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Te discrete diferential evolution (DDE) algorithm is an evolutionary algorithm (EA) that has efectively solved challenging
optimization problems. However, like many other EAs, it still faces problems such as premature convergence and stagnation
during the iterative process. To address these concerns in the DDE algorithm, this work aims to achieve the following objectives:
(i) investigate the causes of premature convergence and stagnation in the DDE algorithm; (ii) propose techniques to prevent
premature convergence and stagnation in DDE, including a quantitative measurement of premature convergence based on the
level of mismatching between the population solutions and then divide the population into individual groups based on the level of
mismatching between the population solutions and the best solution; and applying the roulette wheel selection (RWS) approach to
determine whether a higher degree of nonmatching is more suitable for choosing a population of separate groups to be able to
produce a new solution with more options to prevent the occurrence of premature convergence; (iii) evaluate the efectiveness of
the proposed techniques through employing the DDE algorithm to solve the quadratic assignment problem (QAP) as a standard
to evaluate our results and their efect on avoiding premature convergence and stagnation issues, which led to the enhancement of
the algorithm’s accuracy. Our comparative study based on the statistical analysis shows that the DDE algorithm that uses the
proposed techniques is more efcient than the traditional DDE algorithm and the state-of-the-art methods.

1. Introduction

Nowadays, most studies have focused on fnding optimization
techniques that can obtain an optimum (or near optimum)
solution to complex combinatorial optimization problems
(COPs) within a moderate computational efort. In general,
there are two groups of real-world problems: optimization
problems and decision problems. Te decision problems are
the problems that can be solved by answering yes or no.While

the optimization problems are the problems whose solutions
involve determining the optimum (maximum or minimum)
solution of the problem [1]. Furthermore, the optimization
problems have been classifed into two categories: discrete
problems that have discrete variables and continuous prob-
lems that have continuous variables. In the same context, the
COPs belong to discrete optimization problems.

One of the most important types of COPs is the qua-
dratic assignment problem (QAP) which involves discrete
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variables and a set of feasible solutions [1]. It was initially
defned as a mathematical model related to economic ac-
tivities in [2] that aim to identify the best way to allocate
locations for facilities so that every facility is mapped to only
one location while every location is mapped to only one
facility so as to minimize the total distance multiplied by the
corresponding fows.

Te problem can be stated as given n facilities and n
locations (n is the problem size); a distance matrix (D)
consisting of distances between every pair of locations; a fow
matrix (F) consisting of trafc fows between every pair of
facilities. A solution (π) is a permutation or one-to-one
mapping of facilities to locations, and the objective function
is defned by the sum of distances between all assigned pairs
of facilities multiplied by the corresponding fows. In other
words, the QAP can be stated as follows:

Minf(π) � 􏽘
n

i�1
􏽘

n

j�1
fijdπ(i)π(j). (1)

Exact and approximate algorithms are currently the
most popular methods for solving the QAP. Finding an
optimal solution of the large size of the QAP using exact
algorithms is a great challenge. Generally, these methods
require large computational time, and hence, they are used
to solve only very small-sized problem instances [3]. Most
large-sized problem instances remain nearly intractable
using exact algorithms [4]. Tis reason has motivated the
researchers to use approximate methods to fnd better so-
lutions to the QAP instances within a moderate computa-
tional efort. On the other hand, there are two types of
approximate algorithms: heuristic and metaheuristic algo-
rithms. Generally, the study [5] gave the defnitions of those
algorithms as follows: a heuristic algorithm is an approach to
problem-solving that uses a practical method that is not
guaranteed to be optimal. In this situation, the heuristics are
treated as ways ofered to search and obtain better solutions,
while metaheuristics are a set of intelligent strategies to
enhance the efciency of heuristic procedures.

Evolutionary algorithms (EAs) are one of the best
metaheuristic algorithms and have the advantage of global
exploration due to the diversity of the population. Despite
those advantages of the EAs possessed, however, they still
sufer from the problems of premature convergence and
stagnation. Amongst EAs, the diferential evolution (DE)
algorithm is considered the recent algorithm in EAs, and it is
very competitive approach for solving optimization prob-
lems [6]. Additionally, unlike the exact algorithms, DE al-
gorithms are found to be very efcient in fnding solutions
that are optimal (or near optimal) within a moderate efort
for large-sized problem instances. As these algorithms were
initially developed for solving continuous optimization
problems, so as to deal with the QAP, some studies have
suggested improving the DE algorithm to the discrete DE
(DDE) algorithm [7, 8].

Te main goal of this study is to answer the following
question: how to handle the premature convergence and
stagnation issues in the discrete diferential evolution al-
gorithm (DDE)? In order to achieve that, the following

specifc objectives are designed to guide the study as well:
(i) to utilize a quantitative measurement of premature
convergence based on the degree of nonmatching between
the population solutions, then the population is divided
into individual groups based on the degree of nonmatching
between the population solutions and the best solution; (ii)
to apply the roulette wheel selection (RWS) method to
consider whether a greater nonmatching degree is of higher
ftness to select a population of individual groups to be able
to generate a new solution with more opportunities to
avoid the occurrence of the premature convergence; and
(iii) to utilize another technique when those proposed
techniques in (i) and (ii) cannot succeed in preventing the
stagnation for a set of solutions through regenerating those
solutions after waiting for the defned number of iterations
defned in the experiment setting. Tis research work has
employed the DDE algorithm to solve the quadratic as-
signment problem (QAP) as a standard to evaluate our
results and their efect on avoiding premature convergence
and stagnation issues, which led to the enhancement of the
accuracy of the algorithm. Our comparative study based on
the statistical analysis shows that the DDE algorithm that
uses the proposed techniques is more efcient than the
traditional DDE algorithm and the state-of-the-art
methods.

Te layout of this paper is presented as follows: Section 2
presents the research problem; related works are introduced
in Section 3; the materials and methods are presented in
Section 4; while the computational results and discussion are
reported in Section 5, whilst Section 6 reports the statistical
analysis, whereas theoretical analysis and critical explana-
tion of the performance of enhancement proposed are in-
troduced in Section 7. Finally, Section 8 presents the
conclusion.

2. Research Problem

Tere are two types of metaheuristic algorithms, one of them
called single-solution based metaheuristics, while the second
type is called population-solution metaheuristics. Premature
convergence is a situation where the convergence of the
population to local optimum causes the algorithm to lose the
diversity of the population [9]. Te category of the EAs is
among the most important metaheuristic algorithms under
the population-solution metaheuristics category, and they
have a global search capacity and are very suitable for solving
complex optimization problems [10]. However, they still
sufer from the premature convergence issue, where all
individuals have the same learning direction during the
iterative process [11], which is the main cause of the stag-
nation issue, thus decreasing the algorithm efciency.

Te problem statement is as follows: the set of existing
solutions for this issue uses the objective function of the
problem as the base to design the ftness function used in
selection operations such as the RWS. Terefore, as the
ftness does not directly express the diversity of the pop-
ulation, there is a need to design a method that directly
expresses like a nonmatching degree tomeasure the diversity
of solution. Tis way the probability of the occurrence of
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premature convergence is reduced through increased di-
versity of the population.

3. Related Works

Regarding the DE algorithm for the COPs, nowadays, most
of the researchers are interested in either developing a better
algorithm or improving an existing algorithm. Furthermore,
it is found that many literatures have tried to change the
algorithms for continuous space to discrete space as later
contains a large number of problems such as scheduling
problem. In [12], a study for solving the discrete space
problem is presented by adding a truncation method for
rounding the rational values of a DE population such that
the parameters of objective function would become discrete.

Te advantages of the DE algorithm attracted researchers
to improve it to deal with discrete optimization problems,
such as the QAP. In [13], an approach associated with DDE
is proposed for calculating variances in the fow-shop
preparation problem. As reported, the algorithm is not
found to be efective because of using low mutation prob-
ability (0.20). But, the DDE algorithm operation is found to
be more useful and efective if a local search method is
incorporated. Initially, the DE approach was adapted to
solve COPs and then applied to solve the QAP [7]. In [8],
swap and insertion mutations are used along with the local
search method for improving the DDE algorithm. Te
modifed DDE algorithm using local search showed better
results for two types of sparse and dense QAPLIB instances
(https://coral.ise.lehigh.edu/data-sets/qaplib/).

Premature convergence and stagnation issues have been
distinguished in the literature by the study [14], and the
phrase “stagnation issue” describes a circumstance in which
the optimum-seeking process stalls before locating a globally
optimal solution. Stasis typically happens almost for no
apparent cause. Te population remains diversifed and
unconverted after stagnation, unlike premature conver-
gence, but the optimization process no longer advances.

Investigation in the DE algorithms on the premature
convergence and stagnation issues has been carried out in
[9] as follows: when the population is converged to the local
optimum, that means, the algorithm has lost the diversity of
the population, then the convergence is premature con-
vergence. On the other hand, when the algorithm becomes
incapable of generating better new solutions (new ofspring)
by the evolutionary process; that is, it loses the capability to
improve the solutions, then it is a stagnation problem. In this
context, crossover operator plays an efcient role in the
algorithm to achieve the balance between the convergence
speed and population diversity [15]. Recently, an efcient
crossover operator named uniform like crossover (ULX)
applied by the study [16] for the DDE algorithm to solve
the QAP.

Most DE algorithms developed for the scheduling
problems require a transformation method for encoding the
solutions as vectors, which are decoded only at the evalu-
ation time. Tese kinds of schemes were used in several DE
algorithms in various studies [17, 18]. Another kind of the
DE is known as the DDE, in which the evolutionary

operators are developed depending on discrete permutation
representation. Furthermore, it can skip the transformation
operation between integer and real solution representations.
However, the research on the DDE algorithm is too little,
and they are generally used for solving the fow-shop
scheduling problems [19, 20].

Tere are many studies that have focused on the issue of
premature convergence and how to prevent its occurrence,
especially in evolutionary algorithms such as the genetic
algorithm, where population diversity helps prevent this
issue. Te studies [21, 22] have summarized some methods
that dealt with this issue as follows (“restricted selection,
dynamic application of mutation, constraints for crossover
and mutation probabilities, stochastic universal sampling,
variable ftness assignment, population partial reinitializa-
tion, individuals grouping methods, restricted mating,
zymogenesis, species conserving techniques, ranking sort
based on Pareto dominance, local search based on diversity,
elitist technique, and dynamic genetic clustering
algorithm”).

On the other hand, most studies stated that the selection
of parents was based on the value of the objective function,
as they would be selected if they had the best value of the
objective function after applying some restriction on the
selection process. A recent study [23] reported the selection
operators used in the EAs as follows: RWS, elitism selection
(ES), tournament selection (TOS), stochastic universal
sampling (SUS), linear rank selection (LRS), exponential
rank selection (ERS), and the truncation selection (TRS).

Te researchers in the study [24] discussed a stagnation
issue in the DE algorithm and how parents choose in the DE
algorithm based on previous studies included in their study,
where summarized the method proposed by them according
to the ftness values of the solutions in the existing pop-
ulation, solutions with higher ftness values have a greater
chance of being chosen as parents. Te choice of parents is
made depending on how far of the present population’s
solutions are from one another. It is more likely that the
solutions with short distances will be chosen as parents.
Tus, the parents that been chosen from the most recently
updated solutions will maximize the likelihood of producing
successful solutions.

Te review [25] has proposed tracking mechanism (TM)
and backtrackingmechanism (BTM)when population of the
DE algorithm tends to stagnate or undergo premature
convergence, which prevents it from achieving the global
optimum. In order to address those issues used the TM to
encourage population convergence when the population
entered a state of stagnation and used BTM to restore the
population’s diversity when it entered a state of premature
convergence. Te study [26] has addressed premature
convergence and stagnation issues in the DE algorithm as
follows: the mutation operator signifcantly impacts difer-
ential evolution’s (DE) efectiveness. Misconfgured muta-
tion techniques and control parameters might result in
premature convergence owing to overexploitation or stag-
nation due to overexploration. An efcient DE algorithm
must strike a balance between exploration and exploitation.
Te enhanced DE (EDE) for truss design presented in this
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work makes use of two novel strategies—integrated muta-
tion and adaptive mutation factor strategies—to achieve
a fair balance between the exploration and exploitation
of DE.

On the other hand, computing now includes quantum
computing (QC), and the quantum-inspired DE (QDE) fully
uses the QC’s rapidity and the DE’s optimization capabil-
ities. Moreover, various research studies suggested an en-
hanced QDE with multiple methods (MSIQDE) in the
literature. However, it still has poor search accuracy and
premature convergence. Hence, the study [27] has resolved
these issues with the MSIQDE through a new diferential
mutation, and a technique of a diference vector is suggested
to improve the searchability and descent ability. A new
multipopulation mutation evolution method is created to
assure the relative independence of each subpopulation and
the population variety. Te quantum chromosome is
mapped from a unit space to a solution space using the viable
solution space transformation approach to arrive at the best
outcome.

Recently, the study [28] has provided an efective DE
version, OLELS-DE, by designing orthogonal learning and
elites local search algorithms, efectively addressing DE’s
stagnation and premature convergence issues. A population
diversity estimation technique is used to empirically dif-
ferentiate between these two circumstances once the stag-
nation or premature convergence phenomena has been
found by keeping track of the best individual’s update
condition during the evolution.

Another recent study [29] has covered the topics of
premature convergence and stagnation in the DE algorithm,
which are still thought to be unresolved problems by re-
searchers. Te literature [29] aims to (1) provide a new
insight into function landscape analysis with domain
transform (DT); (2) alleviate the problems of premature
convergence and stagnation, which frequently occur on
complicated multimodal function landscape; and (3) con-
struct a new searching paradigm based on DT. Te DTfrom
signal processing and communication felds to evolutionary
computation is introduced. Te domain transform-based
evolutionary optimization (DTEO) technique will be pre-
sented in this part before being used to develop noiseless and
noisy optimization on DE, respectively.

4. Materials and Methods

In this section, all the algorithms and techniques that were
used to achieve the objectives of this research work have
been presented as follows:

4.1. Discrete Diferential Evaluation (DDE) Algorithm.
Te steps of DDE algorithm are stated as follows:

Initialization: initialize random population matrix π �

π1, π2, π3, . . ., πPs
􏽮 􏽯 of size Ps ∗ Nd where Ps is the
population size, and Nd is the dimension of problem
space. Each population individual must be unique.
Evaluate ftness: obtain the best solution πt−1

best in the
population Ps by using equation (1).

Mutation: the following Equation can be used to fnd
the mutant individual.

v
t
i �

insert πt−1
b􏼐 􏼑, if r<Pm( 􏼁,

swap πt−1
b􏼐 􏼑, otherwise,

⎧⎪⎨

⎪⎩
(2)

here, πt−1
b represents the best solution from the previous

generation in the target population; the Pm is the
mutation probability; and insert and swap are
merely the single insertion and swap moves, re-
spectively, r∈ [0, 1] is a uniform random number.
Crossover: the crossover operation can be performed
under the condition as shown in the following
equation:

u
t
i �

CR v
t
i , π

t−1
i􏼐 􏼑, if r<Pc( 􏼁,

v
t
i , otherwise,

⎧⎨

⎩ (3)

where the CR and Pc are crossover operation and
crossover probability, respectively. Tat means, the
crossover operation is used if a randomly generated
number, r<Pc, and then produce the individual ut

i .
Otherwise, the individual is selected as ut

i � vt
i .

Selection: selection operation that depends on ftness
function can be calculated by equation (4). Te se-
lection is based on the existence of the correct amongst
the test and target individuals.

πt
i �

u
t
i , if f u

t
i􏼐 􏼑≤f πt−1

i􏼐 􏼑􏼐 􏼑,

πt−1
i , otherwise.

⎧⎪⎨

⎪⎩
(4)

4.2. Fitness Proportionate Selection Mode. Fitness pro-
portionate selection (FPS) is a selection method in the ge-
netic algorithm (GA) and RWS method is one example of
FPS methods. According to a summary provided by [30], the
frst step of the FPS method is to calculate each individual’s
ftness value. Next, the individual’s proportion of ftness
within the entire group is calculated, which alludes to the
probability that an individual is selected amid the process of
selection. Te probability that the individual i is chosen, is
calculated in the following.

pi �
fi

􏽐ifi

,wherefi is the fitness of the individual i. (5)

FPS is a very efective method for a parent to be selected.
Tis gives everyone the privilege of becoming a parent with
a proportional probability to their ftness value. Conse-
quently, only the higher ftness value selections are made,
which are eventually propagated to the generation that
follows [31]. Te RWS is one of the frst methods for se-
lection operator that has been used successfully in many
applications of EAs [32]. Figure 1 shows the steps of
the RWS.

In RWS, there is a circular wheel, as outlined below,
along with a fxed point for choosing chromosomes arranged
along the wheel’s circumference. To choose the frst parent,
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the area of the wheel that comes ahead of the fxed point is
chosen, and this process is also applied to choose the second
parent. Notably, ftter individuals with greater wheel areas
will have a higher probability of being selected whenever the
wheel spins, which means that the chance of selecting an
individual is directly informed by its ftness value. In the
example given in Table 1, the ftness value of chromosome 1
is the highest, and so it has the greatest probability of being
selected in comparison to the other chromosomes. Likewise,
chromosome 5 has the lowest probability of being selected.

Figure 2 shows the implementation of the FPS by using
RWS to select chromosomes.

Similarly, the concept of the FPS has been used in the
transition rule on the ant system (AS) algorithm, but in
a way that fts into the algorithmic components (such as the
pheromone denoted by τ) in the transition rule.Tis is called
the random proportional rule (RPR), which is an imple-
mentation of the transition rule that gives the probability
that the ant k in the city r chooses to move the city s [33].
Equation (6) shows the RPR.

pk(r, s) �

[τ(r, s)]. [η(r, s)]
β

􏽐μϵJk(r)[τ(r, μ)]. [η(r, μ)]
β , if s ∈ Jk(r),

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

where τ represents the pheromone; η � 1/δ represents the
inverse of the distance δ(r, s), Jk(r) refers to the set of cities
that have yet to be visited by ant k positioned in city r (to
make the solution feasible); and the parameter (β> 0), de-
termines the relative importance of pheromone versus
distance. It is also worth noting that the probability value of
the node visited previously is 0, which avoids repeated visits.
On the other hand, the ant colony optimization (ACO)
algorithm sufers from the premature convergence issue. For
this reason, a new implementation of transition probability
is presented in [34] for ACO, called global random pro-
portional rule (GRP), to prevent this issue by enhancing
a random proportional rule. Te primary purpose of GRP is
to enhance exploration through an increased probability of
choosing solution components with a low pheromone trail
in order to use the algorithm to encourage ants to choose
a new shorter route to prevent premature convergence.
Equation (7) shows the GRP. It shows the meaning of x (r, s)
as it refects the efect in passing on edges from r to s during
the trial paths.

pk(r, s) �

[τ(r, s)]. [η(r, s)]
β

. χ(r, s)

􏽐μϵJk(r)[τ(r, μ)]. [η(r, μ)]
β
. χ(r, μ)

, if s ∈ Jk(r),

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

In our study, we use the same idea of GPR to use the FPS
and implement its ftness as a nonmatching degree in order
to give more opportunity for a group of solutions which can
avoid failure of premature convergence. Te ftness value
will formulate on the no-matching between the best so-
lution and the existing solutions in the groups after di-
viding the population’s solutions into those groups based
on the degree of diference. Te probability of those groups
is calculated in.

pi �
Degree of difference in each group

􏽐iDegree of difference in each group
. (8)

4.3. Proposed EnhanceDiscreteDiferential Evolution (EDDE)
Algorithm. Tis section includes the enhancement of the
DDE algorithm to deal with the premature convergence and
stagnation issues. Figure 3 shows the phases of enhancing
and evaluating of proposed EDDE algorithm as follows:

Te steps of the proposed enhanced DDE (EDDE) al-
gorithm are presented as follows:

4.3.1. Population Initialization Stage. Te frst step is to
initialize the population (solutions) randomly. As the goal of
the QAP, it assigns only one location to one facility;
therefore, the same facility should not be repeated in one
solution. Since beginning with a better initial population
gives a better solution, several researchers use heuristic al-
gorithms to generate better population, and we apply the
sequential sampling algorithm [35] for initiating the pop-
ulation. It is a basic form of the sequential constructive
sampling algorithm which is summarized as follows:

Given a distance matrix, organize the locations in
nondescending order of their distances in every row of the
matrix. Beginning from allocating facility 1 to a location
from frst row of the matrix, a complete allocation is con-
structed by allocating the residual facilities to other locations
probabilistically from the residual locations (the locations
that are not presently allocated to any other facility in the
current allocation) in each row. Te process is continued
until a complete allocation is constructed. Te probability of
allocating a residual location (in a row of the matrix) is

Table 1: Fitness value and probability.

No. of individual Fitness individual Probability pi
Chromosome 1 7 0.35
Chromosome 2 4 0.20
Chromosome 3 5 0.25
Chromosome 4 3 0.15
Chromosome 5 1 0.05
Total 20 1.00

While population size < pop_size do

Generate pop_size random number r

Calculate cumulative fitness, total fitness (Pi) and sum of proportional fitness (Sum)

Spin the wheel pop_size times

If Sum < r then

Select the first chromosome, otherwise, select jth chromosome

End If

End While

Figure 1: Steps of roulette wheel selection [32].
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Fixed point Wheel is selected

Spin

Chromosome1
Chromosome2
Chromosome3

Chromosome4
Chromosome5

5%

15%

25%

20%

35%

Figure 2: Selection chromosomes by using RWS.

Start

Phase 1

Phase 2

Proposed Enhance of the Discrete Differential Evolution (EDDE) algorithm

(i). Utilize a quantitative measurement of premature convergence to divide the population into groups in the EDDE algorithm
based on the non-match degree between the best solution and the solutions in population by using algorithm 1.
(ii). Apply roulette wheel selection (RWS) to select the groups of the population in the EDDE algorithm that are used in the
crossover operator stage by using Equation (9).

Evaluate the performance of the proposed EDDE algorithm

(i). Implementation of the DDE and EDDE algorithm on some of the instances of the QAP dataset.
(ii). Comparison of the performance between the DDE and EDDE algorithms based on the following evaluation criteria:

(i). Non-matching between the solutions with the best solutions.
(ii). Gap (Relative Percent Deviation) by using Equation (12).

(iii). Comparison performance of the EDDE algorithm with the state-of-the-art methods proposed in the literature review.

Is the performance of the
EDDE algorithm better than

the others?

Report the results

End

Yes

No

Figure 3: Phases of enhancing and evaluating of the proposed EDDE algorithm.
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allocated in way so that the frst residual location is assigned
more probability than second one, second is more than third
one, and so on. Next, for each residual location, cumulative
probability is computed. Ten, a random number r∈ [0, 1] is
produced, and the location that symbolizes the number in
the cumulative probability range is accepted. Repeat the
process until the population is full.

4.3.2. Finding Best Solution πt−1
best. Te next step is to fnd the

best solution, πt−1
best from the population based on the ob-

jective function by using equation (1).

4.3.3. Divide Population into Groups. In this step, the
population (solutions) is divided into groups based on
nonmatch degree (Degrees of Diference) with the best
solution πt−1

best by using Algorithm 1 as follows:
Suppose the best solution πbest is (1 2 3 4 5 6 8 7) and

suppose the solutions found in the population are given in
Table 2.

Based on the example given in Table 2, the degree of
diference starts at 2, and their number is equal the size of the
problem. Te degrees of the diferences can be obtained by
comparing the solutions in Table 2 with the best solution as
follows: solution π1 has a degree of diference is 2 from the
best solution, while solution π2 has a degree of diference is 3
from the best solution, and solution π3 has a degree of
diference is 2 from the best solution, . . ., etc. Te last
column in Table 2 shows the degree of diferences between
the best solution and the solutions in population. Te
population is divided into groups based on the degree of
diferences which is shown in Table 3.

Each group contains several solutions that are not
necessarily equal to the degree of diferences. For example, if
the degree of diference is 2, then this group can contain one
solution or more than one solution which difers from two
degrees from the best solution.

4.3.4. Apply Roulette Wheel Selection (RWS) to Select the
Solutions Group πt−1

gh . In this section, the solutions group
πt−1
gh has been selected using the FPS that is given in equation

(8) and RWS. Let the set of groups be {g1, g2, . . ., gm} and
1≤ h≤m be the number of groups that divide the population
based on the degree of the nonmatching between the best
solution and the solutions found in the population, S is
assigned to 1 to start with the frst element of the selected
group. Considering Table 3, the ftness value of group 1 is the
highest that has more chance of selection than the other
groups, and group 4 has very rare or no chance of selection,
the implementation of the FPS is done by RWS to select the
group. Table 4 presents the ftness value and probability of
each group.

4.3.5. Mutation Operation Stage. Tis step is presented by
using equation (2).

4.3.6. Crossover Operator Stage. Tis step has been included
in fnding the new solutions ut

i by using crossover operator

between the solutions found in the group πt−1
gh and the so-

lution generated from the mutation stage vt
i . Equation (9)

shows this step.

u
t
i �

CR v
t
i , π

t−1
gh􏼐 􏼑, if r< Pc,

v
t
i , otherwise,

⎧⎪⎨

⎪⎩
(9)

where the Pc∈ [0,1] is the crossover probability. If the r< Pc,
the ULX operator [16] is used to generate the ut

i otherwise
the vt

i is selected. Te process of the ULX is as follows: frst,

Input: Best solution πt−1
best and current solutions πi

Output: Nonmatch degree
Nonmatch� 0
For each facility in the current solutions πi
If the location of the facility not-match in πt−1

best and πi
Nonmatch� nonmatch + 1

End if
End For

ALGORITHM 1: Nonmatching degree.

Table 2: Solutions found in the population.

Solution Distributions of facilities to
locations Degree of diferences

π1 2 1 3 4 5 6 8 7 2
π2 1 2 3 6 4 5 7 8 5
π3 1 3 2 4 5 6 8 7 2
π4 7 8 3 4 5 2 6 1 5
π5 1 4 5 2 3 6 8 7 4
π6 1 2 3 7 4 8 5 6 5
π7 1 5 2 8 6 4 2 7 6
π8 8 5 6 4 7 2 1 3 8
π9 1 4 5 2 3 6 8 7 4
π10 8 2 3 4 5 7 6 1 4

Table 3: Division of the population into groups.

Group Degree of diferences Number of solutions
Group1 8 1
Group2 4 3
Group3 5 3
Group4 2 2
Group5 6 1

Table 4: Fitness value and probability of each group.

Group Degree of diference
in each group Probability pi

Group1 8 8/25� 0.32
Group2 4 4/25� 0.16
Group3 5 5/25� 0.20
Group4 2 2/25� 0.08
Group5 6 6/25� 0.24
Total 25 1

Applied Computational Intelligence and Soft Computing 7



the similar locations in both parents are check-up and then
copied to the child (new solution). Te second step involves
selecting an item randomly and uniformly from both parents
that have not yet been selected for the child after checking
the unassigned locations from left to right. Finally, the rest of
the items are randomly assigned to the locations.

4.3.7. Selection Operator Stage. Te selection operator is the
fnal step of the DDE algorithm which depends on the
objective function to choose the best solution after the
crossover step.Te new solutions πt

gh are the solutions either
in the ut

i or in the group πt−1
gh . Equation (10) shows the

selection step.

πt
gh �

u
t
i , if f u

t
i􏼐 􏼑< f πt−1

gh􏼐 􏼑􏼐 􏼑,

πt−1
gh , otherwise.

⎧⎪⎨

⎪⎩
(10)

4.3.8. Check Solution Stagnation Stage. Tis section included
the number of trials the EDDE algorithm waits for before
considering the solution is stagnated and should be
regenerated randomly after 10 trials. Equation (11) shows
this step.

Wi �
0, πt

ghi � u
t
i ,

Wi + 1, πt
ghi � πt−1

ghi .

⎧⎪⎨

⎪⎩
(11)

Te steps of the proposed EDDE algorithm are illus-
trated through the pseudo code shown in Algorithm 2.

Te fowchart of EDDE algorithm given in Figure 4 as
follows:

5. Computational Results and Discussion

Tis section elucidates the efciency of the improved al-
gorithm (EDDE). In order to encode the improved algo-
rithm, MATLAB (R2018b (9.5.0.944444), 64 bit (win64),
August 28-2018, and License Number: 968398) is employed
on a PC with Intel (R) Core (TM) i7-3770 CPU @3.40GHz
under MS Windows 10 and 8GB RAM. Tis section
comprises two parts: the frst part highlights the parameters
used for the proposed algorithm, whereas the second part
discusses the results of the study.

5.1. Parameters Tuning. Te same parameter settings that
were suggested in [8] are used for the DDE algorithm for
solving the QAP. Tese parameters are related to the
population size Ps, mutation probability Pm, probability of
crossover Pc, and Number of runs as given in Table 5.

Our EDDE algorithm is implemented and tested on
some of the QAP instances of various sizes from the QAPLIB
website and then compared with the traditional DDE al-
gorithm. Te criteria used for comparisons are based on the
gap (Relative Percent Deviation) of the solutions by the
algorithms and nonmatching between the solutions.

5.2. Comparison Based on the Nonmatching between the So-
lutions with the Best Solution. Te value of the nonmatching
was calculated through a comparison between the ar-
rangement of facilities occupied by the locations in the best
solution and between those facilities occupied by the loca-
tions in those solutions in the population by using the
following algorithm. Ten, the crossover is performed be-
tween the best solution and the selected solution in the group
to produce better ofspring. So, if there is a big match be-
tween these parents then there is a chance that the ofspring
will be identical to one of the two parents, and thus the
premature convergence will occur. Certainly, the solutions
having high degrees of nonmatching will increase the di-
versity of the population by creating new solutions (of-
spring). Table 6 shows this comparison as follows:

Te nonmatching values are computed by Algorithm 1,
if the value of the average nonmatching is small this means
that the solutions in the population are identical with the
best solution due to a lack of diversifcation. On the contrary,
if the value of the average nonmatching is high, then this
means that the solutions in the population have a diference
from the best solution, and in this way, the diversifcation is
preserved.

Te above results were obtained by fnding the degrees of
nonmatching between the solutions and the best solution in
all iterations after 10 runs, then sum them and dividing by
the number of iterations multiplied number of runs and
multiplied size of the population. Te crossover stage in the
DDE algorithm produced solutions with high degrees of
matching and in some cases are completely identical to the
best solution. For example, the mean of nonmatching of the
solutions of the instances (Tai20a, Tai20b, Tai25a, Tai25b,
Tai30a, Tai30b, Tai35a, Tai35b, and Tai40a) are 0, 0, 0, 0, 0, 0,
0, 0, and 0, respectively, whilst the mean of nonmatching of
the solutions these instances are (4.136, 4.363, 4.412, 7.415,
4.419, 10.643, 4.919, 6.595, and 16.890, respectively) by using
the EDDE algorithm.

Te RWS technique that was applied to select a pop-
ulation of individual groups for the crossover operation to
give a higher probability to selected the nonmatching so-
lution to generate solutions through this stage with a high
percentage of diference with the best solution i.e., in other
words, the locations of those facilities that these solutions
contain are diferent enough to allow the generation of new
solutions so that those locations are highly diferent degree
compared to existing locations in the best solution. In this
way, it is possible to preserve the diversity of the population
and thus reduce the issue of premature convergence. A
graphic representation of Table 6 is shown in Figure 5.

5.3. Comparison Based on the Gap (Relative Percent
Deviation). Tis section includes the comparison between
DDE and EDDE algorithms based on the gap (relative
percent deviation) that is given by

Gap �
BS − BKS

BKS
􏼒 􏼓∗ 100, (12)
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t: Iteration
t max: Maximum number of iterations
S: Solution in group πt−1

gh
|πt−1

gh |: Maximum number of solutions in group πt−1
gh

W max: Maximum number of wait for improvement of the solution
Population Initialization Stage
For t� 1 to tmax
Find the best solution πt−1best by using equation (1)
Divide population to groups based on nonmatching with πt−1

best by using Algorithm 1
Determining solutions group πt−1

gh by using RWS
For S� 1 to |πt−1

gh |
Mutation stage by using equation (2)
Crossover stage by using equation (9)
Selection stage by using equation (10)
Check solution stagnation stage W by using equation (11)
If keep same the solution
Wi �Wi+ 1

Else
Wi � 0

End If
If Wi>Wmax
Regenerate the solution at random after 10 trials
Wi � 0

End If
End For

End For

ALGORITHM 2: EDDE algorithm.

Start 

Population initialization stage 

t =1

S =1

Mutation Operation Stage by using Equation (2)

Crossover Operator Stage by using Equation (9)

Selection Operator Stage by using Equation (10)

Check Solution Stagnation Stage W by using Equation (11)

Is there an improvement in
the solution?

No
Wii= Wi+1

Yes

Wii= 0 S= S+1

Wi > Wmax

Yes

Regenerate the solution at random after 10
trials 

Wi= 0
No

Not = t+1 Yest > tmax 

No

End
Yes

Find the best solution in the population by using Equation (1)πt–1
best

Divide Population into groups based on non-match degree with the best solution by using algorithm 1πt–1
best

Apply roulette wheel selection (RWS) to select the solutions group πt–1
gh

S > | |πt–1
gh

Figure 4: Flowchart of the proposed EDDE algorithm.
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where BS denotes the best solution found by any algorithm
after 10 runs, while the BKS refers to the optimal solution or
the best-known solution reported in QAPLIB. In this study,
the EDDE algorithm addresses the issue of premature
convergence which has responded positively by improving
the gaps obtained by the DDE algorithm. Table 7 compares
the results between the DDE and the EDDE algorithms
based on the gap of the obtained solutions.Te results of this
comparison show the average of the gaps obtained by the
DDE algorithm before the enhancement is 3.369, which is
refned to 1.297 after enhancement. Tis is conducted by
applying the concept of the FPS to generate new solutions
with a high degree of nonmatching in order to reduce the
probability of creating solutions that are matched with the
best solution by the crossover operator stage. Figure 6 shows
the graphic representation of Table 7.

Te values of the gap have been calculated using
equation (12), and the less value of the gap is better than the
high value of the gap.

Te graphical representation of Table 7 is shown in the
following fgure:

6. Statistical Analysis

Tis section has discussed the results of this study using the
SPSS software as follows:

6.1. Normal Distribution Test. We are testing whether the
data follow a normal distribution by using the following
hypotheses:

Null Hypothesis: the data are normally distributed.
Alternative Hypothesis: the data do not follow a normal
distribution.

In order to check normality, we used the one-sample
Kolmogorov–Smirnov Test. Table 8 presents the results of
this test as follows:

In the SPSS software, the p value is labeled “Sig.,” from
above Table both p values are below 0.05 so we rejected the
Null hypothesis in our test and accept the alternative hy-
pothesis, Hence, this does not follow a normal distribution.

6.2.NonparametricTest. Tis test includes three Tables 9–11,
Table 9 includes descriptive statistics, Table 10 relates to
Wilcoxon Signed Ranks Test, and Table 11 includes test
statistics.

Te following Table presents theWilcoxon Signed Ranks
Test as follows:

In order to use Wilcoxon Signed Ranks test, the fol-
lowing hypotheses must be used:

Null hypothesis: there is no diference in the mean of
the two samples.
Alternative hypothesis: there is a real diference be-
tween the mean of the two samples.

From the above table, we fnd that the Wilcoxon Signed
Ranks test value is −4.831, and p value is 0.000 which is less
than 0.05; therefore, we rejected the null hypothesis and
accepted the alternative hypothesis.

7. Theoretical Analysis and Critical
Explanation of the Performance of
Enhancement Proposed

Research indicates that metaheuristic algorithms, including
EAs, are among the current state-of-the-art algorithms for
addressing NP-hard problems. While EAs beneft from
global exploration search, issues such as stagnation, pre-
mature convergence occur in the iterative operation and
slow in the exploitation mechanisms. Although the ex-
ploitation issue in the DDE algorithm has been addressed by
the recent study [36]; however, the critical reading of the
literature indicates that stagnation, premature convergence
issues have not been investigated in the DDE algorithm
associated with EAs to solve the QAP. Terefore, further

Table 5: Parameter setting of the DDE algorithm [8].

Parameter Value
Ps size of population 100
Pm probability of mutation 0.9
Pc probability of crossover 0.9
Number of Run 10

Table 6: Mean of nonmatching solutions obtained by DDE and
EDDE algorithms.

No. Instances DDE algorithm EDDE algorithm
1 Tai20a 0 4.136
2 Tai20b 0 4.363
3 Tai25a 0 4.412
4 Tai25b 0 7.415
5 Tai30a 0 4.419
6 Tai30b 0 10.643
7 Tai35a 0 4.919
8 Tai35b 0 6.595
9 Tai40a 0 16.890
10 Tai40b 0.167 11.368
11 Tai50a 0 5.725
12 Tai50b 0 8.608
13 Tai60a 0.127 6.000
14 Tai60b 0 9.456
15 Tai80a 0 6.754
16 Tai80b 0.291 10.398
17 Tai100a 0.520 7.451
18 Tai100b 0.927 12.015
19 Sko42 0.037 6.531
20 Sko49 0.086 7.777
21 Sko56 0.087 7.797
22 Sko64 0.116 8.441
23 Sko72 0.078 9.565
24 Sko81 0.187 10.137
25 Sko90 0.176 12.133
26 Sko100a 0.420 11.768
27 Sko100b 0.233 11.297
28 Sko100c 0.515 11.328
29 Sko100d 0.276 12.405
30 Sko100e 0.090 11.759
31 Sko100f 0.128 10.174
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research is required to enhance the algorithm that accounts
for current challenges, which is the area of contribution of
our study, specifcally the avoidance of stagnation and
premature convergence in the DDE algorithm. Te fol-
lowing sections have discussed the theoretical analysis and
critical explanation of the performance of enhancement
proposed.

7.1. Analysis of the Stagnation Situation for DDE and EDDE
Algorithms. Tis section included the comparison between
DDE and EDDE algorithms illustrating the stagnation sit-
uation for DDE and how EDDE avoids this issue. Tis
comparison applied an instance of the QAP data called
“Tai12a” as a case study. Te size of this instance is 12 fa-
cilities/locations, and the optimal solution of this instance in
the QAP database is 224416. Suppose the number of solu-
tions in a population in the DDE and EDDE algorithms is 7
solutions, the results of this comparison are discussed in
Tables 12 and 13 as follows:

7.2. Critical Explanation of the Performance of Enhancement
Proposed. A key point revealed by the critical analysis of the
improved algorithm’s performance (i.e., EDDE) is that
premature convergence arises from limited population di-
versity. Due to this, the algorithm generates solutions that
are comparable in the evolutionary process, losing its ability
to enhance solutions and leading to stagnation. Tese issues
were considered in this study by introducing quantitative
measurement to premature convergence in the improved
algorithm (EDDE) based on the degree of nonmatching
between the population solutions. Ten, the population was

18

16

14

12

10

8

6

4

2

0

M
ea

n 
of

 n
on

-m
at

ch
in

g 
de

gr
ee

Ta
i2

0a
Ta

i2
0b

Ta
i2

5a
Ta

i2
5b

Ta
i3

0a
Ta

i3
0b

Ta
i3

5a
Ta

i3
5b

Ta
i4

0a
Ta

i4
0b

Ta
i5

0a
Ta

i5
0b

Ta
i6

0a
Ta

i6
0b

Ta
i8

0a
Ta

i8
0b

Ta
i1

00
a

Ta
i1

00
b

Sk
o4

2
Sk

o4
9

Sk
o5

6
Sk

o6
4

Sk
o7

2
Sk

o8
1

Sk
o9

0
Sk

o1
00

a
Sk

o1
00

b
Sk

o1
00

c
Sk

o1
00

d
Sk

o1
00

e
Sk

o1
00

f

QAP Instances

DDE algorithm
EDDE algorithm

Figure 5: Graphic representation of Table 6.

Table 7: Best gaps found by DDE and EDDE algorithms.

No. Instances DDE algorithm EDDE algorithm
1 Tai20a 2.690 0
2 Tai20b 0.497 0
3 Tai25a 3.433 0
4 Tai25b 2.672 0
5 Tai30a 3.729 0
6 Tai30b 0.429 0
7 Tai35a 5.213 0
8 Tai35b 1.182 0.802
9 Tai40a 3.503 0.37
10 Tai40b 5.975 0.407
11 Tai50a 4.068 1.453
12 Tai50b 2.912 1.847
13 Tai60a 4.799 1.264
14 Tai60b 1.889 1.294
15 Tai80a 5.975 2.625
16 Tai80b 4.428 2.08
17 Tai100a 3.561 2.35
18 Tai100b 6.867 2.734
19 Sko42 3.681 1.328
20 Sko49 2.155 1.046
21 Sko56 3.389 1.973
22 Sko64 1.360 1.740
23 Sko72 2.934 2.408
24 Sko81 3.586 2.000
25 Sko90 3.292 1.712
26 Sko100a 3.434 2.100
27 Sko100b 3.259 2.037
28 Sko100c 3.511 2.308
29 Sko100 d 3.004 1.708
30 Sko100e 3.709 1.821
31 Sko100f 3.317 2.803

Average 3.369 1.297
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Figure 6: Graphic representation of Table 7.

Table 8: One-sample Kolmogorov–Smirnov test.

DDE algorithm EDDE algorithm
N 31 31

Normal parametersa,b Mean 3.369 1.361
Std. deviation 1.463 0.948

Most extreme diferences
Absolute 0.177 0.159
Positive 0.177 0.150
Negative −0.123 −0.159

Test statistic 0.177 0.159
Asymp. sig. (2-tailed) 0.014c 0.045c
aTest distribution is normal. bCalculated from data. cLilliefors signifcance correction.

Table 9: Descriptive statistics.

N Mean Std. deviation Minimum Maximum
Percentiles

25th 50th (median) 75th
Best gap by DDE algorithm 31 3.369 1.463 0.429 6.867 2.690 3.433 3.729
Best gap by EDDE algorithm 31 1.361 0.948 0.000 2.803 0.370 1.708 2.080

Table 10: Ranks.

N Mean rank Sum of ranks

Best gap by EDDE algorithm—best gap by DDE algorithm

Negative ranks 30a 16.48 494.50
Positive ranks 1b 1.50 1.50

Ties 0c

Total 31
aBest gap by EDDE algorithm< best gap by DDE algorithm. bBest gap by EDDE algorithm> best gap by DDE algorithm. cBest gap by EDDE algorithm� best
gap by DDE algorithm.

Table 11: Test statisticsa.

Best gap by
EDDE algorithm—best gap

by DDE algorithm
Z −4.831b

Asymp. sig. (2-tailed) 0.000
aWilcoxon signed ranks test. bBased on positive ranks.
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divided into individual groups based on the degree of
nonmatching between the population solutions and the best
solution. Moreover, the new utilization of the RWS has
helped to a greater nonmatching degree to select a pop-
ulation of individual groups to be able to generate a new
solution with more opportunities to avoid the occurrence of
premature convergence in the improved algorithm EDDE.

Figure 7 illustrates a practical example of the impact of the
positive contributions of this research on the performance of
the DDE algorithm (before enhancement) and EDDE algo-
rithm (after enhancement). Te example included the solu-
tions of two QAP instances, Tai25a and Tai25b; the results of
solutions in those instances show the DDE algorithm was
unable to achieve the optimal solution in both instances (Tai
25a and Tai25b), as it obtained the best gap of 3.433 and 2.672,

respectively. While the EDDE algorithm has achieved the
optimal solutions for those instances, hence it has achieved
the best gap is 0 and 0, respectively. Te blue color in Table 7
indicates the solution by the DDE algorithm, while the red in
Table 7 indicates the solution by the EDDE algorithm.

7.3. Comparison Performance of the EDDEAlgorithmwith the
State-of-the-Art Methods. Tis section has included the
comparison between the EDDE algorithm and the state-of-
the-art methods that solved QAP. A recent study [37]
discussed a performance study of metaheuristic approaches
for the QAP that includes the ACO, GA, PSO, bat algorithm
(BA), tabu search (TS) algorithm, and a modifed variant of
the discrete PSO algorithm.

Table 13: Example of the process to generate the new solution (ofspring) by crossover stage in the EDDE and DDE algorithms.

Process Solution Nonmatching degree
EDDE algorithm
Select best solution (πBest) 4 5 11 3 7 10 12 9 8 6 1 2 —
Mutation stage to select the parent 1 4 3 11 5 7 10 12 9 8 6 1 2 2
Select individual as parent 2 from the group that selection by RWS 4 2 11 6 12 1 7 5 9 3 10 8 10
Crossover stage between parent 1 and parent 2  2 11 6 7 1 12 9 8 3 10 5 6
DDE algorithm
Select best solution (πBest) 4 5 11 7 1 8 12 10 9 3 6 2 —
Mutation stage to select the parent 1 4 5 1 7 11 8 12 10 9 3 6 2 2
Select individual from a population as parent 2 4 5 11 7 1 8 12 10 9 3 6 2 0
Crossover stage between parent 1 and parent 2 4 5 11 7 1 8 12 10 9 3 6 2 0
It can be noted that the new solution (ofspring) generated by the EDDE algorithm (bold) by the crossover stage has a high degree of nonmatching with the
best solution which means the diversity of the population will be increased. While the opposite is in the DDE algorithm that generated ofspring (italic) by the
stage of crossover that degree of nonmatching was zero compared with the best solution, which means that the new solution is matched with the best solution
which leads to loss of diversity.
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Figure 7: (a) Solution of the instance Tai25a, and (b) solution of the instance Tai25b.

Table 14: Best values of the gap found by the proposed EDDE algorithm and others algorithms.

Instances of QAP ACO [37] BA [37] GA [37] PSO [37] Modifed PSO [37] TS [37] Our proposed EDDE
algorithm

nug8a 0.00 0.00 0.42 0.19 0.84 3.00 0.00
nug12 0.00 4.95 7.44 3.98 4.22 5.96 0.00
tai12a 0.00 9.07 11.11 10.86 9.49 7.63 0.00
esc16a 0.00 2.65 6.76 6.47 2.94 2.94 0.00
tai20a 1.02 11.90 13.36 13.00 10.58 5.07 0.00
nug28 0.74 16.10 18.11 16.21 13.16 4.26 0.36
tai30a 2.22 12.24 13.22 12.21 10.91 5.27 0.00
esc32e 0.00 0.00 17.50 0.00 0.00 0.00 0.02
Average 0. 98 7.11 10.990 7.865 6.518  .266 0.00 
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Table 14 shows the results of the comparison between the
proposed algorithm EDDE and among those algorithms that
have been proposed in the recent literature that dealt with
solutions of QAP instances. Te results of that comparison
showed that the proposed algorithm EDDE had a more
efcient performance than others to converge to the optimal
solutions. Moreover, the EDDE algorithm obtained 0.004 of
the best average value of the gap whilst the other algorithms
(ACO, BA, GA, PSO, Modifed PSO, and TS) have obtained
0.498, 7.114, 10.990, 7.865, 6.518, and 4.266, respectively.
Figure 8 shows the graphic representation of these results as
follows.

7.4. Limitations of the Study. Recently, the authors in the
study [16] utilized ULX for the DDE algorithm to solve the
QAP. However, there are many crossover operators sug-
gested for the QAP in other algorithms such as the genetic
algorithm [38]. Furthermore, this study used only the DDE
algorithm which belongs to the EAs category although there
are many known algorithms that belong to the category
of EAs.

 . Conclusion

Tis study aims to address the limitations of evolutionary
algorithms (EAs), which can sufer from premature con-
vergence and stagnation. Despite the advantages of EAs,
these issues can hinder their ability to solve complex opti-
mization problems (COPs). Terefore, to avoid premature
convergence in the EAs by ensuring the diversity of the
population considered to enhance the selection operations
by proposing diversity measures between solutions, hence
the enhancement of convergence to optimal solutions. We
implemented our proposed enhancement DDE as an al-
gorithm of the evolutionary algorithm category. To evaluate
the performance of the DDE algorithm before and after the

enhancement, it was tested on some benchmark instances
from the QAPLIB website. Subsequently, we compared the
results obtained by DDE and enhanced DDE algorithms
based on the gap and nonmatching solutions. Our com-
parative study reveals that the EDDE algorithm is more
efcient than the traditional DDE algorithm. Moreover, the
proposed algorithm is better than the other algorithms,
including ACO, GA, PSO, bat algorithm (BA), tabu search
(TS), and amodifed variant of the discrete PSO algorithm in
convergence to optimal solutions of some QAP instances.
We suggest applying the proposed algorithm EDDE to solve
other problems of the COPs in future work, such as
capacitated vehicle routing problem (CVRP) and nurse
scheduling problem (NSP).
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