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Sleep apnea is one of the most common sleep disorders in the world. It is a common problem for patients to sufer from sleep
disturbances. In this paper, we propose a deep convolutional neural network (CNN) model based on the oxygen saturation (SpO2)
signal from a smart sensor. Tis is the reason why we called ZleepNet a network for sleep apnea detection. Te proposed model
includes three convolutional layers, which include ReLu activation function, 2 dense layers, and one dropout layer for predicting
sleep apnea. In this proposedmodel, the use of signals for detecting the sleep apnea can be reduced from 25 sensors to 1 sensor.We
conducted experiments to evaluate the performance of the proposed CNN using real patient data and compared them with
traditional machine learning methods such as least discriminant analysis (LDA) and support vector machine (SVM), baggy
representation tree, and artifcial neural network (ANN) on publicly available sleep datasets using the same parameter setting.Te
results show that the proposed model outperformed the other methods with the accuracy of 91.30% with the split rate of 0.2% in
which the training data are 20% and testing data are 80%. Te accuracy of the proposed CNN is 90.33% when compared with the
LDAwhich achieved 86.5% accuracy with the split rate of 0.5% in which training data are 50% and testing data are 50%. It achieved
91.56% accuracy when compared with the support vector machine (SVM) in which training data are 70% and testing data are 30%.
Te achieved accuracy of the proposed CNN is 91.89% when compared with bagging representation tree in which training data are
90% and testing data are 10%. Te accuracy of the proposed CNN is 91.30% in which training data are 83% and testing data are
17% when compared with artifcial neural networks (ANN).

1. Introduction

Deep convolutional neural networks predict and analyze
various health-related problems by collecting data from
numerous biological sensors [1]. It will be used for sleep
apnea detection. Sleep apnea is defned as the complete
breathing disturbance in which those breathing pauses can
last for seconds to minutes [2–4]. Terefore, it has the
potential to get sleep apnea during sleep. Patients sufering
from sleep apnea require many sensors, tools, and appli-
ances, which make the patients very uncomfortable and
difcult to sleep during sleep monitoring. It is of great
signifcance to identify sleep apnea as soon as possible.

According to the American Academy of Sleep Medicine
(AASM), the breathing pauses more than ten seconds can be
identifed as sleep apnea [5, 6]. Te AASM guidelines have
an impact not only on the healthcare professionals but also
on the patients and the quality of the healthcare [5, 7]. It
happens more than thirty times within an hour. In full-night
polysomnography, there will be more than 25 sensors to
identify sleep-related diseases. Te detection of sleep apnea
in most research studies relies too much on the experts, and
there are some errors in the medical tools’ detection, which
will later be updated and repaired by experts. It is very time
consuming to repair errors manually. However, smart
phones with a SpO2 sensor and heart rate sensor will be good
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candidates for sleep monitoring. During these days, most
people own one phone with more than one sensor that
provides collecting data for a detail analysis. According to
healthcare professionals and physicians, there are four types
of sleep apnea: type 1 polysomnography, which is a bench-
marking standard, type 2 sleep studies, type 3 sleep studies,
and type 4 sleep studies [8, 9].

Te type of studies that is used in our system is type 4
sleep studies, which are also referred to as continuous single
bioparameter or dual bioparameter recording. Te mini-
mum number of signals that can be used in this type 4 study
is one or two channels such as oxygen saturation and airfow
[10]. However, one of the critical tools for detection of sleep
apnea is the type 1 full-night polysomnography. It is very
expensive when it comes to time, energy, cost, space, and
portability. Tis study presents the real-world imple-
mentation of the convolutional neural network in type 4
sleep studies using the SpO2 signal, which focuses more on
portability, space reduction, cost savings, and less time
consuming [6, 11–20]. However, type 4 sleep monitoring is
not possible for sleep scoring because it does not contain
electroencephalogram (EEG) and electromyography (EMG)
signals, which will also be useful for identifying respiratory
sleep disorder. Tere are several alternatives for combining
diferent biological signals due to the researchers’ and
healthcare professionals’ preferences. It means that there are
diferent kinds of type 4 sleep studies [17, 21]. It is also
possible to combine the use of an oxygen saturation sensor
and tracheal sound by acoustic as an alternative to type 4
sleep studies.

Te main objective of this paper is how to design and
implement the convolutional neural network model for
biological signals when it comes to the detection of sleep
apnea. We compare the classifcation performance from
diferent methods, including traditional machine learning
methods such as least discriminant analysis (LDA) and
support vector machine (SVM), bagging representation tree,
and artifcial neural network on publicly available sleep
datasets using the same parameter setting.Te contributions
of this research can be summarized as follows:

(1) We propose CNN architectures, which include three
convolutional layers, including ReLu activation
function and 2 dense layers for predicting sleep apnea
from raw SpO2 data captured from smart sensors.
Tis is the ZleepNet CNN model, a network for sleep
apnea detection.

(2) We conducted experiments to evaluate the perfor-
mance of the proposed CNNs and compared them
with traditional machine learning algorithms on
three datasets.

Te outline of this paper is organized as follows: the
background and related work are presented in Section 2.
Section 3 introduces the explanation of deep learning design
and implementation illustrated in detail. Moreover, Section
4 is the result of the experiment of the proposed deep
convolutional neural network model and comparison with
other models. Furthermore, Section 6 provides the

limitation and future work. Finally, we conclude the work of
this paper and highlight the potential of future research for
sleep apnea detection.

2. Related Work

Sleep is essential for the physiological activity of the human
body and can afect our health. It is important to understand
the relationship between our health and sleep quality. Te
poor sleep quality is an accomplice associated with anxiety,
physical activity, and stress. Tere are diferent types of sleep
disorders, such as insomnia, narcolepsy, and sleep apnea [2].
In recent years, there has been widespread attention of using
the deep convolutional neural network in the feld of speech
recognition, image processing, and medical application due
to enormous success, especially for accuracy result and
performance [10].Te respiratory signals, which are used for
the detection of sleep apnea, are SpO2 signals, thermistor
signals, nasal pressure signals, thoracic signals, and abdomen
signals. SpO2 signals are oximetry signals, which show the
oxygen saturation in the blood [22–28]. Te combination of
SpO2 and RR interval obtained from the electrocardiogram
(ECG) achieved the global score for clinically signifcant
apnea of 87% accuracy, 73% sensitivity, and 92% specifcity
[26]. A single lead ECG can also be used for the detection of
sleep apnea using the Hermite basis function [12, 29–32].
Vector-valued Gaussian processes (GP) are used for the
detection of sleep apnea, and the wearable sensor provides
the collection of cardiorespiratory data. Te oximetry is
specifc for the presence of OSA, which is benefcial for the
detection of sleep apnea [27, 30]. Te detection of sleep
apnea is made by empirical mode decomposition based on
the oxygen desaturation achieving sensitivity of 83% [28].
Te highest accuracy, more than 90%, is achieved using an
artifcial neural network with a genetic algorithm for clas-
sifcation in which SpO2 sensors are used for detection
[33, 34].

Nasal pressure signals measure changes in the pressure of
the inhalation and exhalation of the nasal airway [35].
Toracic and abdomen signal measures the movement of the
thoracic and abdomen [1, 36]. Te combination of a nasal
pressure and a thermistor sensor is used to analyze the res-
piration analysis for the detection of sleep apnea [37, 38]. A
recent study has shown that it is possible to detect sleep
analysis using respiratory parameters such as heart rate in-
terpretation and SpO2 due to the specifc pattern in the re-
spiratory parameter [39]. Te link between sleep apnea and
respiratory parameter is that oxygen saturation decreases
when sleep apnea occurs and at the same time heart rate
increases [40]. Machine learning algorithms have strong
predictive power in order to draw interpretation between the
biological parameter signals [8]. Tere is a signifcant re-
lationship between snoring and obstructive sleep apnea using
a simple signal processing technique in short time energy
[23–25, 29, 41, 42]. Snoring can be found as an audible sound
because of cessation in breathing that lasts more than
a minute [16, 25, 36, 43–45]. Tere are several treatments for
curing obstructive sleep apnea, such as ear, nose, and throat
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(ENT) surgery, nasal surgery, radiowave surgery, laser sur-
gery, circuitous surgery; positive pressure respirator (CPAP);
snoring; and dental braces [14, 16, 20, 46–48].

2.1. Traditional Pattern Recognition Methods Applied to Sleep
Apnea Detection. Diferent researchers use diferent com-
binations of characteristic signals and a classifer to detect
sleep apnea. Support vector machine, bagging representa-
tion tree, and artifcial neural network can also be used for
sleep apnea detection as traditional pattern recognition
methods [26, 33, 34].

2.2. Deep LearningMethodsApplied to SleepApneaDetection.
Tere has been an increasing amount of the literature on the
recognition of sleep apnea using deep learning methods
[1, 2, 10, 22, 24, 37, 38, 40]. Training deep learning models
learn feature extractions autonomously. Deep learning
models have superior performance. However, it requires
abundant computing and memory resources. Due to the
increase in the application of mobiles and wearable devices,
most of the devices have not enough memory and com-
puting resources for training deep neural networks.

3. Deep Learning Step

Deep learning is the expansion of the classical neural net-
work, and the complex pattern existing in the dataset can be
explored. Deep learning algorithm such as multilayer per-
ceptron, convolutional neural network, and recurrent neural
network can also perform complex computation easily in
order to solve the challenging task such as image recogni-
tion, medical imaging, and speech recognition. Te bi-
ological neural network of the human brain decision-
making inspires the proposed deep learning model using
the convolutional neural network. It is based on a single
stimulus in which a number of neurons carry messages
through an electrochemical process that is required for
decision-making. In the real world, the identifcation and
prediction of sleep apnea using the deep learning method
would facilitate the patient with sleep apnea disease [2]. Te
deep learning model allows learning from the feature to
represent the nature of the data and its patterns. Tere are
two types of deep learning which are supervised learning, in
which training data include both input and desired output,
and unsupervised learning, in which training data contain
input but not the desired output. Te deep learning process
includes data collection, data preparation and segmentation,
and deep learning model design such as deep convolutional
neural network, training, testing, hyperparameter tuning,
and prediction.

3.1. Data Collection. In this study, SpO2 sensors collect data
at the rate of 16Hz sampling. However, we can explore
diferent sampling rates for SpO2 sensors for diferent re-
search studies. Figure 1 portrays the collection of SpO2
sensors at 16Hz sampling rate. In Figure 1, X16 denotes that
the SpO2 data at time T1 and X484 denote the SpO2 data at

time T30. In addition, it collects 16 data in one second with 4
data digit overlap. It means the duration of each feature input
is according to the medical experts’ advice and suggestion
which is a 30 second time segment. However, it is memory
consuming and resource consuming and it would not be
suitable for wearable devices and mobile phones. In type 1
polysomnography sleep recording, every 30 second time
segment will be allocated to a healthcare professional for
a sleep analysis practicing the reference nomenclature from
the American Academy of Sleep Medicine (AASM) [15, 49].

Te accessibility for sleep measurement devices has
drastically increased in recent years not only for the con-
sumer grade but also for medical grades [2]. For wearable
devices andmobile phones, the consideration of data and the
rate of collection of data should be at a lower dimension and
it would focus on more portability and lightweight com-
puting. Te mobile device has limited memory, for example,
when we collect 1Hz for each second of the SpO2 sensor,
there will be 60 data for 1minute, and at the same time, when
we collect 16Hz for each second, there will be 360 raw data
for 1minute. Te fact is that it requires around 1GB for one
night sleep recording. Te data sampling rate that will be
suitable for mobile devices is 1Hz, as shown in Figure 2.

According to Figure 2, it illustrates the collection of the
SpO2 sensor at 1Hz sampling rate. In this fgure, X1 denotes
the raw SpO2 data at time T1, that is, at the beginning of the
16 second segment and X16 denotes the raw SpO2 data at
time T16, that is, at the end of the 16 second time segment at
the sampling rate of 1Hz.

3.2. Data Segmentation. Tis section will focus on how the
original raw biological signals are transformed into a feature
vector. Each epoch of the single sleep study contains
30 seconds, and the sensor gets 16 SpO2 digit data every
second. It means that there will be 16× 30� 480 data in
30 seconds. In this study, the consideration is that the single
feature includes 484 data� 22× 22 SpO2 data. Each feature
in the SpO2 dataset is collecting raw data with the 16Hz
sampling rate, which will be fattened each 22× 22 into a 484
dimensional vector. Tat feature vector will be used as an
input to our ZleepNet CNN, and the output will be one of

Sampling rate: 16 Hz

four seconds

sixteen seconds

one second

Time T0 Time T1 Time T4 Time T30

X0 X484X16 X32

Figure 1: Collection of the SpO2 sensor at 16Hz sampling rate.
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two possible classes: apnea, which represents as “1,” and not
apnea, which represents as “0,” in the SpO2 dataset. In
Figure 3, we will discuss about how raw data are transformed
into a feature dataset, which is ready to do computation for
the CNN. A feature contains a number of data, which can be
seen as an input to the deep learning models. Several feature
records are known as a collection of feature sets. Te il-
lustrated fgures are based on the sleep apnea detection,
which includes more than 25 sensors. Te one-dimensional
feature vector and three-dimensional feature vector are
shown in Figures 3 and 4, respectively. Moreover, when we
have one sensor for our model, we could assume this as we
have one dimension. When we use two sensor signals for the
project, we could assume that we can view those data having
two dimensions. When we have 25 signals, we could say that
we can view the data from 25 dimensions. We could stack
those 25 diferent kinds of vectors for one feature input. One
scenario is that we could use two sensors such as SpO2 and
heart rate, or SpO2 and thoracic signal, for deep neural
networks not only for detection but also for recognition and
classifcation.

Te scenario in Figure 3 is that it will be one exact
sensor, for example, SpO2 signals or heart rate signal or
thoracic signal or abdomen signal. Tis scenario will be
dedicated to type 4 sleep studies, which contain one or two
biological signals. It is up to the researcher to select which
signal to choose for detection. Figure 3 illustrates simple
one-dimensional feature of one sensor evolve which is
suitable and ready for training, in which Figure 3(a) rep-
resents the simple logical one-dimensional feature. In
addition, Figure 3(b) shows how simple input feature
evolves into mathematical representation; however, it will
not be considered about the label representation, and
Figure 3(c) portrays the one-dimensional feature with
mathematical representation of data and numeric label
format. Moreover, Figure 1(d) shows the one-dimensional
feature with mathematical representation of data and one
hot encoding label. It depends on the researcher to decide
how many raw data will be in one input vector. Tere will
be 16 raw data in one input vector, or there will be 484 raw
data in one input vector. One recommendation is that
a single vector that can change to a square matrix is easy for

matrix multiplication. However, we need to consider about
the row and column for the matrix multiplication of the
outcomes when we use matrices that are not square. It relies
upon the researcher and advice of the domain expert. Te
following equation refects Figures 1 and 3 in mathematical
formula, which we consider to be all of the data collected
from one sensor data as X.

X � x1, x2, . . . , xn , (1)

F � f1, f2, . . . , fn , (2)

C � c1, c2, . . . , cn , (3)

fj � x1, . . . , xi, ci . (4)

Te above mentioned mathematical equations apply to
our proposed research. Te raw data x1, x2, . . . , xn  belong
to the dataset X in equation (1). In our proposed study, the
completely raw SpO2 data are represented in terms of X. A
feature or an input sample encoded with the class label is
represented as F. It includes several features f1, f2, . . . , fn 

in equation (2). In each feature fi, it contains segmented raw
input data together with the class and label which contains ci
in class C. Te class C consists of c1, c2, . . . , cn  in equation
(3). In other words, the feature fj in F consists of
x1, . . . , xi, ci  in equation (3). Te scenario in Figure 4 is
that it will be the combination of three sensors (for example,
SpO2 signal, heart rate signal, and EEG signal or thoracic
signal, abdomen signal, and heart rate signal or SpO2 ,
tracheal sound sensor, and EMG signal). Tis scenario is
called the type 2 sleep studies. One of the challenges when
using two or more biological signals is that the sampling rate
of the data collection. It means that one signal is collected
with 16Hz sampling rate and the other signal is collected
with 32Hz sampling rate. Te dimension reduction func-
tions or dimension increasing functions need to be used for
this challenge. Te other challenge is that the selection of
biological signals will be used for the classifcation. Figure 4
shows simple three-dimensional feature of the combination
of diferent biological sensors’ evolution which is suitable for
training via the deep learning network. Figure 4(a) presents
a simple two-dimensional logical feature. In addition, Fig-
ure 4(b) shows the three-dimensional input feature in
mathematical representation of data without considering
about the label representation. Figure 4(c) illustrates the
three-dimensional feature with mathematical representation
of data and numeric label format. Moreover, Figure 4(d)
shows the three-dimensional feature with mathematical
representation of data and one hot encoding label. It is
important to decide how many raw data will be in one input
vector. It will be the combination of three vectors, which
include 16 raw data in each input vector, or it will be 484 raw
data in each input vector. It relies upon the researcher and
advice of the domain expert.

Figure 4 scenario is the combination of any diferent
kinds of sensors. Tis scenario is for the type 1 poly-
somnography sleep monitoring and type 2 sleep recording.

Sampling rate: 1 Hz

four seconds

sixteen seconds

one second

Time T0 Time T1 Time T4 Time T16

X0 X16X1 X4

Figure 2: Collection of SpO2 sensor at 1Hz sampling rate.
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Te selection of biological signals is crucially important for
the deep learning neural network and for the detection of
sleep apnea. Figure 4 illustrates the combination of multiple
features of biological sensors that is plausible for training
and learning through the deep neural network. Figure 4(a)
shows the simple logical multidimensional feature. In ad-
dition, Figure 4(b) shows multidimensional input feature in
mathematical representation of data without considering the
label representation. Figure 4(c) illustrates multidimensional
feature with mathematical representation of data and nu-
meric label format. Moreover, Figure 4(d) shows the two-
dimensional feature with mathematical representation of the

data and one hot encoding label. It relies upon the researcher
and advice of the domain expert. Te following equation
refects Figure 4 in a mathematical formula, which we
consider to be all of the data collected from three sensors as
X, Y, and Z. It refects our previous experiments and ex-
periments using two or more sensors [37, 40].

X � x1,x2, . . . , xn , (5)

Y � y1, y2, . . . , yn , (6)

Z � z1, z2, . . . , zn , (7)

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 Apnea or Not Apnea

(a)

X1 X2 X3 Apnea | Not ApneaXn

(b)

X1 X2 X3 1| 0Xn

(c)

X1 X2 X3 01| 00Xn

(d)

Figure 3: One-dimensional feature of SpO2 sensor: (a) simple 1D feature, (b) 1D feature in mathematical representation, (c) 1D feature with
mathematical representation of data and numeric label format, and (d) 1D feature with mathematical representation of data and one hot
encoding.

x1

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16

z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 x15 z16

x2 x3

z1 z2 z3

x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 Apnea or Not Apnea

Apnea or Not Apnea

Apnea or Not Apnea

(a)

Apnea | Not Apneax1,y1,z1 x2,y2,z2 x3,y3,z3 xn,yn,zn...

(b)

1| 0x1,y1,z1 x2,y2,z2 xn,yn,zn...

(c)

01| 00x1,y1,z1 x2,y2,z2
xn,yn,zn...

(d)

Figure 4: Tree-dimensional characteristics of the combination of diferent sensors: (a) simple 3D feature, (b) 3D feature in mathematical
representation, (c) 3D characteristic with mathematical representation of data and numeric label format, and (d) 3D characteristic with
mathematical representation of one hot encoding.
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S � X,Y,Z, . . . ,Nn , (8)

F � f1, f2, . . . , fn , (9)

C � c1, c2, . . . , cn , (10)

fj � x1, . . . , xi, y1, . . . , yi, z1, . . . , zi, ci . (11)

Te raw data from three sensors x1, x2, . . . , xn , y1,

y2, . . . , yn}, and z1, z2, . . . , zn  belong to equations (5), (6),
and (7). Te research, which includes more than one sensor,
is explained in equation (8). Tis means that we can add
more sensors in future research studies. In other words, the
number of sensors X,Y,Z, . . . ,Nn  is in S, which is a set of
sensors in equation (6). Te number of features or samples
f1, f2, . . . , fn  belongs to F in equation (9). Te class C for
labelling the segmented data consists of c1, c2, . . . , and cn 

in equation (10). Te feature fj consists of the appropriate
data from the dataset X,Y and Z appropriately labelled
with the class x1, . . . , xi, y1, . . . , yi,z1, . . . , zi, ci} in
equation (11).

3.3.Events ofObstructiveSleepApnea. When the apnea event
occurs, breathing stops. Ten, the thermistor and nasal
pressure become fat with the presence of a thoracic and
abdominal signal. Tis is known as event 1, as shown in
Figure 5. After event 1, the oxygen desaturation event oc-
curs. It means that oxygen drops 3% or more for at least
10 seconds. It can be seen in the SpO2 sensor signals.

After the oxygen desaturation event, there will be an
arousal event in the brain wave. It means the brain sends
signal to muscles in order to do breathing when oxygen
drops for more than 10 seconds. Event 2 and event 3 can
overlap sometime. Figure 6 shows the increase in heart rate
in event 4 of Figure 5. It shows that the increase in heart rate
can occur at the time of decrease in oxygen desaturation.

Each sleep dataset is divided into training and testing sets
using diferent parameter settings in order to show that the
model is consistent after data collection and segmentation
process. Data normalization is performed on the data to
facilitate the training process. As a result of breathing
cessation, the occurrences of oxygen desaturation can be
seen in event 2 in Figure 5. One of the fndings is that the
heart rate began to increase after the oxygen desaturation
event in SpO2 and the arousal event in the brain occurred in
events 2 and 3, consecutively. It can be seen in Figure 6,
where the blue line represents the heart rate signal and the
gray line illustrates the SpO2 signal. Te heart rate increased
sharply from 66 to 120, at the same time, the SpO2 decreased
from 95 to 89.55. Te oxygen desaturation is 5.45%
according to Figure 6.

3.4. Convolutional Neural Network Design for Apnea/Hypo-
pnea Event Detection. Te design and all the details in each
layer of the deep convolutional neural network for the SpO2
signal are shown in Figure 7. In this model, it includes three
two-dimensional convolutional neural network layers with

the use of ReLu activation functions, three max pooling
layers, one fatten and dropout layer, and two dense layers
with the input size of 484 data in one input feature. Te
sigmoid classifer is used in the fnal output layer. Te signal
is segmented into 484 signal points in one epoch which
means a 30 second segment. According to AASM guidelines,
there will be 30 seconds in one epoch. In one sample, there
will be 484 signal points, and it can also transform into
22∗ 22∗1 which becomes square shaped three-dimensional
data that are suitable for the deep convolutional neural
network. Te 22∗ 22∗1 can change to 484 according to
matrix multiplication when it comes to data input. Ten, the
input values of the hidden layer are reduced to half in the
next two layers. For example, the 22∗ 22∗1 input in the
previous layer becomes 10∗10∗1 in the output layer. Te
details of the layer name, input size, output size, and the
number of kernels are shown in Table 1.

Te input size of the deep convolutional neural network
is 22∗ 22� 484 data in each sample in combination with one
label predicted by healthcare professionals. After the deep
neural network, weights and biases are calculated, in which
the input values are frst multiplied by the weights. Ten, the
losses are calculated by using the categorical cross entropy in
which the target distribution is compared to the predicted
distribution. Tird, the weights and biases are adjusted for
every layer of the ZleepNet CNN during the forward pass.
Every combination of weights and biases has the infuence
upon the loss reduction; however, loss functions are cal-
culated from the model output which does not contain
weight and bias for calculation.

Tere are infnite combinations of weights and biases to
obtain optimal loss and accuracy. Loss reduction is called the
optimization of the neural network by fnding the local
minimum of the loss. Adjusting weights and bias to reduce
loss is one of the main challenges in neural networks. After
fnding the signifcant loss reduction, accuracy will be raised
signifcantly. However, the loss decreases slightly; there will
be a signifcant change in accuracy. Updating weights and
biases within a number of iterations is called training the
network by searching and adjusting the weight and bias to
yield better accuracy and loss reduction.Te data complexity
is not irrelevant in deep learning when we have better CPU.
However, it was quite a challenge during past few decades.
Finding and adjusting the loss is called fnding the local
minimum of loss. Te main issue at this point is that how
many times we need to train the network model. However,
there is no specifc answer to these issues. It is up to how
many iterations are needed to get the local minimum of loss.

3.5.HyperparameterTuning. Hyperparameter are adjustable
parameters that are crucial and is not learned directly from
the training process. Tey are fxed before the actual training
begins. Te most common metric to measure the best
combination of hyperparameter in order to get the optimal
result is accuracy, especially for the classifcation problem.
Tis process is called hyperparameter optimization for the
confguration of the CNN model. Hyperparameter are set in
order to help and guide the learning process for getting the
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T0
Event 1 Event 2 Event 3 Event 4

T1 T2 T3 T4

Thermister and
Nasal pressure

Event (flattened
signal)

Oxygen Desaturation
Event

Arousal Event

Heart Rate
Increase Event

Figure 5: Four consecutive sleep apnea events.
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heart rate
spo289.55

120

1.357125×1018

Sleep Apnea Detection

heart rate
spo2

Figure 6: Heart rate increases after the oxygen desaturation event occurs in SpO2.

Input Layer
22×22×1

Conv2D-2
3×3 kernel

32 filter
Relu

Activation

MaxPool2D-2
2×2 pool size

MaxPool2D-2
2×2 pool size

MaxPool2D-1
2×2 pool size

Conv2D-3
3×3 kernel

64 filter
Relu

Activation

Conv2D-1
3×3 kernel

32 filter
Relu Activation

Flatten Dense DenseDropout

output layer

Figure 7: Te architecture of the deep convolutional neural network model.
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most out of the model. For the regression problem, the
common metric for hyperparameter optimization is the
negative mean absolute error. Te hyperparameters for the
deep convolutional neural network model are learning rate,
dropout rate, number of neurons, initializer for diferent
weight values, and the number of epochs required for the
training process. We need to adjust the hyperparameter for
the optimization of our model. Te hyperparameter tuning
for the epoch size, batch size, optimizer, learning rate,
momentum, network weight initializer, activation function,
dropout rate, and the number of neurons in hidden layers is
shown in Table 2.

Due to Table 2, batch size 100 and epoch size 100
should be used when we build our CNN model because of
the highest accuracy achieved (0.8380). Te accuracy and
standard deviation achieved are 0.6080, 0.8380, and
0.6467 and 0.0331, 0.2289, and 0.1873 with respect to the
epoch size 50, 1000, and 100 and batch size 80, 100, and 60,
respectively. Tis shows hyperparameter optimization for
the CNN model, which includes stochastic gradient de-
cent, RMSProp, Adagrad, Adadelta, Adam, AdamMax,
and Nadam. Te best optimizer for hyperparameter
tuning is the Adam optimizer. Te accuracy achieved for
the learning rate and momentum is as follows: (0.001 and
0.2), (0.01 and 0.2), and (0.2 and 0.4) are 0.8285, 0.4904,
and 0.5. Te best hyperparameter for the learning rate and
momentum are 0.001 and 0.2, respectively. Te details
about hyperparameter tuning for network weight ini-
tializer can be seen. Te accuracy and standard deviation
achieved for normal, he_normal, uniform, lecun_uni-
form, normal, zero, glorot_normal, glorot_uniform, and
network weight initializer are (0.7161 and 0.0306), (1,0),
(0.5000 and 0.0116), (0.8380 and 0.2289), (0.8380 and
0.2289), (0.4904 and 0.0067), (0.6619 and 0.2391), and
(0.5000 and 0.0116). Te best network initializer in this
hyperparameter tuning is he_uniform according to the
highest accuracy achieved.

Te accuracy and standard deviation achieved for ac-
tivation functions such as softmax, softplus, softsign, relu,
tanh, sigmoid, hard_sigmoid, and linear activation func-
tions are (0.6419 and 0.0205), (0.6329 and 0.0085), (0.7213
and 0.0289), (0.7381 and 0.0230), (0.7096 and 0.0120),
(0.6549 and 0.0157), (0.6601 and 0.0095), and (0.7135 and
0.0147), respectively. Te best optimizer for the activation
function according to the highest accuracy achieved is the

ReLu optimizer. Te accuracy is the best when the dropout
rate is zero with some weight constraint. Te accuracy and
standard deviation achieved for the dropout rate and
weight constraint (0 and 0.3), (0 and 1), (0.1 and 2), and (0.5
and 4) are (0.7135 and 0.2352), (0.8380 and 0.2289), (0.7285
and 0.2063) and (0.8380 and 0.2289), respectively. Te
accuracy and standard deviation achieved for the number
of neurons 20, 40, 60, and 100 are (0.7174 and 0.0112),
(0.7112 and 0.1241), (0.8132 and 0.8913), and (0.8913 and
0.0151). Te best optimizer for the number of neurons in
the hidden layer is 100 according to the highest accuracy
achieved.

4. Performance Evaluation

Te performance evaluation section includes the evaluation
metrics which explains the accuracy, sensitivity, specifcity,
precision, and recall based on the true positive, true negative,
false positive, false negative result, and classifcation result of
the ZleepNet CNN.

4.1. Evaluation Metrics. Te metrics used for performance
evaluation of the sleep apnea detection includes accuracy
(AC), sensitivity (SE), and specifcity (SP), which are cal-
culated from true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) in this study. We also
calculated precision (PR), recall (RE), and F1 score (F1). It
can be seen that three empirical studies are made using the
accuracy metrics of the proposed deep convolutional neural
network model using ffty patients, and each empirical study
includes 3700 to 4000 sample data of ten patients. Each
empirical study illustrates two fgures in which one is for
accuracy and the other is for loss. It becomes more stable
after 20 iterations. Te stable condition for training pre-
diction loss ranged from 20 to 100 iterations.

4.2. Classifcation Result. Te clinical studies express asso-
ciation in terms of sensitivity and specifcity [41]. According
to Table 3, the SpO2 signals are used for the comparison
between the proposed model and other classifers. Te
proposed model outperformed the other models with the
accuracy of 91.3085% and the split rate of 0.2% in which the
training data are 20% (794 samples) and testing data are 80%
(3178 data samples).

Table 1: Details of the ZleepNet CNN model.

Layer name Input size Output size Number of kernels
InputLayer 22× 22×1 22× 22×1 1
Conv2D-1 22× 22×1 20× 20× 32 32
MaxPool-1 20× 20× 32 10×10× 32 32
Conv2D-2 10×10× 32 8× 8× 32 32
MaxPool-2 8× 8× 32 4× 4× 32 32
Conv2D-3 4× 4× 32 2× 2× 64 64
MaxPool-3 2× 2× 64 1× 1× 64 64
Flatten 1× 1× 64 64 1
Dense 64 64 1
Dropout 64 64 1
Dense 64 2 1
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5. Limitations and Future Work

Tere are some challenges in using the deep convolutional
neural network for type 4 studies. Te nature of the SpO2
signal is stored in one-dimensional many row and one-
column format. Ten, segmentation of the signal can lead
to missing important information for detection. Te
features are made up of 16 Hz in a 30 second format. Tere
will be 484 values of the SpO2 signal in 30 seconds. As-
suming that the sleep apnea event happens between frst

and second consecutive features, this kind of sleep event
will not be detected.

However, the threshold for the detection of sleep apnea
events is the cessation of airfow for at least 10 seconds. Te
use of 484 for a 30 second feature format will reduce such
kinds of missing detection to a certain degree. However,
missing data due to the segmentation will not be eliminated
with 484 feature format within 30 seconds, and it can be
reduced to certain acceptable degrees in a 30 second seg-
ment. Te other challenge is that the data-driven method

Table 3: Te performance of ZleepNet convolutional neural network on the three datasets.

Dataset 1 Dataset 2 Dataset 3
Accuracy 90.3 91.3 89.7
Sensitivity 0.9183 91.31 96.49
Specifcity 0.9000 94.33 86.79
Precision 90.41 87.23 88.70
Recall 0.9125 91.07 96.49
F1 0.9142 89.10 92.43

Table 2: Hyperparameter tuning for epoch size.

Mean/accuracy Std dev First attribute Second attribute
0.6080 0.0331 Batch size �> 80 Epoch 50
0.8380 0.2289 Batch size �> 100 Epoch 100
0.6467 0.1873 Batch size �> 60 Epoch 100
0.2289 0.2289 Optimizer �> SGD
0.5000 0.0116 Optimizer �> RMSprop — —
0.5095 0.0067 Optimizer �> Adagrad — —
0.3285 0.0116 Optimizer �> Adadelta — —
0.8380 0.2289 Optimizer �> Adam — —
0.5190 0.0178 Optimizer �> AdamMax — —
0.4904 0.0067 Optimizer �> Nadam — —
0.8285 0.2424 Learning rate �> 0.001 Momentum �> 0.2
0.4904 0.0067 Learning rate �> 0.01 Momentum �> 0.2
0.5000 0.0116 Learning rate �> 0.2 Momentum �> 0.4
0.7161 0.0306 Network weight initializer �> Normal — —
1.0000 0 Network weight initializer �> he_normal — —
0.5000 0.0116 Network weight initializer �> Uniform — —
0.8380 0.2289 Network weight initializer �> lecun_uniform — —
0.8380 0.2289 Network weight initializer �> Normal — —
0.4904 0.0067 Network weight initializer �> Zero — —
0.6619 0.2391 Network weight initializer �> glorot_normal — —
0.5000 0.0116 Network weight initializer �> glorot_uniform — —
1.0000 0 Network weight initializer �> he_uniform — —
0.6419 0.0205 Activation function �> Softmax — —
0.6329 0.0085 Activation function �> Softplus — —
0.7213 0.0289 Activation function �> Softsign — —
0.7381 0.0230 Activation function �> Relu — —
0.7096 0.0120 Activation function �> Tanh — —
0.6549 0.0157 Activation function �> Sigmoid — —
0.6601 0.0095 Activation function �> hard_sigmoid — —
0.7135 0.0147 Activation function �> Linear — —
0.7135 0.2352 Dropout rate�> 0.0 Weight constraint �> 3.0
0.8380 0.2289 Dropout rate�> 0.0 Weight constraint �> 1
0.7285 0.2063 Dropout rate�> 0.1 Weight constraint �> 2.0
0.8380 0.2289 Dropout rate�> 0.5 Weight constraint �> 4.0
0.7174 0.0112 Number of neurons in the hidden layer �> 20 — —
0.7112 0.1241 Number of neurons in the hidden layer �> 40 — —
0.8132 0.2424 Number of neurons in the hidden layer �> 60 — —
0.8913 0.0151 Number of neurons in the hidden layer �> 100 — —
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always depends on the training data. When the ground
truth of the real data is corrupted, it will not produce the
accurate result, so the alternative to this method is the use
of unsupervised and reinforcement learning as the future
direction. Te other factor that should be considered is the
privacy of the patients when collecting information for
sleep monitoring. Attaching microphones or many sensors
and recording video make the patient feel very un-
comfortable and difcult to fall asleep for sleep
recording [21].

6. Conclusion

Table 4 illustrates the comparison between diferent types of
classifers, such as LDA, SVM, bagging representation tree,
and artifcial neural network for sleep apnea detection by
giving the same parameter setting in the split rate; the per-
centage of training data; and testing data. In fact, we run the
model with the use of the best hyperparameter achieved from
the previous table in the hyperparameter tuning section.
Compared to linear discriminant analysis (LDA), the split rate
is 0.5 with 50% of training data and 50% of testing data.

According to Table 4, the accuracy of the proposed CNN
is 90.33% when the LDA achieved 86.5% accuracy with the
use of 50% for training data and 50% for testing data with the
split rate of 0.5. Te accuracy of the SVM is 90% when the
split rate is 0.3% with the use of 70% for training data and
30% for testing data. On the other hand, the accuracy of the
proposed CNN is 91.56%. When comparing with bagging
representation tree, the accuracy of proposed CNN is
90.89%, using the split rate 0.1% with 90% of data will be
training and the other 10% will be testing. When the pro-
posed model achieved 91.30% accuracy when comparing
with the artifcial neural network (90.30% accuracy) using
the split rate 0.17% in which 83% is used for training data
and the other 17% is used for testing data. In conclusion, the
proposed model outperformed LDA, SVM, bagging repre-
sentation tree, and artifcial neural network when comparing
their accuracy by doing the same parameter setting for the
split rate and the percentage of training and testing data.
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[26] A. G. Ravelo-Garćıa, “Oxygen saturation and RR intervals
feature selection for sleep apnea detection,” Entropy, vol. 17,
no. 5, pp. 2932–2957, 2015.

[27] A. J. Williams, G. Yu, S. Santiago, andM. Stein, “Screening for
sleep apnea using pulse oximetry and a clinical score,” Chest,
vol. 100, no. 3, pp. 631–635, 1991.

[28] G. Schlotthauer, L. E. di Persia, L. D. Larrateguy, and
D. H. Milone, “Screening of obstructive sleep apnea with
empirical mode decomposition of pulse oximetry,” Medical
Engineering & Physics, vol. 36, no. 8, pp. 1074–1080, 2014.

[29] A. R. Hassan and A. Haque, “An expert system for automated
identifcation of obstructive sleep apnea from single-lead ECG
using random under sampling boosting,” Neurocomputing,
vol. 235, pp. 122–130, 2017.

[30] A. R. Hassan, “Computer-aided obstructive sleep apnea de-
tection using normal inverse Gaussian parameters and
adaptive boosting,” Biomedical Signal Processing and Control,
vol. 29, pp. 22–30, 2016.

[31] H. Sharma and K. K. Sharma, “An algorithm for sleep apnea
detection from single-lead ECG using Hermite basis func-
tions,” Computers in Biology and Medicine, vol. 77, pp. 116–
124, 2016.

[32] H. T. Ma, M. Ieee, J. Liu, P. Zhang, X. Zhang, andM. Yang, “A
real-time automatic monitoring system for sleep apnea using
single-lead electrocardiogram,” in Proceedings of the TEN-
CON 2015 IEEE Region 10 Conference, pp. 1–4, Macao, China,
November 2015.

[33] J. Zhang, Q. Zhang, Y. Wang, and C. Qiu, “A real-time auto-
adjustable smart pillow system for sleep apnea detection and
treatment,” in Proceedings of the 12th international conference
on Information processing in sensor networks (IPSN),
pp. 179–190, Montreal, Canada, April 2013.

[34] B. Xie and H. Minn, “Real-time sleep apnea detection by
classifer combination,” IEEE Transactions on Information
Technology in Biomedicine, vol. 16, no. 3, pp. 469–477, 2012.

[35] H. Elmoaqet, M. Eid, M. Glos, M. Ryalat, and T. Penzel, “Deep
recurrent neural networks for automatic detection of sleep
apnea from single channel respiration signals,” Sensors,
vol. 20, pp. 5037–5118, 2020.

[36] Y. Y. Lin, H. T. Wu, C. A. Hsu, P. C. Huang, Y. H. Huang, and
Y. L. Lo, “Sleep apnea detection based on thoracic and ab-
dominal movement signals of wearable piezoelectric bands,”
IEEE J Biomed Health Inform, vol. 21, no. 6, pp. 1533–1545,
2017.

[37] R. Jayaraj, J. Mohan, and A. Kanagasabai, “A review on de-
tection and treatment methods of sleep apnea,” Journal of
Clinical and Diagnostic Research, vol. 11, no. 3, pp. 1–3, 2017.

[38] S. S. Mostafa, J. P. Carvalho, and F. Morgado-Dias, “Opti-
mization of sleep apnea detection using SpO2 and ANN,” in
Proceedings of the 2017 29th International Conference on
Information, Communication and Automation Technologies
(ICAT), Sarajevo, Herzegovina, October 2017.

[39] A. B. Tataraidze, L. N. Anishchenko, L. S. Korostovtseva,
M. V. Bochkarev, and Y. V. Sviryaev, “Non-contact

Applied Computational Intelligence and Soft Computing 11

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/2101.04635
https://arxiv.org/abs/2101.04635


respiratory monitoring of subjects with sleep-disordered
breathing,” in Proceedings of the IEEE International Confer-
ence on Quality Management, Transport and Information
Security, Information Technologies (IT QM IS), pp. 736–738,
Saint Petersburg, Russia, September 2018.

[40] H. T. Chaw, S. Kamolphiwong, and K. Wonsritrang, “Sleep
apnea detection using deep learning,” Tehnički glasnik, vol. 13,
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