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To improve power quality in power systems vulnerable to current disturbances and unbalanced loads, a hybrid control scheme is
proposed in the present paper. A hybrid adaptive robust control strategy is devised for an SMIB power system equipped with
a static VAR compensator to ensure robust transient stability and voltage regulation (SVC). High-order sliding mode control is
combined with a dynamic adaptive backstepping algorithm to form the basis of this technique. To create controllers amenable to
practical implementation, this method uses a high-order SMIB-SVC model and introduces dynamic constraints, in contrast to
prior approaches. Improved transient and steady-state performances of the turbine steam-valve system are the goals of the
dynamic backstepping controller. A Lyapunov-based adaptation law is developed to address the ubiquitous occurrence of
parametric and nonparametric uncertainty in electrical power transmission systems due to the damping coefcient, unmodeled
dynamics, and external disturbance. High-order slidingmode (HOSM) control is used for generator excitation and SVC devices to
construct fnite-time controllers. Te necessary derivatives for HOSM control are calculated using high-order numerical dif-
ferentiators to prevent simulation instability and convergence issues. Simulations demonstrate that the suggested method
outperforms conventionally coordinated and hybrid adaptive control schemes regarding actuation efciency and stability.

1. Introduction

Today’s power systems are far more loaded than in the past
and are frequently operated at capacity, resulting in technical
constraints, equipment deterioration, and economic losses.
Load changes, transmission line outages, and short circuits
continue to be the typical operating conditions that cause
generators to experience poorly damped oscillations, loss of
synchronism, and instability. Designing adequate control
methods is one of the most efective strategies to address
these difculties. Stability and voltage management of power
systems are critical, particularly for long transmission lines
and large power plants [1, 2].

Single-machine infnite bus (SMIB) is a crucial tech-
nology for real-time voltage management and stability. It
helps improve dependability, stability, and transmission
efciency. Te coordination between SMIB and shunt-type
fexible alternating current transmission systems (FACTSs),
such as static VAR compensator (SVC) provides suitable

control solutions for their interdependent parameters. Since
1970, SVC technology has been used as a realistic solution to
the problem of continually generating or absorbing reactive
power, and it is still utilized in AC power systems. SVC
devices can exchange capacitive or inductive currents. Te
integrated SMIB-SVC system provides efective frequency
oscillation damping, enhances transient stability, and con-
trols the voltage and reactive power [3]. However, the
complexity of modern power systems complicates and
challenges the design of coordinated controllers for SMIB-
SVC.

Modern power systems improve high-order multi-
variable processes that involve highly nonlinear electrical
elements and parametric uncertainty. Changes in their
inherent nonlinear properties are frequently time-
varying, rendering fxed-parameter control algorithms
incapable of delivering sufcient performance. Tere-
fore, high-order dynamic models and adaptive parameter
update laws are required for the control design. Adaptive
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robust control is crucial to appropriately compensate for
nonlinear dynamics, fast unmodeled dynamics, and
disturbances. However, several signal processing-related
technical challenges arise when designing adaptive
controllers, and designers must consider all settings and
variables when working in an industrial environment.
Much research has been devoted to developing adaptive
generator excitation and steam-valve controllers in re-
cent years. For example, Wan et al. [4] designed a non-
linear SMIB-SVC controller using the immersion and
invariance (I&I) approach. Te authors implemented
class-K functions to improve transient and steady-state
performance. Milla and Duarte-Mermoud [5] created
a predictive optimization adaptive (POA) method for
computing PSS device parameters. Te oscillations of the
SMIB were enhanced by the POA-PSS method. Liu et al.
[6] suggested a continuing fraction-based method for
online simulation and control of power systems using
SMIB. Bux et al. [7] examined the damping efect of the
VSC stabilizer and its infuence on electromechanical
oscillation modes. To compensate for parameter sensi-
tivity in SMIB, Roy et al. [8] integrated feedback lineari-
zation with adaptive control. Te control strategy based on
Lyapunov was superior to previous exciting partial feed-
back linearizing schemes. Kamari et al. [9] presented an
optimal PSS-PID controller for suppressing low-frequency
oscillations in SMIB. Using a PID controller, the authors
tuned the controller’s parameters using chaotic practical
optimization (CPSO). CPSO-PID efectively minimized
overshooting and decreased the transient response’s set-
tling time. Mijbas et al. [10] presented the multiobjective
particle swarm optimization (PSO) technique to enhance
the generator’s power angle stability. Tey demonstrated
that changing the controller parameters using PSO im-
proves the stability of the SMIB-SVC system. Kumar et al.
[11] utilized ACO-based SSSC to attenuate low-frequency
oscillations and voltage variations in multimachine power
networks. SSC efectively eliminated interarea sub-
synchronous oscillations and voltage variations by
adopting ACO-based control with the voltage source.
Muhammad et al. [12] optimized PSS parameters using the
PSO algorithm. Te perfect performance of PSS ensured
the stability of the SMIB rotor’s frequency response and
power angle. However, the probabilistic character of
population-based approaches may result in a loss of pre-
cision due to overestimating control benefts. Recently,
linearized model-based techniques, such as optimum
control and direct adaptive control, have been employed to
provide high bandwidth and resilient performance in the
presence of uncertainties (see [13–17]). Meanwhile,
adaptive robust control design sometimes requires more
than a linearized system model can provide.

High-order sliding mode (HOSM) control is gaining
popularity in building resilient power network con-
trollers due to load disturbances and measurement
noises. Wan and Jiang [18] created a super-twisting
sliding model-based control strategy for SMIB to pro-
vide robust stability and high-performance control. Han

and Liu [19] designed a control technique for perturbed
triple integrator chains using HOSM control. Trip et al.
[20] designed a load frequency controller for power
networks using sliding mode control of the second order.
Although the controller displayed excellent tracking
performance, it could not adequately adjust for fre-
quency measurement disturbances. Adirak and Ekkachi
[21] combined backstepping control and frst-order
sliding mode control to improve the transient stability
and voltage regulation of SMIB. Compared to I&I and
conventional backstepping control, the suggested con-
trol method demonstrated appropriate performance and
enhanced closed-loop control stability. Neither external
disturbances nor measurement noises were accounted
for in this system. Under load disturbances, Dev et al.
[22] proposed an adaptive super-twisting sliding mode
controller for two sections of interconnected power
networks. Te authors implemented the dynamic
adaptive rule proposed by Gutierrez et al. [23] to deal
with the unknown limits of disturbances and prevent
overestimating control advantages.

Tis study presents a novel solution to the problem of
transient stability and voltage regulation in power sys-
tems with an SVC device. An SMIB-SVC backstepping-
HOSM coordinated control technique is intended to
simultaneously regulate the synchronous generator and
SVC device. Te nonlinear coordinated control of
SMIB-SVC has received only a few important contri-
butions until recently. Using a simplifed SMIB-SVC
model, Kanchanaharuthai and Mujjalinvimut [24] sug-
gested a nonlinear coordinated control approach re-
sembling backstepping. Te authors demonstrated that
their design methodology outperforms I&I control and
conventional backstepping techniques. To recover the
output voltage and remove power angle variations,
Psillakis and Alexandridis (2020) utilized backstepping
and feedback linearization control approaches. Keskes
et al. [25] created a nonlinear coordinated control for the
SMIB-SVC by employing input-output linearization and
pole-assignment techniques. Te authors demonstrated
that the suggested control scheme outperformed tradi-
tional PSS and noncoordinated controllers regarding
oscillation damping and voltage regulation. As with most
known design methods, these control algorithms are
unrestricted, fulfll asymptotic stability, and frequently
exhibit a chattering efect that is difcult to implement in
practice.

Tis study stands out in comparison to similar ones
conducted recently. Te following are the principal
contributions of the current paper. It starts with an
eighth-order mathematical model of the SMIB-SVC
system. A high-order SMIB-SVC model is required to
improve transient and steady-state performance. Te
dynamics of mechanical power, exciter dynamics, and
SVC dynamics are all considered in the model, as are the
impacts of subfux and transitory fux couplings along the
d and q axes. Tis model is a signifcant improvement over
its predecessors in the literature when applied to power
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systems that are inextricably linked to one another (e.g.,
[4, 9, 18, 25, 26]). Second, a dynamically constrained
backstepping (ADBS) controller is developed to enhance
steady-state performance and attain transient stability.
Tird, parameter uncertainties and insufciency in load
disturbance compensation are addressed by adding
a Lyapunov-based adaptation law to the load controller.
Fourth, the synchronous generator and SVC device are
controlled in tandem using controllers based on the fnite-
time HOSM model. Te suggested ADBS-HOSM control
strategy ensures more enhanced transient stability, de-
creased susceptibility to parameter uncertainties, and
resilience against disturbances and measurement noises
compared to recent contributions (e.g., [4, 18, 25]).
Furthermore, the ADBS-HOSM control is chattering-free,
shielding the actuators from the erratic high-frequency
oscillations induced by feedback linearization and tra-
ditional sliding mode controllers. According to the au-
thors, this is the frst citation for fnite-time backstepping-
HOSM coordinated control design based on a compre-
hensive SMIB-SVC model.

Te paper is formatted as follows: Section 2 explains an
enhanced dynamic SMIB-SVC model. Section 3 presents
the design of the nonlinear backstepping controller and
adaptive parameter law. Section 4 develops HOSM con-
trollers for generator excitation and SVC devices. In Sec-
tion 5, numerical simulations are performed to validate the
theoretical conclusions and assess the performance of the
suggested control approach. Te conclusion is presented in
Section 6.

2. Dynamic Modeling and Problem Statement

Te control laws designed with the traditional third-order
power system model in mind have been shown in
the literature to be a common cause of power oscillations
and instability. As a result, only control laws based on
a high-order model can guarantee optimal transient
and steady-state performance. Here, we provide a non-
linear eighth-order SMIB-SVC dynamic model that ac-
counts for both parametric and nonparametric forms of
uncertainty.

2.1. Mechanical Load Dynamics

_δ � ω − ω0,

_ω � −
D

H
ω − ω0( 􏼁 +

ω0

H
Pm + CMLPm0

− Pe􏼐 􏼑,

_Pm �
CH − 1( 􏼁

TH

Pm0
−

1
TH

Pm + CHuh( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where δ, ω,ω0, Pm, Pe, anduh denote the generator rotor
angle, angular speed, synchronous speed, mechanical power
input, active power, and governor value position.
H, D, TH, andCH denote the inertia constant, damping co-
efcient, time constant, and throttle pressure.

2.2. Exciter Dynamics

_E′q �
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−Eq +
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(2)

where Eq, Ed, Eq
′, Ed
′ denote the q-axis and d-axis voltage and

transient voltages, Vs, VF, and Vt denote the infnite bus,
feld, and terminal voltages of the generator, respectively, TE

and KE are the time constant and exciter parameter, xd, xd
′,

and xds
′ denote the d-axis generator, transient reactance, and

equivalent transient reactance, respectively, Td0 and Td0′ are
the time constants of the excitation winding, and A andB

are positive constants.

2.3. SVC Dynamics

_BSVC �
1

Tc

−BSVC + BSVC0
􏼐 􏼑 +

Kc

Tc

uB,

Pe � Eq
′VsBSVC sin(δ),

BSVC �
1

X1
+ X2 − X1X2 BL − BC( 􏼁,

X1 � xd
′ + xT + xL1
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X2 � xL2
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(3)

where BSVC0
, Tc, Kc, and uB denote the initial susceptance, time

constant, gain, and the equivalence output of the SVC controller,
xL1

and xL2
are the reactance of the transmission lines, xT

denotes the transformer reactance, and BL and BC are the
susceptance of the inductor of TCR (i.e., thyristor-controlled
reactor) and the susceptance of the capacitor in SVC, re-
spectively (see [26, 27]). Model (1)–(3) presents a complete and
more accurate SMIB-SVC model that can be used in designing
advanced controllers. It is worth noting that since the power
system has an SVC electronic compensator, its d-axis equivalent
reactance is time-varying even in the absence of disturbances.

3. Dynamic Feedback Backstepping for
Load Control

3.1. Load Control Model Parametrization. For designing
a dynamic adaptive backstepping load controller, dynamics
(1) are described in a parametric form, with Pe �

Eq
′Vs/xd
′ sin δ, as follows:
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_x � f(x, θ) + g(x)u + d(x, t), (4)

with
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(5)

where x∗2 and x∗3 denote some fctive controls and d rep-
resents the external disturbance.Te state x1 is selected to be
the tracked output. Model (4) is parameterized using the
following vector θ:

θ � θ1 θ2􏼂 􏼃
T

�
D

H
 

Eq
′Vs

Hxd
′( 􏼁

􏼢 􏼣

T

. (6)

Te control vector u is designed to asymptotically drive
the states to their zero level despite parameter uncertainties
and disturbances. Te output y � x1 is subjected to the
following asymptotically stable constraints:

€x
c

(t) + α1 _x
c
(t) + α2x

c
(t) � 0, (7)

where α1, α2 ∈R
+. Te control input u must guarantee

a satisfactory performance level and maintain a sufcient
robustness margin under the following assumptions:

Assumption 1. Te functions f and g are uncertain functions
due to the uncertainties of the parameters xd

′ and D.

Assumption 2. Te uncertainties ∆f and ∆g have bounded
Euclidian norms: ‖∆f‖2 < μ1 and ‖∆g‖2 < μ2 with
μ1, μ2 ∈R

+.

Assumption 3. Te nonparametric disturbance d satisfes
that ‖d‖2 <dmax ∈R

+.

Assumption 4. Te control input u is a Lebesgue measurable
bounded signal.

Assumptions 1 and 2 are made according to the re-
quirements of control-afne nonlinear systems (i.e., non-
linear dynamics systems with a linear control input), which
is consistent with the proposed nonlinear backstepping
control type. In adaptive nonlinear-afne control theory, the
functions f(x) and g(x) must be smooth and bounded, with
a known local relative degree to the control input u. Nu-
merous control designs, including backstepping, feedback

linearization, and sliding mode control techniques, require
such assumptions [28].

For Assumption 3, external disturbances and parameter
uncertainties are inevitably present in power systems, in-
cluding SMIB systems. Tey are typically unknown and
unmeasurable, drastically degrading the desired control’s
performance. Observers must be designed with disturbance
rejection or compensation. In such observers’ design, the
upper limit of the disturbance must be specifed. Te
practical applicability of the designed control law is con-
tingent on the fourth assumption. A Lebesgue measurable
function must represent an admissible signal control. Te
Lebesgue condition ensures that the control law has
a physical meaning and is applicable [29].

3.2. Backstepping Controller Design. We consider the para-
metric model (4) as a cascade connection of three sub-
systems (8) and defne, for each subsystem, a candidate
Lyapunov function (CLF), as shown in (9),

_xi � fi(x, θ) + giui + di(x, t),

yi � x
c
i ,

⎧⎪⎨

⎪⎩
(8)

Vi(e) �
1
2

􏽘

i

j�1
e
2
j , (9)

where e � e1 e2 e3􏼂 􏼃
T denotes the state error vector with

ej � (xj − xc
j) and xc

j being the expected states of the
model (4).

Theorem 1. Let Assumptions 1–4 hold. Te output of model
(4) asymptotically converges to its reference value under the
dynamic constraints (7) if the efective control input uh is
chosen as

uh(x, θ) � Λe − φ(f) − ϕ(d) − χ x
c
1( 􏼁, (10)

and the control gains are appropriately selected such that
k1, k2, k3 ∈R

+ with

Λ �
−k3
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k2
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g3
􏼢 􏼣

T

,

φ(f) �
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g1g2g3
+

_f2

g2g3
+

f3

g3
,
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€d1

g1g2g3
+
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+

d3
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, χ x

c
1( 􏼁

�
1

g1g2g3
α21 − α2􏼐 􏼑 _x

c

1 + α1α2x
c
1􏽨 􏽩.

(11)

Proof. Te control law (10) is designed using recursive
dynamic backstepping. To do so, we consider the following
three-step stabilizing scheme. □
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Step 1. As a starting step, a virtual state feedback law
x∗2(x, θ) is sought to stabilize the frst subsystem asymp-
totically. Tis is done if there exists a specifc gain k1 ∈R

+

that fulflls the following inequality:

_V1 e1( 􏼁≤ − k1e
2
1. (12)

Substituting e1 � (x1 − xc
1) in expression (12) gives

_V1 e1( 􏼁 � e1 _e1 � e1 _x1 − x
c
1( 􏼁≤ − k1e

2
1. (13)

Using the frst equation of model (4), one can fnd that
the condition (13) is guaranteed by the following virtual
control x∗2 :

x
∗
2 � −

k1 x1 − x
c
1( 􏼁 + f1 + d1 − _x

c
1􏼂 􏼃

g1
. (14)

It is clear that the intermediate control law (13) as-
ymptotically steers x1 towards xc

1 for a selected gain k1.

Step 2. Similarly, it can be easily proven that there exists
a gain k2 ∈R

+ for which

_V2 e1, e2( 􏼁< − k1e
2
1 − k2e

2
2, (15)

and with _e1 � g1x2 − k1e1 � g1(e2 + x∗2 ) − k1e1, the second
subsystem is asymptotically stable under the following
virtual control:

x
∗
3 � −

1
g2

k2e2 + f2 + d2 +
_x
∗
2

g1
􏼢 􏼣

−
1

g1g2
+g1k1e2 − k

2
1e1 + _f1 + _d1 + λ1 _x

c
1 + λ2x

c
1( 􏼁􏽨 􏽩.

(16)

Te control law (16) guarantees the global asymptotical
stability of the frst and second subsystems. However, x∗3 is
only a virtual control law, which implies the following step.

Step 3. Te fnal step in the backstepping procedure is to
fnd the accurate control input uh under which the system
(4) reaches its coordinate origin or operating point
(δ0,ω0, Pm0) with desired performances and under pre-
scribed dynamic constraints. Taking the time derivative of
CLF V3,

_V3 � −k1e1 − k2e2 + e3 _e3 � −k1e1 − k2e2 + ei _x3 − _x
∗
3( 􏼁,

(17)

and then, with _e2 �, if there exists a constant k3 ∈R
+ such

that

_V3 < − 􏽘
3

i�1
kie

2
i , (18)

It results that the real control uh is deduced from (4),
(17), and (18) as defned in form (10).

Tis is the end of the proof.

Remark 1. Te feedback control law (10) is nonsingular
since gi(x)≠ 0, i � 1, 2, 3, ∀x ∈ X, where X denotes the
operating space of model (4).

Remark 2. Te case α1 � α2 � 0 corresponds to the
unconstrained model.

3.3. Adaptive Dynamic Backstepping Controller. In Sub-
section 2.3, the backstepping controller (10) was derived
under nominal conditions with known parameters θ1 and θ2.
In practice, the values of these parameters change with the
system’s parameters. To introduce the uncertainties ∆θi,
a new parameter error vector eθ � θ − 􏽢θ � [θ1 − 􏽢θ1 θ2−
􏽢θ2]

T is defned with 􏽢θ1 and 􏽢θ2 being the estimators of θ1 and
θ2, respectively. Te uncertain form of the vector-valued
function f in equation (4) is defned as follows:

f(x, 􏽢θ) � h(x) + Ψ(x)θ � h(x) + Ψ(x) eθ + 􏽢θ􏼐 􏼑, (19)

with
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ω0Pm0
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H
−
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T
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�
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(20)

Theorem 2. Suppose that the unknown estimators 􏽢θ1 and 􏽢θ2
are bounded, the closed-loop control (19) is robustly stable
under the law (21) conjointly with the parameter update law
(22) if the vector c fulflls the output condition (23).

Te control law is

uh(x, 􏽢θ) � Λe − φ(􏽢f) + Ψ(x)􏽢θ − ϕ(d) − ψ x
c
1( 􏼁. (21)

Te adaptive law is
_􏽢θ � ΓΨ2c

Tx. (22)

Te output condition is
cTx − e2 < 0, (23)

with Γ � di ag(ρ1 ρ2) and ρi > 0 denoting adaptive gain
coefcients.

Proof. Considering the following CLF V(x, 􏽢θ),

V(x, 􏽢θ) � V1 +
1
2
e
2
2 +

1
2
eT
θ Γ

− 1eθ, (24)

and the time derivative _V(x, 􏽢θ) is given as

_V(x, 􏽢θ) � _V1 + e2 _e2 + eT
θ Γ

−1 _􏽢θ − ψ2e2􏼒 􏼓. (25)
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As, from (15), _V1 + e2 _e2 � _V2 < 0, it remains to fnd the
condition for which eT

θ (Γ−1 _􏽢θ − ψ2e2)< 0. Using the adaptive
law (22), we obtain

−eT
θΨ2 cTx − e2􏼐 􏼑 � eT

θ x2   sin x1 + δ0( 􏼁􏼂 􏼃
T cTx − e2􏼐 􏼑

< eT
θ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌1􏽨 􏽩
T
cTx − e2􏼐 􏼑.

(26)

Using condition (23), it follows that _V(x, 􏽢θ)< 0, ∀x ∈ X,
and ∀􏽢θ∈ P, where X and P denote the system’s operating
and parameters spaces, respectively.

Tis is the end of the proof. □

4. High-Order Sliding Mode for Exciter Control

For dynamic models (2) and (3) for the exciter and SVC
devices, we defne the following sliding variables:

σe � VF − VFref
,

σsvc � BSVC − BSVC0
,

(27)

where VFref
denotes a feld voltage reference, while BSVC0

denotes the initial susceptance of the SVC controller. For
designing robust HOSM-based feedback controllers Vt and
uB that provide fnite-time convergence of σe � 0 and
σSVC � 0, the following assumptions are made.

Assumption 5. Both systems (2) and (3) have a well-known
defned relative degree r to their tracking output σ.

Assumption 6. In both cases, the following r-sliding set is
a nonempty integral set:

S � σ � _σ � . . . � σ(r− 1)
� 0􏽮 􏽯≠∅. (28)

Assumption 7. A homogeneous r-sliding mode controller ur

can be obtained if there exists a function U(σ, _σ, . . . , σ(r)),
which is continuous everywhere except for the set S

Lemma 1 (see [30]). Let Assumptions 5–7 hold. Local fnite-
time convergence of the r-sliding mode σ ≡ 0 can be achieved
and maintained by the following homogenous HOSM
controller:

ur � −Gsat φr−1,r σ, _σ, . . . , σ(r− 1)
􏼐 􏼑􏽨 􏽩,φ0,r � σ,

For k � 1, . . . , r − 1,

φk,r � signσ(k)
+ βkNk,rφk−1,r,

Nk,r � |σ|
p/r

+| _σ|
p/(r− 1)

+ . . . + σ(k− 1)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
p/(r− k+1)

􏼒 􏼓
(r− k)/p

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

Te constant p is the least common multiple of the set
1, 2, . . . , r, the parameters βk are the controller parameters,
and φk,r and Nk,r are intermediate functions (for the proof of
Lemma 1, see [30]).

With ur � φr−1,r/Nr−1,r applied as Vt in model (2) and as
uB in model (3), the feld voltage VF and susceptance BVSC

converge to their references or desired fnal values. Te
successive time-derivativesσ(k)(k � 1, . . . , r − 1) in the re-
cursive algorithm (29) are computed using the following
robust high-order sliding mode diferentiator (see [31]):

_z0 � v0, v0 � −μ0L
1/r

z0 − σ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(r− 1)/rsign z0 − σ( 􏼁 + z1,

_z1 � v1, v1 � −μ1L
1/(r− 1)

z1 − v0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(r− 2)/(r−1)sign z1 − v0( 􏼁 + z2,

⋮
_zr−2 � vr−2, vr−2 � −μr−2L

1/2
zr− 2 − vr− 3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1/2sign zr−2 − vr−3( 􏼁 + zr−1,

_zr−1 � −μr−1Lsign zr−1 − vr−2( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

where L> 0 is a Lipschitz constant and zk ≡ σ(k), μk denotes
the diferentiator parameters.

5. Simulation Results

In this section, diferent scenarios are simulated for desired
operating points to demonstrate the efectiveness and ro-
bustness of the proposed ADBS-HOSM control scheme.Te
values of the parameters are as follows: H � 8s, TH � 5,
CH � 1, xd � 1.81, xd

′ � 0.17, xds � 0.99, Eq
′ � 1.08p.u.,

D � 5p.u., and Vs � 1p.u. Te control technique employs
two distinct sets of parameters. Adaptive backstepping pa-
rameters (i.e., ki, Γ, c) are chosen to ensure a robust transient
response with correction for parameter uncertainties. Te
operating point of the mechanical load (δ,ω, Pe) is regulated
using the three gains ki, while parameter uncertainties are
adjusted by (Γ, c). Te second group of parameters pertains
to the h exciter’s high-order sliding mode HOSM controller.
Te gain G is a tuned gain, whereas (βi, λi) are chosen in
accordance with the HOSM control paradigm [32].

5.1. Performance and Efectiveness. Te proposed ADB-
S-HOSM control scheme is applied with δ0 � 1.147
rad(65.73°), ω0 � 314.159 rad/s, and Pe � 0.98397p.u. as
initial conditions and δ0 � 1.0472 rad(60°),ω � ω0 as the
operating conditions. Te values of the control parameters
are chosen as follows: k1 � 40, k2 � 400, and k3 � 250 for
controllers (23); Γ � di ag(0.1, 0.1) and cT � (1, 1, 10) for
adaptive laws (24) and (25); β1 � β2 � 0.25 and G � 0.5 for
HOSM controllers (29) with r � 3; and λ0 � λ1 � λ2 � 0.15
and L � 5.10− 4 for HOSM observers (30). Figures 1–4 show
the time history of the transient response provided by both
the ADBS-HOSM controller and the controller proposed by
Wan and Jiang [18].

5.2. Robustness. Measurement noises are a common prob-
lem in power systems, reducing their performance and
reliability ([4]; Ghahremani and Kamwa, 2011). We consider
realistic scenarios where corrupting noises are present in the
available outputs for measurement. In this example, white
Gaussian noise with a variance of 0.01 is used to mimic the
conditions in the situation described in [4]. Te robustness
of the proposed ADBS-HOSM controller and the IARK
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controller is compared in Figures 5 and 6. It is clear from this
comparison that the ADBS-HOSM controller is superior to
the IARK controller in terms of disturbance compensation.

5.3. SMIB-SVC Coordinated Control. In this scenario, the
ADBS-HOSM coordinated control scheme is compared to
two other recently published coordinated control schemes,
the input-output linearization controller (IOL) and the
adaptive variable-structure (AVR)/point-synchronous
(PSS)/point-integral (PI) controller (SVC) [25, 33].
Figures 7–10 display the results of running the simulation
with the same data as in [25]. Te simulation results show

that the proposed coordinate control scheme outperforms
those created with traditional control methods like input-
output linearization and proportional-integral-derivative
(PID). More specifcally, ADBS-HOSM improves actua-
tion efciency in terms of settling time and stability
performance.

5.4. Critical Clearing Time and Angle. It is recognized that
the size and length of disturbances impact the stability of
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power systems and can lead to synchronization loss. Te
critical clearing angle δcr and critical clearing time (CCT) tcr

are essential to the power system’s stability. Terefore, the
defect must be rectifed prior to CCT; otherwise, the system

will be unstable. Te second scenario was resimulated to
calculate CCT. As illustrated in Figure 11(a), the system was
stable for 0.24 seconds before becoming unstable at
0.25 seconds, as depicted in Figure 11(b). Terefore,
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0.24 second is regarded as the system’s CCT. In addition, the
phase-plane frequency angle is presented to check the
system’s stability.

Te four simulated scenarios demonstrate the efec-
tiveness and performance of the presented coordinated
SMIB-SVC control strategy. Practical cases, including
control in the presence of parameter uncertainties (scenario
5.1), the efect of external disturbances and measurement
noises (scenario 5.2), coordination of the SMIB and SVC
systems (scenario 5.3), and the critical clearing time and
angle (scenario 5.4) were considered. Te four scenarios
address the essential practical concerns related to the real-
time control of modern power systems.

6. Conclusion

A novel robust adaptive control framework was created to
simultaneously design an SMIB generator excitation controller
with an SVC controller. To provide a robust and imple-
mentable controller, uncertainties in physical parameters were
considered. Nonlinear controllers were developed for adaptive
dynamic backstepping steam-valve load control and high-order
sliding mode-based (HOSM) generator excitation control.
Using a high-order power model and parameter estimator law,
transient stability and voltage regulation were improved. Te
system’s resilience is ensured by the fact that the adaptive
control law is designed to adjust for parametric uncertainties,
while HOSM is applied to compensate for nonparametric
uncertainty, unmodeled dynamics, and external disruptions.
Our fndings contribute to the existing literature by considering
a more realistic damping model of the synchronous generator
related to the system’s state variables. As a result of our work,
the current literature is expanded to include a more realistic
damping model of the synchronous generator. Te proposed

control scheme maintains the nonlinear features of the un-
derlying SMIB-SVC system model by employing high-order
modeling. Te research fndings demonstrated, via simulation,
the efectiveness, viability, and superiority of the proposed
control scheme in each simulated case. Te modular character
of the proposed method makes it adaptable to various FACTS
devices that can be described in a manner comparable to the
one investigated in this study.Tis can comprise SMIB systems
with a static synchronous series compensator (SSSC), a unifed
power fow controller (UPFC), and a thyristor-controlled re-
actor (TCR). However, future works can consider some lim-
itations, such as frequency stability for large-scale power
systems.

Te Kundur and large-scale systems feature a topology
with several buses and regions. Both systems can be con-
sidered multiload systems, making them appropriate for the
multiagent control paradigm. Future works include ana-
lyzing the transient response of the entire network and
applying the proposed control mechanism to multimachine
systems employing FACTS devices. Renewable energy and
power grids rely largely on the synchronization and stability
of multimachine power systems; hence, employing a mul-
tiagent control paradigm, the method will also extend to the
distributed coordinated control of networked power
systems.
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Te simulation data used to support the fndings of this
study are available from the corresponding author upon
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