm, such as
empty branches, over-ftting, and insignifcant branch
problems, which must be resolved and handled well when
working with J-48. Some solutions are proposed to these
problems, such as adding RT and Kendall’s rank correlation
(KRC) to J-48, besides many others that target the mentioned
issues with J-48 and improve the overall performance [37, 38].

3. Experimental Setup

Te experimental setup for this research is based on twelve
base classifers in combination with AdaBoost and fve
datasets. Tese data sets are mostly taken from medical
problems such as various types of cancer. Te datasets have
many attributes and instances; as in medical problems,
a large amount of information is required for making de-
cisions. A brief description of the data sets is given in the
following sections.

3.1. Data Collection and Preprocessing. Te data is then
preprocessed to prepare the training and testing data sets,
including signifcant steps such as removing redundant data,
data discretion and features construction, features selection,
retrieval of missing records, separation of the testing and
training sets, and data normalization. In the data pre-
processing module, the data is analyzed for redundant and
missing data and divided into training and testing sets.

3.1.1. Global Cancer Map. Te global cancer map (GCM) is
a dataset for multiclass cancer (MCC) diagnosis and is
assessed using the technique of tumour gene expression
signatures (TGES) [39]. Tere are about 16,064 attributes,
each of which has 144 instances. Te classifers verify the
output for fourteen classes: breast, colorectal, prostate,
uterus-adeno, lung, renal, lymphoma, melanoma, meso-
thelioma, pancreas, bladder, leukaemia, central nervous
system (CNS), and ovary.Te decision is taken to classify the

datasets into any of the aforementioned classes. Figure 2
shows the output distribution among these classes for
a randomly chosen attribute.

3.1.2. Lymphoma-I. Lymphoma is a cancer that attacks the
lymphocytes, a constituent part of the immune system.
Typically, lymphoma is an undetectable solid tumour of
lymphoid cells that afects the body’s immune system.
Detecting lymphoma tumours is challenging and requires
special methods such as gene expression profling (GEP) to
identify these tumours. Te lymphoma-I dataset used in this
research has two classes, i.e., anterior cruciate ligament
(ACL) and granule cell layer (GCL), which are classifed with
medical diagnosis [39]. By GEP, distinct types of difused
large blood-cell lymphoma (DLBCL) are diagnosed. Nu-
merous attributes are utilized to evaluate the results, es-
sential for detecting lymphoma. Tere are 4,027 attributes,
each of which has 45 instances. Te output distribution
between these classes for a randomly selected attribute is
shown in Figure 3.

3.1.3. Lymphoma-II. In the lymphoma-II data set, the
lymphoma is monitored for nine classes instead of two, i.e.,
NIL, DLBCL, ABB, GCB, RAT, RBB, FL, TCL, and CLL [39].
Tese nine classes are attributed to the GEP analysis. Te
GEP technique is used to classify distinct types of DLBCL.
Te lymphoma-II data set is employed to monitor various
attributes for testing the results, which is essential for
detecting lymphoma. Tere are 4,027 attributes, each of
which has 96 instances. Te data has been taken for its
medical diagnosis by classifying it into nine classes; the
output distribution for a randomly selected attribute is
shown in Figure 4.

3.1.4. Leukaemia. Leukaemia is a bone marrow or blood
cancer, while in general, it is also attributed to a wide range
of diseases. Leukaemia is identifed by an abnormal rise in
immature white blood cells (WBCs), also known as blasts.
Leukaemia-II is used to monito the molecular classifcation
of cancer (MCC), which includes methods such as class
discovery and prediction by GEP [39]. Tere are 7,130 at-
tributes, each of which has 38 instances. Te data has been
taken for its medical diagnosis by classifying it into two
classes, i.e., acute lymphoblastic leukaemia (ALL) and acute-
myeloid leukaemia (AML). Te output distribution between
these classes for a randomly selected attribute is shown in
Figure 5.

3.1.5. Embryonal Tumours. Embryonal tumour (ET) data is
taken from the results of CNS for ET. It is monitored for the
results of the GEP for the prediction of CNS ET.Tis data set
has 7,130 attributes, each of which has 60 instances.Te data
is classifed into positive results, denoted by one, and
negative results, denoted by 0. ET data is taken for medical
diagnosis based on genes [39]. Te output distribution
between these classes for a randomly selected attribute is
shown in Figure 6.
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3.2. Environment Setup for Machine Learning Classifers.
Certain parameters are considered as input features and are
varied for diferent scenarios. In order to validate the model,
10-fold cross-validation is utilized for all machine learning
methods. To increase efciency, highly correlated input

attributes are chosen as the data. Additionally, feature se-
lectionmethods are employed to eliminate attributes that are
not relevant to the output variable. To minimize the com-
plexity of the model, a ridge regularization technique is
applied, which prevents any coefcient from reaching an
excessive value by reducing the sum of the squares of the
learned coefcients. Te distance between the data points is
calculated using Euclidean distance, as the data is on the
same scale.Te data is searched and stored using a linear NN
search method, and no windowing is required. Te nearest
neighbour is located through a linear search mechanism.

A learning rate of 0.001 is established, and the regula-
rization parameter is adjusted based on the number of
epochs. Te regularisation parameter is reduced as the
number of epochs increases to 1,012. Seventy percent of the
total data is used for training, and thirty percent is used for
testing. During the training phase, in the beginning, RMSE
generally decreased as the number of nodes in the hidden
layer increased, and then RMSE began to increase when the
model started to over-ft. Te early stopping criterion is used
to avoid over-ftting. Various internal parameters are chosen
by the trial and error method. Te excess use of input
variables usually has a negative infuence because it de-
creases the processing speed and afects the redundancy
contained in the diferent variables.

3.3. Performance Evaluation Metrics. Te results for our
research are collected from 60 experiments conducted on fve
medical datasets with about twelve base classifers, as men-
tioned in earlier sections. Based on their percentage accuracy,
error, precision, F-measure, and recall, these results are
prepared to analyze the base classifers with the AdaBoost
framework. Te percentage accuracy of the base classifer is
displayed in terms of correctly classifed instances against
incorrectly classifed instances for all twelve base classifers.
Te precision of the base classifers has been computed from
the ratio of the examples that are truly classifed as class x to
the total number of examples. Te values for recall are cal-
culated from the proportion of examples classifed as class x to
the actual total in class x. Similarly, the F-measure is com-
puted from the measure of precision and recall. Te math-
ematical expressions of these performance evaluators are
provided in the following equations:
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Table 1: Results for accuracy and percentage error of all the classifers in AdaBoost framework for fve medical (cancer) datasets.

Classifers
Datasets Leukaemia Lymphoma-I Lymphoma-II GCM Data set C
Instances 38 45 96 144 60
Attributes 7130 4027 4027 16064 7130

Naı̈ve Bayes

Correctly classifed 94.74% 91.11% 75.00% 16.67% 60.00%
Without AdaBoost 94.74% 91.11% 75.00% 16.67% 61.67%
Incorrectly classifed 5.26% 8.89% 25.00% 83.33% 40.00%
Without AdaBoost 5.26% 8.89% 25.00% 83.33% 38.33%

Decision stump

Correctly classifed 89.47% 86.67% 51.04% 16.67% 63.33%
Without AdaBoost 89.47% 82.22% 51.04% 16.67% 68.33%
Incorrectly classifed 10.53% 13.33% 48.96% 83.33% 36.67%
Without AdaBoost 10.53% 17.77% 48.96% 83.33% 31.68%

Voted perceptron

Correctly classifed 78.95% 97.78% xx 16.67% 58.33%
Without AdaBoost 73.68% 84.44% xx 16.67% 65.00%
Incorrectly classifed 21.05% 2.22% xx 83.33% 41.67%
Without AdaBoost 26.31% 15.55% xx 83.33% 35.00%

Stacking

Correctly classifed 71.05% 51.11% 47.92% 16.67% 65%
Without AdaBoost 71.05% 44.44% 47.92% 16.67% 65%
Incorrectly classifed 28.95% 48.89% 52.08% 83.33% 35%
Without AdaBoost 28.95% 55.56% 52.08% 83.33% 35%

Bagging

Correctly classifed 92.11% 93.33% 86.46% xx 61.67%
Without AdaBoost 84.3% 86.67% 70.83% xx 66.00%
Incorrectly classifed 7.89% 6.67% 13.54% xx 38.33%
Without AdaBoost 15.78% 13.33% 29.17% xx 33.00%

J-48

Correctly classifed 84.21% 82.22% 86.46% xx 56.67%
Without AdaBoost 84.21% 77.78% 81.25% xx 58.00%
Incorrectly classifed 15.79% 17.78% 13.54% xx 43.33%
Without AdaBoost 15.79% 22.22% 18.75% xx 42.00%

Random tree

Correctly classifed 81.57% 64.44% 66.67% 38.19% 68.33%
Without AdaBoost 86.84% 68.89% 58.33% 40% 63.33%
Incorrectly classifed 18.42% 35.56% 33.33% 61.81% 31.67%
Without AdaBoost 13.15% 31.11% 41.66% 60% 36.68%

Random forest

Correctly classifed 79.41% 91.11% 78.13% 52.08% 65.00%
Without AdaBoost 88.23% 91.11% 82.29% 50% 66.67%
Incorrectly classifed 20.58% 8.89% 21.88% 47.92% 35.00%
Without AdaBoost 11.76 8.89% 17.7% 50% 33.33%

Bayes network

Correctly classifed 94.74% 97.78% 90.62% 16.67% 62.34%
Without AdaBoost 94.74% 97.78% 90.83% 16.67% 68%
Incorrectly classifed 6.66% 2.22% 9.375% 83.33% 37.36%
Without AdaBoost 6.66% 2.22% 8.16% 83.33% 31%

AdaBoost

Correctly classifed 89.47% 86.67% 51.04% 16.67% 63.33%
Without AdaBoost 89.47% 86.67% 51.04% 16.67% 63.33%
Incorrectly classifed 10.53% 13.33% 48.96% 83.33% 36.67%
Without AdaBoost 10.53% 13.33% 48.96% 83.33% 36.67%

ZeroR

Correctly classifed 71.05% 44.44% 47.92% 16.67% 65%
Without AdaBoost 71.05% 44.44% 47.92% 16.67% 65%
Incorrectly classifed 28.95% 55.56% 52.08% 83.33% 35%
Without AdaBoost 28.95% 55.56% 52.08% 83.33% 35%

Input mapped classifer

Correctly classifed 71.05% 44.44% 47.92% 16.67% 65%
Without AdaBoost 71.05% 44.44% 47.92% 16.67% 65%
Incorrectly classifed 28.95% 55.56% 52.08% 83.33% 35%
Without AdaBoost 28.95% 55.56% 52.08% 83.33% 35%

∗Te crossed (xx) cells show that the results could not be generated for the specifc classifer because of the limitation of the framework or the data set. Hence,
the evaluation of these classifers’ results has been carried out manually to check if any better results could be gathered for comparison. Bold values indicate
the improved values.
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accuracy �
correctly identified instances
incorrectly classified instances

, (9)

precision �
truly classified class X examples
total classified class X examples

, (10)

recall �
truly classified class X examples

total class X examples
, (11)

f-measure �
2 ∗ (precision ∗ recall)

(precision + recall)
. (12)

4. Results and Discussions

Te results are shown in Table 1, where the rows represent
various classifcation algorithms and the percentage of
correctly and incorrectly classifed examples, while the
columns represent data sets. Te results show that the
performance of Näıve Bayes, Bayes network, voted per-
ceptron, and bagging as base classifers in AdaBoost is better
than the rest. Tese base classifers outperformed in Ada-
Boost, attaining accuracies of 94.74%, 97.78%, 97.78%, and
93.33%, respectively, while their accuracies are lower, i.e.,
84.44%, for voted perceptron and 86.67% for bagging

Table 2: Results for precision, F-measure, and recall error of all the classifers in AdaBoost framework for various data sets.

Classifers
Data sets Leukaemia Lymphoma-I Lymphoma-II GCM Data set C
Instances 38 45 96 144 60
Attributes 7130 4027 4027 16064 7130

Naı̈ve Bayes
Recall 0.947 0.911 0.75 0.167 0.6

F-measure 0.946 0.911 0.692 0.048 0.56
Precision 0.951 0.914 0.683 0.028 0.552

Voted perceptron
Recall 0.789 0.978 xx 0.167 0.6

F-measure 0.799 0.978 xx 0.048 0.58
Precision 0.847 0.979 xx 0.028 0.583

Stacking
Recall 0.711 0.511 0.479 0.167 0.65

F-measure 0.59 0.511 0.31 0.048 0.512
Precision 0.505 0.511 0.23 0.028 0.423

Adaboost
Recall 0.895 0.867 0.51 0.167 0.583

F-measure 0.895 0.867 0.445 0.094 0.52
Precision 0.895 0.87 0.403 0.066 0.5

Bagging
Recall 0.921 0.933 0.865 xx 0.633

F-measure 0.92 0.933 0.84 xx 0.629
Precision 0.92 0.934 0.836 xx 0.626

J48
Recall 0.842 0.822 0.835 xx 0.567

F-measure 0.842 0.822 0.835 xx 0.546
Precision 0.842 0.825 0.864 xx 0.536

Random tree
Recall 0.789 0.644 0.667 0.382 0.683

F-measure 0.789 0.643 0.649 0.373 0.685
Precision 0.789 0.645 0.648 0.37 0.687

Random forest
Recall 0.791 0.778 0.781 0.521 0.65

F-measure 0.761 0.776 0.743 0.509 0.643
Precision 0.791 0.788 0.75 0.53 0.639

Bayes network
Recall 0.933 0.978 xx 0.167 0.633

F-measure 0.933 0.978 xx 0.048 0.629
Precision 0.934 0.979 xx 0.028 0.626

Decision stump
Recall 0.895 0.867 0.51 0.167 0.633

F-measure 0.895 0.867 0.445 0.094 0.629
Precision 0.895 0.87 0.403 0.066 0.626

Zero-R
Recall 0.711 0.444 0.479 0.167 0.65

F-measure 0.59 0.429 0.31 0.048 0.512
Precision 0.505 0.434 0.23 0.028 0.423

Input mapped classifer
Recall 0.711 0.444 0.479 0.167 0.567

F-measure 0.59 0.429 0.31 0.048 0.571
Precision 0.505 0.434 0.23 0.028 0.576

∗Te crossed (xx) cells show that the results could not be generated for the specifc classifer because of the limitation of the framework or the data set. Hence,
the evaluation of these classifers’ results has been carried out manually to check if any better results could be gathered for comparison. Te results in bold
indicate the best results for diferent datasets.
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technique. Te results also show that in most cases, the base
classifers perform better with AdaBoost compared to their
individual performance, i.e., for Voted Perceptron, the ac-
curacy is improved up to 13.34%, and for bagging, it is
improved up to 7%. Table 2 shows the precision, recall, and
F-measure of the base classifers in AdaBoost. Table 2
highlights the best precision values, i.e., 97.9% achieved
by VP and BN. Te fnest recall values are highlighted in
Table 2, which are 97.8% achieved by VP and BN. Te best
values for F- Measure are highlighted in Table 2, i.e., 97.8%
achieved by VP and BN.Te precision, recall, and F-measure
for each base classifer are evaluated from comparisons
between each base classifer so that their role in the Ada-
Boost framework is examined.

Using attributes to analyse the behaviour of base clas-
sifers plays a prognostic role in identifying the best com-
bination of base classifers with AdaBoost. Hence, this
performance evaluation provides an analytical model for
choosing a base classifer in a given problem domain,
making it easy to select an AdaBoost environment with
a base classifer. As a future enhancement of proposed re-
search, these observations can be used for some applications
of AdaBoost, such as Viola-Jones object detection, and
improve its performance with suitable base classifers.

5. Conclusions and Future Work

Adaptive Boosting (AdaBoost), being an instance of
boosting, combines other classifers to enhance their per-
formance. Tis boosting functionality of AdaBoost is
highlighted in this work by monitoring the performance of
several base classifers with AdaBoost. Almost 60 experi-
ments are carried out to observe the responses of twelve base
classifers on fve signifcant medical data sets. Te results of
these experiments show that the AdaBoost framework at-
tains better results with some base classifers (Näıve Bayes,
Bayes network, and voted perceptron) than other classifers
(J48, bagging, decision stump, random forest, and random
tree). Te reason is that base classifers have a unique role in
the AdaBoost classifcation. Tis research aims to track the
unique role of the base classifers in the AdaBoost framework
and identify the classifers with the best performance for the
givenmedical dataset.Te performance of the base classifers
is monitored in terms of their accuracy, precision, recall, and
F-measure. Te results show that the performance of Näıve
Bayes, Bayes network, voted perceptron, and bagging as in
AdaBoost is better than the rest of the base classifers. Tese
base classifers outperformed AdaBoost, attaining accuracies
of 94.74%, 97.78%, 97.78%, and 93.33%, respectively, while
their individual accuracies are lower, i.e., 84.44% for voted
perceptron and 86.67% for bagging technique. Te results
also show that in most cases, the base classifers perform
much better with AdaBoost compared to their individual
performance, i.e., for Voted Perceptron, the accuracy is
improved up to 13.34%, and for bagging, it is improved up
to 7%. One of the limitations of this research is the appli-
cation of the proposed algorithm to a dataset that belongs to
a similar category, i.e., cancer data. Hence, as a future ex-
tension of this work, these experiments will be applied to

other types of medical datasets, i.e., brain tumours, skin
cancers, ECGs, medical imaging, clinical trials, Oasis, and
CTdatasets, and enhanced by taking some other applications
of AdaBoost such as Viola-Jones object detection to improve
its performance with the base classifers.

Data Availability

Te dataset could be made available on request to the
corresponding author.
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Switzerland, 2015.

10 Applied Computational Intelligence and Soft Computing




