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MEMS-IMUs are widely used in research, industry, and commerce. A proper calibration technique must reduce their innate
errors. In this study, a turntable-based IMU calibration approach was presented. Parameters such as the bias, lever arm, and scale
factor, in addition to misalignment, are included in the general nonlinear model of the IMU output. Accelerometer error
parameters were estimated using the transformed unscented Kalman flter (TUKF) with triangulation algorithm is suggested for
calibrating inertial measurement unit (MPU6050) three-axes accelerometer. In contrast to the present methods, the suggested
method uses the gravitational signal as a constant reference and necessitates no external equipment. Te technique requires that
the sensor be positioned in a rough orientation and that basic rotations be adopted.Tis technology also ofers a quicker and easier
calibration. Comparing the experimental fndings with other works, Allan deviation shows signifcant improvements for the bias
instability, where a bias instability of (0.116 μg) is achieved at temperatures between (−15°C) and (80°C).

1. Introduction

MEMS-IMUs have found widespread use in a variety of
felds, including research, industry, and business. A suitable
calibration method needs to decrease the mistakes that are
inherent in them. Tese sensors found usage in a wide range
of applications, including navigation and positioning sys-
tems, educational software, medical electronics, and more
[1–3]. Researchers have also recently examined the usage of
MEMS devices in user interfaces [4–6]. Despite the benefts
mentioned above, MEMS sensors’ measurements are less
precise than those from tactical-grade sensors because of
biases, noise, scalability errors, nonlinearity, thermal
changes, and misalignment errors. It is clear that these
sensors can only produce signifcant precision if a calibra-
tion technique is used to correctly ofset their inaccuracies.

When calibrating an instrument, it is necessary to
compare its outputs to well-known reference data in order to
identify the coefcients that, for a variety of output values,
cause the output to coincide with the reference data [7, 8].

Traditionally, mechanical platforms and rate tables are used
to spin the sensor to accurately control orientation and
rotation rates during the calibration of the inertial sensors
[9]. However, due to their high cost and need for a controlled
environment, these are neither practical, economically, nor
appropriate for calibrating MEMS sensors. However, the
aim of this paper is to calibrate and minimize the MEMS
sensor output error for the three axes (X, Y, and Z) to be with
less bias error.

2. Literature Review

Alternate calibration techniques have been investigated over
time by researchers to get around the challenges of
employing pricey mechanical platforms. An accelerometer
and gyroscope calibration method that has been fled was
suggested by Ferraris et al. [10]. Using a gravity-based 6-
position approach, they calibrated the accelerometer. For the
sensor to be perfectly aligned with gravity, the sensor en-
closure was meticulously built. Static intervals were used to
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calibrate the gyro’s bias, and full rotations around each axis
were done to determine the scale and misalignments.

Te rotations could only be applied in 2 separate ways
because their approach needed an external reference block.
A calibration technique using a gyroscope and an acceler-
ometer was put out by Skog and Händel [11]. Te accel-
erometer is calibrated using a technique that does not need
the sensor to be positioned in a specifc way and instead uses
gravity as a trustworthy external reference. With the goal of
calibrating the inertial measurement unit (IMU) in the feld,
Jurman et al. [12] combined the gyro calibration method
from [9] with the gravity-based accelerometer calibration
strategy. Olivares et al. [13] ofered a modifed approach that
would do away with the need of using a turntable for such
gyroscope calibration. First, in order to calibrate the ac-
celerometer, they employed a gravity-based 6-position
technique, and then, in order to calibrate the gyroscope,
they used a previously calibrated accelerometer in con-
junction with a bicycle wheel.

Ma et al. suggest a brand-new, used the applicable
modulated feedback method to reduce the overall bias in-
stability of the closed-loop system, MEMS capacitive ac-
celerometers [14]. Using modulated feedback allows for the
separation of the 1/f noise that is brought into the system by
the electrical interface. Comparative experiments have been
set up, and a signifcant improvement in the bias instability is
indicated by the Allan variance. Te bias instability has been
reduced to under 13 g [14]. A pair of double-ended tuning
forks (DETFs), a pair of pair beams, two microlevers, proof
mass, and even a quartz frame are all components of the
centrally symmetric quartz accelerometer assembly that was
designed by Chao Han et al. [15]. In order to maximize the
utilization of sensor space and enable sensor downsizing,
microleverages and DETFs are placed around the chip
perpendicular to one another. Because of this, the velocity
random variable is calculated to be 0.84 g/Hz, and the bias
instability is calculated to be 3.05 g.

Zhao et al. [16] proposed an automatic gain-control
(AGC) for self-compensation method that combines a po-
larization source and reference. DC and AC polarization
scenarios are covered, and it eliminates any 1/f noise and
drift that the polarization source itself introduces. According
to the experimental fndings, the suggested AC polarizing
and self-compensation technique can increase the bias
stability of the investigated SOA from 2.58 g to 0.51 g.

Gravity-based techniques can be used in the feld with ease
because they do away with the need for additional equipment
in the case of an accelerometer. In contrast, to hand, calibrating
a gyroscope with a turntable or other external device restricts
the sensor’s ability to be reliably calibrated inside the feld and
increases overall costs. An accelerometer, gyroscope, and the
magnetometer are all integrated onto a single chip in the
MPU6050 sensor that we used as an example. Inertial sensor
businesses are increasingly attempting to merge numerous

sensors onto the single chip in order to further decrease both
the size and cost of their products as MEMS technology
continues to progress.

In this research, we suggest a calibration algorithm for an
inexpensive IMU (MPU6050) that may be used in the feld
without any additional hardware. Te process also requires
less computation and can be applied physically. Te doc-
ument is structured in the manner described below. Te
output model for the accelerometer is developed in Section
2. Te calibration method is discussed in sections 3–5. Te
Delaunay triangulation technique is demonstrated in Sec-
tion 6, the experiment setup is illustrated in Section 7, and
the conclusion is presented in Section 8.

3. Output Model for the Accelerometer

Te modelling of the accelerometer output is carried out in
the same manner as the modelling of the gyroscope output.
Te scale factor, bias, and misalignment errors are also
present in the gyro error components, which are comparable
to those found in the static error components. In addition to
this, the accelerometer has a problem with the error caused
by the lever arm.

Te following is one way to explain the information
provided by the accelerometers when Ma ≜Ga − Ea

′,
Ga ≜WT

a are defned, respectively:

􏽥A
s

� Ga − Ea
′( 􏼁A

b
− ba + ηa � MaA

b
− ba + ηa, (1)

and

Ea
′ � WaΛa + UaΔva

+ VaΔua
− UaΔva

Λa − VaΔua
Λa􏼐 􏼑

T
, (2)

where Ma and Ga, respectively, indicate the actual and
nominal confgurations of the sensors,Λa scale factor matrix
of errors,Wa is the nominal direction matrix, Va and Ua the
orthogonal orientation vectors, ba is the vector of bias, and
ηa is the measured noise.

Te ideal acceleration vector may be represented as
follows [17, 18] if we assume that the accelerometer was
positioned at the distance from the center of the turntable.

A
b

� A
b

+ ωb
ib × ωb

ib × d􏼐 􏼑 + _ωb
ib × d, (3)

where Ab � [Ab
xAb

yAb
z]T indicates the acceleration that

would be taking place at the table’s center of rotation in
relation to the body frame [αb

xαb
yαb

z]T is a measure of the
angular velocity of the turntable’s acceleration, and d is
defned as d � [dxdydz]T is the vector that is used to rep-
resent the lever arm.

Now, this (3) is recast in a more succinct form as seen in
the following equation:

Ab
� Ab

− K1ω2 − K2α
b
, (4)

where
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K1 ≜

0 dx dx −dy −dz 0

dy 0 dy −dx 0 −dz

dz dz 0 0 −dx −dy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

K2 ≜

0 −dz dy

dz 0 −dx

−dy dx 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ω2 ≜ ωb2

x ωb2

y ωb2

z ω
b
xω

b
yω

b
xω

b
zω

b
yω

b
z􏼔 􏼕

T

.

(5)

If we substitute (4) for (1), then the outputs of the ac-
celerometer will be

􏽥A
s

� Ga − Ea
′( 􏼁A

b
− Kwω2 − Kaα − ba + ηa, (6)

in which

Ea
′ � WaΛa + UaΔva

+ VaΔua
− UaΔva

Λa􏼐 􏼑

− VaΔua
ΛT

a ,

Kw ≜ Ga − Ea
′( 􏼁K1,

Ka ≜ Ga − Ea
′( 􏼁K2,

Ma ≜Ga − Ea
′, Ga ≜W

T
a .

(7)

4. TUKF Calibration Method

Te sensor output is nonlinear. As a result, an estimation of
the error parameters has to be carried out using a nonlinear
flter [19]. TUKF, a new nonlinear flter, was recently created
and published in [20]. In contrast to the transformed un-
scented Kalman flter (TUKF), the TUKF does not sufer
from linearization error since the TUKF approach is
founded on the sigma point [20]. Tis allows the TUKF to
perform more accurately. In addition, in contrast to other
flters that are based on sigma points, such as the unscented
Kalman flter, this flter does not need any tweaking (UKF).

As a result, the TUKF was used in this investigation in the
capacity of an estimator (observer). For TUKF to be able to
execute the estimate of unknown parameters, it requires
a dynamic model in addition to observations. All readings and
process model of the calibrating flters will be provided in the
sections that follow.

5. Model of Measurement and Process for
the Accelerometer

For the purpose of representing measurement, which is
contingent just on the output of the system of the accel-
erometer (1), the following equation may be used:

z(k) � 􏽥A
s

− GaA
b

� −Ea
′Ab

− Kwω2 − Kaα − ba + ηa.

(8)
Te Markovian model of the frst order is a reasonable

assumption for ηa [21], given that

ηai
(k) � Cxai

(k)Xai
(k) + vai

(k), (9)

where Xai stands for the state variable of a frst order
Gauss–Markov process, Cxai stands for the coefcient, and
vai may be thought of as white Gaussian noise with a mean of
zero and a covariance of E vai

vai

T􏽮 􏽯 � Rai
. If we assume that

the calibration was fnished in a reasonably short amount of
time, then we will be able to describe the error parameters as
constant processes.Tis is because we will have assumed that
the time it took to complete the calibration was relatively
short. Because of this, it would seem that the error pa-
rameters are immune to the efects of variations in tem-
perature.Te dynamism of the process in the state space may
be described as follows:

Xauga
(k) � Aa(k − 1)Xauga

(k − 1) + Ba(k − 1)wxa
(k − 1),

(10)

where

Xaauga
� xaba

Tλa
Tδua

Tδva
T
d

T
Aa

T
B

T
a C

T
a 􏽩

T
􏼔 , (11)

the calculation for Aa, Ba an is as follows:

Aa �
Aa 0

∗ I
􏼢 􏼣, Ba �

Ba

0
􏼢 􏼣. (12)

Moreover, there is an angular acceleration α indicated in
the form of (8). In general, there are two diferent methods
that may be used to calculate this signal. Te frst problem is
associated with the twice diferentiated output of the en-
coder. Te existence of noise, on the other hand, causes this
method to result in an increase in the magnitude of the
inaccuracy. Another potential strategy involves the angular
acceleration of the system as an additional unknown variable
in the state space. In order to accomplish this goal, a dy-
namic model for angular acceleration should be explored.
For the purpose of this investigation, a Gauss–Markov
dynamic of the frst order was used to model angular ac-
celeration. An angular acceleration is basically just
a straightforward function of an angular velocity like that.

αi(k) � a(k)ωi(k) − b(k)ωi(k − 1) + wαi
,

a(k) � a(k − 1),

b(k) � b(k − 1),

(13)

where a, b, and c are constant coefcients that are estimated
in the same way as any other coefcients. Te process noise’s
covariance matrix is denoted by the equation
E wαi

wT
αi

􏽮 􏽯 � Qαi
.

Te order of 27 is assigned to the process dynamics of
accelerometers (9), on the other hand.Te complete order of
process dynamics is increased to 30, which are employed in
the TUKF for the purpose of computing the overall error
characteristics of accelerometers. Tis is done via including
its angular acceleration (11), which brings the total up to 30.

6. Formulation of TUKF

In [20], a comprehensive description of TUKF is provided.
Just its mechanism is described in this section, while the
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algorithm that governs it is given out in Table 1. Take into
consideration a process model of the nth order, the mea-
surement models for which would be as follows:

xk � f xk−1, uk−1( 􏼁 + ωk−1,

yk � h xk, uk( 􏼁 + σk,
(14)

where u represents the input and xk represents the kth se-
quence of state variables, ω and σ are the measurement
Gaussian white noises process, each one with covariance
matrices values Qk and Rk. Te TUKF approach for the
described process and also the measurement dynamics
consists of three components: initialization, prediction, then
the measurement update. Sigma values, an estimate of the
state variables (􏽢x−

o ), and an error covariance matrix (􏽢P−

o ) are
all set to zero at the beginning. In order to make inferences
about the future, the process model is used to compute
estimates for state variables (􏽢x−

k ), as well as the square root of
the covariance matrix. Te square root of the covariance
matrix and the state variables (􏽢x+

k ) are then updated based on
the actual values of the measurement and its model.

According to the information shown in Table 1, E [.]
designates the expected value operator, qr (.) stands for the
QR decomposition, chol (.) is regarded here as the Cholesky
factor decomposition process, and In is an identity matrix of
the nth order. Te calibration procedure was carried out on
an MPU6050 sensor in order to determine whether or not
the approach described in this article is indeed practicable.

IMU and Arduino both contributed to the data col-
lection process.Te inertial measurement unit (IMU), which
consists of three orthogonal gyroscopes and accelerometers,
is housed in the turntable in such a manner that allows us to
take into account the followingmatrices while confguring it:

W �

1 0 0

0 1 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,U �

0 0 1

1 0 0

0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,V �

0 1 0

0 0 1

1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (15)

To fgure out how well the proposed method works, the
results of calibration using least squares (LS) [22] were com-
pared to those of calibration using the proposed method.

7. Delaunay Triangulation Algorithm

Tis section examines how the transformed unscented
Kalman flter’s output is impacted by the Delaunay tri-
angulation process. Figure 1 shows the ideal inputs to the
IMU in three axes. Figure 2 shows the corrupted outputs at
the zero acceleration condition of IMU, but there is a bias in
the (Z) axis because of the 1 g gravity applied on the Z-axis in
addition to the noise source such as Brownian noise. With
the help of this algorithm, we can improve the accuracy of
the Kalman flter’s output values. A triangulation divides
a polygon neatly into triangles, making it possible to; for
example, quickly calculate the area or even a guarding of
a polygon. Utilizing trigonometry (T) for interpolation is
another popular application scenario: Consider an extend-
ing a function (f) “fairly” and continuously with (P), defned
upon those vertices of the polygon (P◦).

Afterward, locate the triangle (t) with a (T) which
contains a point p ϵ (P◦). As (p) is a convex expression. With
the vertices v1, v2, v3 of t combined (􏽐

3
i λivi), we can simply

interpolate the function values using the same coefcients
(f(p) � 􏽐

3
i λi(fvi)). Te procedure is to regard each of the

three Kalman flter, output values as a triangle composed of
three vertices, with one serving as the triangle’s head and the
other two as its base, as shown in Figure 3, if we do this, the
center of the triangle, which will serve as such an alternative
output value since it is closest to the real value as it can be
seen in Figure 4. Figure 4 illustrates how, as a result of
a Kalman flter output enhancement, the Z-axis now has the
lowest amount of noise.

8. Experimental Results

Te TUKF and maximum likelihood (ML) errors of the
calibrated accelerometer signal are shown for just one di-
rection in Figure 5, which was acquired during the validation
manoeuvre.

Te Allan variance approach may be used to ascertain
the properties that are underlying random processes which
are accountable for the generation of the data noise. By
carrying out certain operations throughout the whole of the
data, this method may be used to describe a wide variety of
error terms that may be present in the readings from the
inertial sensors.

For describing the methodology for evaluating the ve-
locity random walk (VRW), bias stability, and acceleration
random walk (ARW), suppose that there are N successive
data points and that each of them has a sampling time of to.
Each of the n successive data points (with n<N/2) that come
together to form a group is considered to be a cluster, as is
seen in Figure 6.

A time, denoted by the letter T, that is equivalent to nt0 is
connected to each cluster. In the event when the in-
stantaneous output rate of the inertial sensor is denoted by
Ω(t) equal to, the cluster average is defned as [23]:

Ωk(T) �
1
T

􏽚
tk+T

tk

Ω(t)dt, (16)

whereΩk(T) stands for the cluster average of the output rate
for a cluster that begins at the kth data point and has a total of
n data points. Te succeeding cluster average may be defned
as the following equation:

Ωnext(T) �
1
T

􏽚
tk+1+T

tk+1

Ω(t)dt, (17)

where tk+1 � tk+1 + T. Tis Allan variance with length Tmay
thus be defned as [23]

σ2(T) �
1

2(N − 2n)
􏽘

N−2n

k�1
Ωnext(T) − Ωk(T)􏽨 􏽩

2
. (18)

It is abundantly clear that a limited number of clusters of
a predetermined length Tmay be generated from any given
fnite number of data pointsN. As a result, equation provides
an estimates of the quantity σ2(T), the accuracy of which is
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dependent on the number of separate clusters of a constant
length that can be constructed.

A sensor’s capacity to maintain a consistent output is
quantifed by the Allan variance. As a result, it must be
connected to the statistical features of the inherent random
processes, which infuence how well the sensor works. Te
power spectral density (PSD) of the noise components in the
original data are connected to the Allan variance that is
acquired by conducting the procedures that have been de-
tailed. Te Allan variance is related to the two-sided PSD,
which is given by

σ2(T) � 4􏽚
∞

0
SΩ(f)

sin4(πfT)

(πfT)
2 df , (19)

where SΩ(f) is the power spectrum density of the random
process.

Te white noise spectrum of the accelerometer output is
characteristic of the angle (velocity) random walk that is
being performed. Te PSD is exemplifed by the following
equation [23]:

SΩ(f) � N
2
, (20)

N � coefcient of the angle random walk.
Te equation that was just presented yields a line that has

a slope of (−1/2) when it is plotted on a log-log graph of
σ2(τ) vs τ. Te units of N are (m/s/√h).

-8

-6

-4

-2

0

2

4

6

8

10

12

Ac
ce

le
ra

tio
n 

(g
)

200 400 600 800 1000 12000
Time (ms)

X-axis Input
Y-axis Input
Z-axis Input

Figure 2: IMU corrupted and biased outputs of the three axes (X,
Y, and Z) at zero acceleration condition.
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Putting these values into the original equation for PSD
and integrating them gives the following results:

σ2(τ) �
N

2

τ
. (21)

Te red noise (also known as Brownian noise) spectrum
of the accelerometer output is a characteristic feature of the
rate random walk. Te following elements constitute the
PSD:

SΩ(f) �
K

2π
􏼒 􏼓

2 1
f
2, (22)

K is the coefcient of the rate random walk.
Putting these values into the original equation for PSD

and integrating them gives the following results:

σ2(τ) �
K

2τ
3

. (23)

Te equation that was just presented yields a line that has
a slope of (1/2) when it is plotted on a log-log graph of σ2(τ)

vs τ. Te units of K are (m/s/s2).
Te pink noise (also known as ficker noise) spectrum of

the accelerometer output is a characteristic feature of the
bias instability. Te following elements constitute the PSD:

SΩ(f) �

B
2

2π
􏼠 􏼡

1
f

: f≤f0,

0 : f>f0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(24)

where B is the coefcient of the bias instability, fo is the
ficker noise corner frequency.

Putting these values into the original equation for PSD
and integrating them gives the following results:

σ2(τ) �
2B

2

π
ln 2 + −

sin3 x

2x
2 (sin x + 4x cos x) + Ci(2x) − Ci(4x)􏼢 􏼣, (25)

where x� πfo τ, Ci� is the cosine-integral function.

N

nt0 2n

τ = nt0 τ = nt0

Figure 6: Diagram of the data structure that is used in the Allan variance algorithm.
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When plotted on a log-log graph of σ2(τ) vs τ, the
equation that was just discussed results in a line that has
a slope of 0 degrees. B has the units of (m/s2).

Figure 7 shows the setup for the data reading from the
MPU6050 put in the oven chamber. 50000 pieces of data
then recorded after that. Tree measurements from the
(IMU), taken while the sensor was kept still in a fxed lo-
cation, made up each set. Calculated Allan deviation for the
accelerometer’s three axes is displayed in Figure 8 which give
us information about MPU6050 sensor to be more stable
after applying the proposed algorithm. As illustrated in
Table 2, the bias instability has improved compared with the
previous works [24–26] for three axes, which shows a very
competitive outcome for the performances of bias stability
and acceleration random walk in the temperature range
(−15°C to 80°C) is obtained in this work.

9. Comparison with Previous Works

In this section the comparison with other works has been
presented. In [24], an enhanced robust flter with a double
state model by using the chi-square distribution of the
square of the Mahalanobis distance as our theoretical
foundation is presented. By using the upgraded robust
Kalman flter, achieve position gains of up to 33 and 30
percent, respectively, in the north and east components has
been achieved.Te robust flter has given a 57% reduction in
the amount of azimuth error, and then the upgraded robust
flter has the potential to provide greater performance. Te
azimuth error has been decreased in loosely coupled and
tightly coupled systems, however, the improvement in pitch
and roll accuracy was smaller than the increase in azimuth
accuracy owing to limited observability with the

PC for Data
Receiving

Oven Chamber

Figure 7: Photographs of the experiment setup.
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experimental trajectories being performed on a stationary
track. Ten, the performance of this modifed robust flter
was satisfactory, and it was suitable for use in the MEMS
application.

Figure 9 shows the pitch and roll for the accelerometer
while Figure 10 is for the azimuth in reference [24] after
utilizing Kalman flter and the robust flter.

In [25], a transformed unscented Kalman flter TUKF-
based calibration approach is used and a nonlinear model was
suggested in this work as a means of estimating the sensor
model parameters of a three-axes gyroscope and an acceler-
ometer. Te model was developed using TUKF. Te TUKF
dynamics were constructed using an expanded state space
model of the sensor that was described here. Te real signals
were collected from a tri-axis turntable as well, so that the
fndings of the experiment could be compared to the real ones.
Te estimated parameters obtained from the TUKF and the
calibrated signals obtained from the least square (LS) technique
are used in the process of adjusting the sensor output signals.

Figure 11 is the X axis error for the accelerometer for the
reference after utilizing TUKF [25].

In [26], an adaptive and robust theory was used in the
development of the Modifed Sage Husa Adaptive Robust
Kalman Filter (MSHARKF), which is presented in this study.
A new adaptive scale factor is added to the Adaptive Robust
Kalman Filter (ARKF) algorithm in the MSHARKF algo-
rithm, and the ARKF algorithm’s state is modifed after each
iteration. MSHARKF is implemented in the measurements

of the MEMS IMU in order to reduce the amount of random
noise and drift inaccuracy. It can be seen from the Allan
variance analysis that both angle random walk (ARW) and
bias instability (BI) are two dominating random noises in the
raw MEMS inertial measurement unit (IMU) data.

Figure 12 shows the Allan deviation for the
reference [26].
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Table 2: Te comparison between the present paper with the previous works.

References Acceleration random walk
(m/s/√h) Initial bias error In-run bias stability Scale factor stability

[24] 80 μg ±0.002 g ±0.04mg ±0.05%
[25] — — 0.25mg ±0.075%
[26] 0.001 g — 0.00029 g —
Present paper 0.71 μg ±0.0011 g 0.116 μg ±0.01%

486180 486380 487180486980486580 486780
Time (s)

Kalman filter
Robust filter

2

0

-2

2

0

-2

Ro
ll 

(°
)

Pi
tc

h 
(°

)

-4

4
-4

4

Figure 9: Pitch and roll error for the accelerometer in [24].
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1 . Conclusion

Tis study investigated the calibration of devices such as the
microelectromechanical IMUMPU6050 accelerometer, also
aiming to develop a TUKF using triangular calibration al-
gorithm that can be used in the feld, outside of a lab, without
the need for additional equipment. Te method described
removes restrictions on the orientation of the sensor during
calibration by using just the gravitational feld of the earth as
a reference. Te practical readings taken from the MPU6050
accelerometer at each (1) second from all the axis, which
have been achieved using just a standard IMU, a custom-
built IMU, as well as an aviation graded table, supported the
practicality of the proposed method which gave us accel-
eration random walk of 0.71 μg and a bias of 0.116 μg. As can
be seen from the results, the bias error minimization for the
three axes (X, Y, and Z) has been reached, in addition, the
Markov or the sinusoidal noise and exponentially correlated
noise can be calculated in the future work.
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