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Ultra-reliable low-latency communications, URLLC, are designed for applications such as self-driving cars and telesurgery requiring
a response in milliseconds and are very sensitive to transmission errors. To match the computational complexity of LDPC decoding
algorithms to URLLC applications on IoTdevices having very limited computational resources, this paper presents a new parallel and
low-latency software implementation of the LDPC decoder. First, a decoding algorithm optimization and a compact data structure are
proposed. Next, a parallel software implementation is performed on ARM multicore platforms in order to evaluate the latency of the
proposed optimization.Te synthesis results highlight a reduction in the memory size requirement by 50% and a three-time speedup in
terms of processing time when compared to previous software decoder implementations. Te reached decoding latency on the parallel
processing platform is 150μs for 288 bits with a bit error ratio of 3.410–9.

1. Introduction

Initially introduced by Gallager in 1962 [1] and then
reworked byMackay and Neal in 1996 [2], low density parity
check (LDPC) codes have recently been used in several
wireless standards such as WiMax (IEEE 802.16e), WiFi
(IEEE 802.11n), 5G New Radio (NR), and DVB-S2.

LDPCs are linear block codes defned by a sparse binary
parity check matrix H. Tey are typically represented by
bipartite graphs formed by variable nodes and check nodes
connected by bidirectional edges, also called Tanner graphs
[3]. LDPC codes have attracted considerable attention be-
cause of their superior error correction capability based on
the iterative log-likelihood-ratio belief propagation algo-
rithm (LLR BP) [4].

However, LDPC codes also have the disadvantage of
high decoding complexity, which makes it signifcantly
challenging to meet the requirements for low latency in
communication systems. For example, the latency of the

ultra-reliable low-latency communications needs to achieve
32Octect in less than 1ms with a bit error ratio at 10− 5 [5].

Tere are two approaches to implement the LDPC de-
coder.Te frst one is hardware based on application-specifc
integrated circuits (ASICs) or feld-programmable gate array
(FPGA) circuits.Tis approach not only achieves low latency
and high throughput [6–9] but also brings a high devel-
opment cost. Tis is a limitation for applications requiring
fast time-to-market or for technologies with multiple and
fast-evolving standards.

Te second approach is the software implementation
based on coding the algorithm in a programming language
and compiling it into a binary program that is loaded into
the memory of the target architecture and then executed by
its processor.Te software solution considerably reduces the
hardware resources and development time necessary for the
deployment and allows modifying and updating function-
alities by uploading and running a new software version
without changing the hardware.
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Several studies have recently focused on software
implementations of LDPC decoders on multicore devices,
using three soft implementation strategies for parallel
processing: some works manipulate GPUs or x86 multicore
to parallelize processing [10, 11], others use SIMD archi-
tecture [12] to accelerate computation, and the third exploits
multicore system on chip (SoC) to take advantage of hard
acceleration and soft fexibility [13, 14].

In [10], the comparison of parallelization strategies for
the min-sum decoding algorithm of irregular LDPC codes
has demonstrated that the GPU can achieve decoding with
higher throughputs than a general processor. However,
a GPU-based solution works well only for the large code
length because of the time spent for the data transfer be-
tween the host and GPU. For medium or small code length,
the data transfer times are revealed to be higher than the
needed time for the decoding process.

In [12], we proposed a multi-Gbps LDPC decoder on
a GPU, using single-instruction multiple data to parallelize the
processing of many received packets. Tis approach helps to
achieve higher throughputs on embedded mobile devices.
However, the spent times for data transfer between the host
and GPU device are still higher for low-latency applications.

In [13], Kharin et al. performed an implementation on 8
DSP- and 4 ARM-cores multicore system on chip (SoC).
Tis solution takes advantage of the DSP fexibility and
efciency in signal processing tasks, but the interprocessor
communication framework for ARM-DSP cooperative
functionality takes about 2.75ms for the DSP data loading,
consequently increasing the latency decoding.

Terefore, our choice is oriented towards a software
solution based on a new proposed algorithm optimization of
the LDPC decoding process which reduces the computation
complexity and, consequently, the decoding latency. Tis
choice is also motivated by the emergence of general-
purpose processors with high computing power and mul-
ticore embedded systems that allow very powerful parallel
calculations, which allows for the near-performance of the
hard solutions with a reduction in cost and an adaptation to
the various application contexts.

Te rest of the paper is organized as follows. Section 2
reviews the LDPC codes, the LLR BP, themin-sum (MSA), and
the normalizedmin-sum (NMSA) algorithms. In Section 3, the
proposed optimization algorithm and data structure are in-
troduced, the complexity of the proposed algorithm in terms of
the number of computational operation is discussed, and the
parallel computational model is presented. Section 4 is dedi-
cated to the simulation results in terms of CPU run time, the
error-correcting performances, and the latency of the parallel
software implementation on x86 and ARM multicore plat-
forms. Section 5 concludes the paper.

2. Basic Decoding LDPC Algorithms

2.1.LDPCCodes. A binary LDPC channel code is a linear (N,
K) block code used to correct transmission errors. From the
transmitter, the coding generates an N-bit code word from
a K-bit information message with the addition of M � N −

K parity bits. Te decoding procession used a binary sparse

parity-check matrix H of seize M x N; if x is a valid code-
word vector, thenH · xT � 0, where xT is the transposed of the
code-word vector and “·” represents the matrix multipli-
cation modulo 2.

If the parity check matrix contains the same number of
ones per row (noted dc), and the same number of ones per
column (noted dv), the code is called a regular LDPC code.
Otherwise, the code is called irregular code. In this paper, we
limited our focus to irregular codes for their good con-
vergence [15] in terms of bit error ratio (BER) related to
signal to noise ratio (SNR).

An example of theHmatrix withN� 12 variable nodes vj
and M� 9 control nodes ci is shown in Figure 1(b). Tis
matrix can be represented by a Tanner graph (Figure 1(b))
containing M check nodes (ci), N variable nodes (vj), and E
bidirectional edges connecting the check node ci to the
variable node vj when the value the matrix element Hij is 1.

Te structured position of the nonzero elements in the
parity check matrix H allows for a reduction in the LDPC
encoding complexity. Quasi-cyclic LDPC codes (QC-LDPC)
are a class of structured codes that have a good error cor-
rection performance [17, 18]. For these codes, the H matrix
is composed by a set of Z×Z submatrices, where Z is called
the expansion factor; each Z×Z submatrix is obtained by the
right circular permutation of the Z×Z identity matrix. Te
permutation value defnes the diferent submatrices. Tese
values are called shift coefcients, and the set of shift co-
efcients is then collected in a matrix called the expansion
matrix noted Hbm.

For a H matrix of size M×N, the related expansion
matrix Hbm size is m× n, where m�M/Z and n�N/Z. Te
expansion matrix Hbm is expanded to the H matrix by
replacing each negative shift coefcient with a Z×Z all zeros
matrix, each zero shift coefcient with a Z×Z identity
matrix, and each positive shift coefcient with a right cir-
cular permutation Z×Z identity matrix.

Figure 2 shows an example of theHbm expansion matrix
of size (24, 12) and expansion factor Z� 96, expanded to the
WiMAXHmatrix of size (2304, 1152). Each shift coefcient
is replaced by the right circular permutation of 96× 96
identity matrices; the “0” elements are replaced by a 96× 96
identity matrix, and the “− 1” elements are replaced by
96× 96 all-zero matrices.

2.2. LLR BP Decoding for LDPC Codes. Te LLR BP
decoding is based on the belief propagation of the log-
likelihood ratio (LLR) messages between connected nodes.
Te LLR value is used to evaluate the ratio between the
probabilities of a binary random variable to be 0 or 1.

Te C2V messages mci⟶vj
propagated from ci to vj are

initialized at zero and the V2Cmessages mvj⟶ci
propagated

from vj to ci are initialized as follows:

m(0)vj⟶ci
� L(0)vj

� log
p yj/vj � 0 

p yj/vj � 1 
⎛⎝ ⎞⎠,

(1)
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where yj denotes the channel-information of the j-th variable
node, vj denotes the j-th code word bit, and L and p denote,
respectively, the LLR value and the conditional probability.

After initialization, each iteration is mainly described by
horizontal and vertical intensive processing blocks. In the
horizontal processing, the algorithm updates the messages
propagated from each check node to each variable node.
Te updated C2V messages mci⟶vj

are generated according
to

mci⟶vj
� 2 tanh− 1



vb∈N ci( )\vj

tanh
mvb⟶ci

2
 ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠, (2)

where N(ci)\vj denotes the neighboring variable nodes that
are connected to check node ci, excluding variable node vj.

In vertical processing, the updated V2C messages
mvj⟶ci

are calculated as follows:

mvj⟶ci
� L(0)vj

+ 

ca∈N vj( \ci

mca⟶vj
,

(3)

where N(vj)\ci denotes the neighbors check nodes that are
connected to variable node vj, except for the check node ci.

After the generation and propagation of all the updated
V2C and C2Vmessages, a hard decision on the variable node
vj is made, based on the new LLR update L(vj) calculated as
follows:

L vj  � L(0)vj
+ 

ca∈N vj( 

mca⟶vj
,

(4)

where N(vj) denotes all the neighbors check nodes that are
connected to the variable node vj.

Te iterative decoding process will not stop until all the
check equations are satisfed, i.e.,H · vT � 0, or the predefned
maximum number of iterations is reached.

Te decoding complexity can be signifcantly reduced
thanks to various algorithms available for C2V messages
mci⟶vj

updates simplifcation. Te widely used ones, in the
recent works, are min-sum (MSA) and normalized min-sum
(NMSA) algorithms [19–21]. For the MSA algorithm, the
update equation became

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

c3 0 0 0 0 0 0 00 1 1 1 1

c2 00 0 0 0 00 01 1 1 1
0c1 0 0 0 0 0 0 01 1 11

c8 00 0 0 0 0 00 1 11 1

c4 0 00 00 0 00 1 1 11
c5 0 00 0 0 0 0 01 11 1

c9 0 0 0 0 0 0 00 111 1

c7 0 0 0 0 0 00 01 11 1

c6 0 0 0 0 0 000 111 1

(a)

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

c3c2c1 c8c4 c5 c9c7c6

(b)

Figure 1: (a) H matrix with N� 12 variable nodes vj and M� 9 control nodes ci. (b) Corresponding Tanner graph. Figure 1 is reproduced
from Benhayoun et al. [16] (under the creative commons attribution license/public domain).
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Figure 2: Hbm Wimax expansion matrix, with n� 24, m� 12, and Z� 96.
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mci⟶vj
� 

n′∈N(m)\n

sign mvb⟶ci
  min

n′∈N(m)\n
mvb⟶ci



 .

(5)

For the NMSA algorithm, this value is normalized by
a factor α, where α< 1:

mci⟶vj
� α 

n′∈N(m)\n

sign mvb⟶ci
  min

n′∈N(m)\n
mvb⟶ci



 .

(6)

Tese two algorithms are mainly based on the de-
termination of the frst and secondminimum of the modules
of the V2C messages noted as min1 and min2. Te nor-
malized min-sum algorithm (NMSA) improves the cor-
rection performance compared to the MSA approximation.

LLR-BP decoding is typically performed by repeating the
fooding schedule, where all check-to-variable messages
(C2V) are updated in the horizontal step, and subsequently
all variable-to-check messages (V2C) are updated in the
vertical step.

However, the convergence process is slowed down as the
latest updated information, in the current iteration, must be
used in the next iteration. To speed up convergence and
increase error correction performance, sequential schedul-
ing methods have been proposed, with both a predetermined
and fxed sequence of updates. Tis sequential scheduling
strategy difers from fooding in that the last updated in-
formation is used in the current iteration. Shufed [22, 23]
and dynamic [16, 24] scheduling are two variants of this
strategy and allow decoding convergence to accelerate twice
as fast as fooding scheduling.

In order to have a better BER convergence performance,
the NMSA algorithm is associated with shufed scheduling
that allows accelerating decoding convergence. Algorithm 1
depicts the pseudocode of this association. Initialization of
C2V and V2C is carried out (line 1) according to equation
(1), and then the maximum number of iterations is set (line
2). Te C2V computation is performed in the vertical
processing according to equation (6), followed by the V2C
and the new LLR calculation in the vertical processing
according to equations (3) and (4). Te hard decision is
made based on the new LLR update (line 22). If the sign of
the LLR value is positive, then the code-word bit is set to 1,
else it is set to 0. Once the estimated code word is obtained,
the syndrome is executed to evaluate if a valid code-word is
found (line 24); otherwise, a new decoding iteration is

started (line 2), and the iterative decoding process will not
stop until the valid code-word is found or the predefned
maximum number of iterations is reached.

3. Proposed Parallel Software Implementation

Before going to throw, a profling procedure using the
Valgrind [25] profler is frst executed to determine the total
execution CPU time for each block of the LDPC decoder.
Blocks that require more computing time are then identifed
and considered as more suitable candidates for eventual
optimizations.

3.1. Results of the Profling Analysis. In our case, the NMSA
HS algorithm is implemented in the C language, profled
with Vilgrand, and tested on the quasi-cyclic irregular LDPC
codes (576, 288), (1152, 576), (2304, 1152), (4608, 2304), and
(9216, 4608) constructed based on the IEEE 802.16e standard
under the white Gaussian noise channel (AWGN) and the
BPSK modulation.

Te memory size requirement and the run time spent
in the write/read memory accesses depend on the adopted
data structure for both the H matrix and message storage.
Te data structure used in previous works [10–14] is used
in this run-time analysis. In this representation, the H
matrix is represented as two separate two-dimensional
arrays: the frst contains the column indexes of each
matrix row, which is used for the horizontal processing,
and the second contains the row indexes of each matrix
column, which is used for the vertical processing. Some
values in the two-dimensional arrays are set at − 1 because
these arrays represent an irregular LDPC code, which has
diferent column weights and row weights. Terefore, the
size of the frst two-dimensional array isM × dcmax and the
size of the second one is N × dvmax, where dcmax and dvmax
are respectively the maximum value of the number of ones
per row dc and the maximum value of the number of ones
per column dv.

For the message storage, two arrays of size E are used for
the C2V and V2C message updates, and two other arrays of
size N are used for initial and updated LLR values.

Terefore, the memory size required for this data
structure is calculated as blow (equation (7)).Te frst part of
the equation concerns the H matrix storage, and the second
part concerns the message storage:

memory size � M × dcmax + N × dvmax(  × size of (interger) + 2 ×(E + N) × size of (float), (7)

where E is the total number of edges in the entire Tanner
graph,N is the number of the variable node,M is the number
of the check node, and sizeof() refers to the operator which
gives the amount of storage, in bytes, required to store an
object of the type of the operand.

Table 1 reports the overall CPU run-time in cycles
spent in diferent algorithm blocks depicted in Algo-
rithm 1. Table 2 reports the same time spent by arithmetic
operations, data memory accesses in read/write mode,
and the cycles spent in searching data outcomes at level

4 Applied Computational Intelligence and Soft Computing



one (L1 miss) and the last level (LL miss) of the
memory cache.

Te profling results of Tables 1 and 2 are reported in
Figure 3, in terms of the CPU percentage cycles. Figure 3(a)
illustrates that the V2C message updates block is the most
time-consuming module (66%) followed by the C2V mes-
sage update block which takes 28.3% of the execution time.
Te higher percentage of run-time taken by the V2C block is

justifed by the fact that the number of V2C updating
(M× dc × dv � dv. E update) higher than that of the C2V
updates (M× dc � E update).

Figure 3(b) shows that 62% of the CPU time is spent on
memory access (49% for the data read and 13% for the data
write), 36% for instructions, and only 2% for memory access
out of the cache memory. Te higher percentage of access
memory can be justifed by the separated processing of

(1) Initialize all mci⟶vj
� 0, mvj⟶ci

� L(0)vj
and Itermax

(2) for i� 1 to Itermax do
Horizontal processing (C2V computation):

(3) for each check node ci

(4) for each variable node vj connected to ci
(5) Calculate min1 & min2
(6) end for line 4
(7) for each variable node vj connected to ci

(8) mci⟶vj
� α 

n′∈N(m)\n

sign(mvb⟶ci
)min 1 ormin 2

(9) end for line 7
Vertical processing (V2C computation) and LLR update:

(11) for each variable node vj connected to ci
(12) for every check node ca connected to vj
(13) tmp � tmp + mca⟶vj

(14) end for line 12
(15) L(vj) � L(0)vj

+ tmp
(16) for every check node ca connected to vj
(17) mvj⟶ci

� L(vj) − mci⟶vj

(18) end for line 16
(19) end for line 11
(20) end for line 3

Hard decision:
(21) for each variable node
(22) Make hard decision if sign(L(vj))> 0 then vj � 1; else vj � 0
(23) end for line 19

Parity check equations (Syndrome) and stopping criteria:
(24) if H·vT � 0 then break else i� i+ 1
(25) end for line 2

ALGORITHM 1: Horizontal shufe NMSA.

Table 1: CPU run-time in cycles spent by the algorithm block.

Code size V2C computation C2V computation Decision Initialization Syndrome
(9216, 4608) 7 001 278 2 959 459 173 541 125 181 253 439
(4608, 2304) 3 491 957 1 472 692 120 639 51 508 115 542
(2304, 1152) 1 725 562 739 557 43 557 32 895 72 600
(1152, 576) 862 872 368 852 23 929 15 534 35 676
(576, 288) 430 294 185 021 9 671 9 534 16 382

Table 2: CPU run-time in cycles spent by instruction and memory accesses.

Code sizes Total cycles Instruction cycles Data read
memory accesses

Data write
memory accesses

L1 memory
cache miss

Last level
memory cache

miss
(9216, 4608) 105 128 98 3 727 900 5 137 660 1 394 103 24 275 105
(4608, 2304) 5 252 338 1 866 554 2 563 633 695 571 12 136 52
(2304, 1152) 2 614 171 928 109 1 276 110 346 712 6 064 26
(1152, 576) 1 306 863 465 771 635 694 173 865 3 023 13
(576, 288) 650 901 231 316 317 418 86 468 1 505 6
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horizontal and vertical stages; in fact, for the same data, the
memory access is done in read mode in the horizontal stage
using the column-mapped matrix table and in write mode in
the vertical step using the row-mapped matrix table, and
vice-versa.

According to these analysis results, the V2C computa-
tion bloc is chosen to be optimized in order to decrease the
access memory and instruction required in the decoding
process.

Unlike the previous works [10–14], in this paper we
propose an optimized version of the NMSA horizontal
shufed scheduling algorithm bymerging the horizontal and
vertical steps into one step, thereby allowing to decrease the
memory accesses and minimize the number of arithmetic
operations.

We also propose a compacted data structure to represent
the H matrix that is organized by the processing order and
that is suitable for parallel implementation in order to take
advantage of the multicore platforms for lower decoding
latency.

3.2. Proposed Optimization. Separate data processing in-
creases the memory access for the same data. In order to
solve this problem, an optimized algorithm is proposed to
compute all the message updates (C2V, V2C, and L(vj))
corresponding to the data overloaded in the CPU processor
in the same step before loading the next data. Tis allows
taking advantage of the temporal locality of the cache
memory and makes all computations on the current CPU-
fetched data.

From equations (3) and (4), we can observe that the
initial LLR value of the variable node and the current it-
eration’s V2C message value are both stored in the current
iteration’s LLR value, so we can calculate the V2C message
value from the diference between the variable node’s LLR
value and the connected C2V message according to the
equation as follows:

mvj⟶ci
� L vj  − mci⟶vj

. (8)

Also, as presented in Figure 4, once one C2V message is
updated, the calculation of the L(vj) can be directly done by
replacing the old C2V value with the new one.Te diference

between the old LLR value and the old C2V is equal to the
old V2C value (equation (7)), so the updated L(vj) is cal-
culated according to the following equation:

L vj 
new

� mvj⟶ci

old
+ mca⟶vj

new
. (9)

Algorithm 2 depicts the pseudocode of the proposed
optimization. Initialization of C2V and V2C is carried out
(line 1) according to equation (1), and then for each check
node, the processor uploads the old C2V and LLR values of
each variable node connected to the check node (lines 3 to 4).
Te min1 and min2 values are calculated from the diference
between L(vj) and C2V uploaded (lines 5 and 6), then the
C2V and L(vj) messages update are calculated in the same
loop (lines 9, 10, 11) before passing to the next check node.
Te hard decision and syndrome blocks are the same as
shown in Algorithm 1.

3.3. ProposedData Structure. Te proposed data structure is
generated by scanning the H matrix in a row-major order
and by sequentially mapping the column index associated
with nonzero elements in the H matrix. Tese column in-
dexes are collected and stored in consecutive memory po-
sitions inside the table of size E, noted Col.

In order to take advantage of the spatial locality of the
memory cache, the C2V messages are also mapped in
memory in a row-major order in consecutive memory
positions. In this way, each element of the Col table records
the address of the corresponding C2V value. Using the
proposed algorithm, the V2C messages are not memorized
because they will be calculated in the decoding process using
equation (8).

Figure 5 shows the diferent arrays required for the
proposed algorithm using, as an example, the matrix shown
in Figure 1. Te access memory to the C2V and Col tables is
made directly because the C2V messages and column in-
dexes are stored in the memory following the execution
order (row-major order); the access memory to the L(vj)
message is done towards the Col table. For example, the
check node c1 contains 4 nonzero elements: the frst one is
connected to the third variable node (Col[1] = 3), the second
one is connected to the sixth variable node (Col[2] = 6), the
third one is connected to the seventh variable node (Col[3] =

C2V computation
28,3%

V2C computation
66%

syndrome
2,5%

Initialization
1,34%

Decision 1,8%

(a)

Data Read memory
access
49%

Data Write memory
access
13%

L1 miss 2%

Instruction
36%

(b)

Figure 3: (a) CPU percentage cycles spent by code block. (b) CPU percentage cycles spent by memory access and instructions.
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7), and the fourth one is connected to the eighth variable
node (Col[4] = 8).

Te memory size required for this data structure is
calculated by the following equation:

memory size � E × size of (interger) +(E + N) × size of (float). (10)

Te frst part of the equation concerns the H matrix
storage (Col table), and the second part concerns the
messages storage (C2V[] and L(vj)). It is clear from
equations (7) and (10) that the memory size required for
the proposed data structure is lower by 50% than the
data structure proposed in [10–14], and consequently, the

run-time required for the memory access is highly
reduced.

3.4. Parallel ComputationalModels. Te complexity can also
be highly reduced depending on the multicore platform and
the algorithm parallelism level, which is correlated to the

+

vj

yj

L (vj)

N (vj)

ca1

ca2

cadv

m ca1

vj

+
vj

yj

L (vj)

N (vj)

ca1

ca2

cadv

m ca2
vj

m
cadv

vj

m ca1
vj

m ca2
vj

m
cadv

vj

Figure 4: LLR value update.

(1) Initialize all mci⟶vj
� 0, and L(vj) � yj Itermax

(2) for i� 1 to Itermax do
Horizontal processing:

(3) for each check node ci
(4) for each variable node vj connected to ci
(5) Calculate v2c � L(vj) − mci⟶vj

(6) Calculate min1 & min2
(7) end for line 4
(8) for each variable node vj connected to ci
(9) Calculate c2v � α 

n′∈N(m)\n

sign(mvb⟶ci
)min 1 ormin 2

(10) Calculate L(vj) � v2c + c2v

(11) mci⟶vj
� c2v

(12) end for line 8
(13) end for line 3

Hard decision:
(14) for each variable node
(15) Make hard decision if L(vj)> 0 then vj � 1; else vj � 0
(16) end for line 19

Parity check equations (Syndrome) and stopping criteria:
(17) if H·vT � 0 then break else i� i+ 1
(18) end for line 2

ALGORITHM 2: Proposed optimization NMSA.
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data dependencies during the decoding process, allowing the
parallel memory access.

Te proposed data structure allows parallel execution
because the related data is grouped into consecutive memory
locations; each check node has its independent part of the Col
and C2V array in the consecutive order. However, the L(vj)
array is shared between all check nodes and several kernels can
read or write the same L(vj) in the same times, which generates
expensive synchronization run-time for memory access.

Terefore, the parallel processing is allowed between k
check nodes if their neighboring variable nodes that are
connected to these check nodes do not share any variable
nodes; otherwise,

∩
kchecknodes

N ck(  � ∅. (11)

Te value k represents the algorithm parallelism level.
For the quasi-cyclic LDPC codes, each row of the Hbm
expansion matrix is expended to Z rows by replacing each
shift coefcient by a Z x Z identity matrix or circularly
shifted Z×Z identity matrix, so the Z rows generated from
one raw ofHbm satisfy the equation (11), because there is no
data dependency among diferent rows of the identity
matrix. Terefore, as depicted in Figure 6, Z threads are
lunched in a parallel way; each thread processes one H
matrix row, the transition to the next Z rows is performed
sequentially, and so on, until allM rows are processed. Since
the entire Z rows generated from one row of the Hbm ex-
pansion matrix have the same dc value, Z threads processing
the same Hbm row have almost exactly the same run-time
when calculating the updates messages. Consequently, no
synchronization is required between the Z threads.

3.5. Complexity Analysis. Te complexity is evaluated for
each iteration of the LDPC decoding, where one iteration
means the process of selecting and updating all edges in the
Tanner graph.Te total number of edges in the entire Tanner
graph is E� dc.M� dv.N, where dc and dv denote the average
degree of check nodes and variable nodes, respectively.

As depicted in Algorithm 1, the NMSA horizontal shufe
algorithm, the horizontal processing involves the calculation
of the min1 and min2 values (line 5) which require
2.dc.M= 2.E comparison and 2.dc.M= 2.E read access
memory. Te calculation of the C2V messages update (line
8) requires dc.M multiplication and dc.M write access
memory. Te vertical processing involves the calculation of

the summation of the C2V (line 13) that require dv.dc.M =
dv.E addition, and dv.dc.M = dv.E read access memory
operation, a LLR update (line 15) require dc.M = E addition
operation, dc.M=E reads access memory operation, and
dc.M=E writes access memory operation, and fnally, the
V2C messages update (line 17) which requires
dv.dc.M= dv.E subtraction, 2.dv.dc.M= 2.dv.E reads access
memory and dv.dc.M= dv.E writes access memory
operation.

As depicted in Algorithm 2, for each check node, the
processor uploads the i-1 iteration’s C2V messages and
L(vj) message, and all update calculations corresponding to
the data uploaded are done before passing to the next check
node. Te min1 and min2 values are calculated from the
diferences between L(vj) and C2V uploaded (lines 5 and 6)
that require dc.M=E subtraction, 2.dc.M= 2.E read access
memory, and 2.dc.M= 2.E comparison. Ten, the C2V and
L(vj)message update are calculated in the same loop (lines 9,
10, and 11) which require dc.M=Emultiplication operation,
by the normalized factor α (line 9), dc.M=E addition op-
eration for L(vj) update using the equation (line 10),
dc.M=E writes access memory operation required for
writing the L(vj) value (line 10), and dc.M=E written access
memory operation (line 11).

Table 3 reports the overall computation operation and
memory access needed for both algorithms. Because of the
spearing horizontal and vertical processing proposed in
previous works, the complexity of the algorithms can be
expressed as O(9.E+ 6.dv.E) with a signifcant number of
arithmetic operations and memory access for the vertical
steps, which contributes to increasing the decoding com-
plexity, while the complexity of the optimized algorithm is
about O(9.E). Te dv value is always strictly superior to two
because a variable node is connected at least to two control
nodes. For the WiMAX H matrix shown in Figure 2, the
value dv is 4. Terefore, the proposed optimization clearly
reduces complexity compared to the previous works.

4. Experimental Results

4.1. CPU Run-Time Cycles Evaluation. Figure 7 shows
a comparison of the proposed LDPC decoder in terms of
CPU cycles with the no-optimized HS and NMSA algo-
rithms, for three codes. IR, DR, and DW corresponds, re-
spectively, to the CPU cycle spent in the decoding
instruction, the CPU cycle number spent in the read

1 2 3 4 5 6 7 8 9 10 11 12

1

L (vj) :

Col :

C2V :

c1 c2 c3 c4 c5 c6 c7 c8 c9

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

3 6 7 8 1 2 5 12 4 9 10 11 2 6 7 10 1 3 8 11 4 5 9 12 1 4 5 7 6 9 11 12 2 3 9 10

Figure 5: Proposed data structure.
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Partial Parallel processing of M = Z × m rows

Parallel processing
of Z rows

Parallel processing
of Z rows

Parallel processing
of Z rows

Row 1
Row 2

Row Z

Row Z + 1
Row Z + 2

Row 2 × Z

Row [(m - 1) × Z] + 1
Row [(m - 1) × Z] + 2

Row m × Z

Sequential
transit

Sequential
transit

Figure 6: Parallel computational models for LDPC quasi-cyclic.

Table 3: Computation operations and memory by iteration.

+ − × Compare Memory access

Data and algorithm structures proposed in [17–19]
Horizontal processing E 2.E 3.E
Vertical processing (1+ dv).E dv.E 4.dv.E + 2.E
Total computation (1+dv).E dv.E E 2.E 4.dv.E + 5.E

Proposed optimization E E E 2.E 4.E

Table 4: CPU run-time reduction compared to previous works.

Code size CPU cycles previous work CPU cycles proposed work Reduction ratio
(9216, 4608) 1.05×107 3.45×106 66.67%
(2304, 1152) 2.6×106 8.5×105 66.00%
(576, 288) 6.5×105 2.1× 105 67.7%

(9216, 4608) code
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5,0E+05

0,0E+00

(b)
Figure 7: Continued.
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memory accesses and the CPU cycle number spent in the
write memory accesses. Te proposed optimization allowed
a reduction of the total CPU cycle from 1.05×107 to
3.45×106 for (9216, 4608) code, from 2.6×106 to 8.5×105 for
(2304, 1152) code, and from 6.5×105 to 2.1× 105 for (576,
288) code. Te CPU run-time reduction percentage of the
proposed optimization is presented in Table 4. Te reduction
is about 66% which corresponds to a speedup of 3 times in
terms of processing time compared to previous software
LDPC decoder using separate horizontal and vertical steps.

Te lowest data read (DR) and data write (DW) memory
accesses compared to previous work, confrms that the size
of memory is compacted and the proposed optimization
allows minimizing the memory accesses to the same data.

4.2. Latency Results on Multicore Platforms. Te proposed
parallel implementation is lunched on two diferent parallel
processing platforms. Te frst platform is a Marwan HPC
platform with an Intel Xeon gold 6130 with 08 CPU at

2.10Ghz [26]. Te second platform is a quad-core Cortex-
A72 (ARM v8) @ 1.5GHz.Tis platform is running with the
Linux distribution and is used in IoT solutions.

Figures 8 and 9 report the latency time in milliseconds
between the serial and parallel processing for diferent code
sizes. In the frst platform, the speedup between the serial
and parallel processing shows signifcant results for the
bigger code sizes; it was approximately 2.8 for (9216× 4608)
and 2 for (4608× 2304).

However, the parallel decoding results of matrix size
below (1152× 576) demonstrate worst performances than
the serial results. An important reason is that this matrix
does not have so many edges, so the computation of each
thread needs less time than the run time required for
OpenMP’s thread creation and synchronization.

On the quad-core Cortex-A72 (ARM v8) platform, the
parallel processing showed a signifcant speedup between the
serial and parallel processing for matrix sizes higher than
576× 288. In contrast to the frst platform, even for the 1152
matrix, we can notice a speedup of 2. Tis is mainly due to

(576, 288) code
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Figure 7: Profling results for (9216, 4608), (2304, 1152), and (576,288) codes.
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Figure 8: Latency time comparison between serial and parallel processing on the 1st platform for diferent code sizes.
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the clock speed of 1.5GHz less than the frst platform one
(2.1 GHz). Te calculation time on the quad-core Cortex-
A72 platform is always higher than the time needed for the
creation and synchronization threads.

According to the results reported in Figures 8 and 9, we
defne thresholds for enabling parallelism, and the number of
CPUs used is chosen dynamically depending on the code size.

Table 5 reports the latency result for several code sizes
obtained by a dynamic choice between serial or parallel
processing using the clause “if” in OpenMP. Te latency is
0.11ms for the (576, 144) code and 0.74ms for the big code
with a bit error ratio balanced between 3.4×10–9 and
7×10− 10. In the quad-core Cortex-A72 platform, the latency
is 0.15ms for the (576× 288) code (equivalent to 32 Byte)
with a bit error ratio of 3.4×10–9, so it has clearly shown that
the latency result obtained responds widely to the latency
and reliability required for the ultra-reliable low-latency
communications.

5. Conclusion

In this paper, we present a new software algorithm opti-
mization, in order to decrease the decoding latency with the
same performance obtained by the horizontal shufe NMSA
algorithm. In the optimization algorithm, the separate
horizontal and vertical steps are replaced by one step without
storage of the V2C message update and with a compact data
structure matrix representation, allowing a net reduction of
the memory size requirement by about 50% and imple-
mentation on a multicore platform. Te proposed algorithm
achieves much better BER; the bit error ratio is reaching

3.4×10–9 and the complexity is reduced by 66%. In addition,
the latency is reaching 150 μs for 288 on the ARM quad-core
Cortex-A72 system on chip (SoC), used for IoTprojects and
applications, showing that the proposed optimization be-
haves much better when considering the BER, decoding
complexity, and latency for the ultra-reliable low-latency
communication even on IoT devices with very limited
computing resources.

Based on the work performed in this thesis and the
obtained results, we can identify the following future
perspectives:

(i) Increase the expansion coefcient per parity-check
matrix in order to make the parallel section wider
and reduce the number of crossings between parallel
sections, which occurs by creating threads at each
entry of the parallel section, thus increasing the time
required for thread creation.

(ii) Use codesign methodology to implement the opti-
mized NMSA algorithm on hardware (an FPGA
circuit) and the shufed scheduling and variable
memory organization on software.
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Table 5: Decoding performance on Intel Xeon gold 6130 multicore platforms using OpenMP.

Matrix sizes Edge Z SNR (dB) BER
Intel Xeon gold 6130 Quad-core Cortex-A72

Latency (in ms) CPU number Latency (in ms) CPU number
9216× 4608 29 184 384 4.5 7×10–10 0.74 8 2.4 4
4608× 2304 14 592 192 4.5 8.7×10–10 0.48 6 1.16 4
2304×1152 7 296 96 4.5 2.2×10–9 0.33 3 0.56 4
1152× 576 3 648 48 4.5 5.2×10–9 0.24 1 0.29 4
576× 288 1 824 24 5 3.4×10–9 0.11 1 0.15 4
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