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Breast cancer imaging is paramount to quickly detecting and accurately evaluating the disease. Te scarcity of annotated
mammogram data presents a signifcant obstacle when building deep learning models that can produce reliable outcomes. Tis
paper proposes a novel approach that utilizes deep convolutional generative adversarial networks (DCGANs) to efectively tackle
the issue of limited data availability. Te main goal is to produce synthetic mammograms that accurately reproduce the intrinsic
patterns observed in real data, enhancing the current dataset. Te proposed synthesis method is supported by thorough ex-
perimentation, demonstrating its ability to reproduce diverse viewpoints of the breast accurately. A mean similarity assessment
with a standard deviation was performed to evaluate the credibility of the synthesized images and establish the clinical signifcance
of the data obtained. A thorough evaluation of the uniformity within each class was conducted, and any deviations from each
class’s mean values were measured. Including outlier removal using a specifed threshold is a crucial process element. Tis
procedure improves the accuracy level of each image cluster and strengthens the synthetic dataset’s general dependability. Te
visualization of the class clustering results highlights the alignment between the produced images and the inherent distribution of
the data. After removing outliers, distinct and consistent clusters of homogeneous data points were observed. Te proposed
similarity assessment demonstrates noteworthy efectiveness, eliminating redundant and dissimilar images from all classes.
Specifcally, there are 505 instances in the normal class, 495 instances in the benign class, and 490 instances in the malignant class
out of 600 synthetic mammograms for each class. To check the further validity of the proposed model, human experts visually
inspected and validated synthetic images. Tis highlights the efectiveness of our methodology in identifying substantial outliers.

1. Introduction

Breast cancer (BC) is a popular type of cancer in females that
forms in the cells of the breast. It is triggered by the ab-
normal cell’s growth in the breast and divides un-
controllably, forming a tumor. Its early detection is crucial,
as it allows for timely treatment, thus saving many lives [1].
In the year 2020, a total of 2.26 million new instances of
breast cancer were identifed globally, accounting for ap-
proximately 11.7% of the overall incidence of cancer.
Currently, this form of cancer has become the most prev-
alent, surpassing lung cancer with a prevalence rate of 11.4%.
Certain regions, namely, Australia, Europa (North, West,
and South), and North America, appear to be more

signifcantly impacted than others [2]. Moreover, according
to the World Health Organization [3], the incidence of
breast cancer is projected to rise from 2.26 million new cases
in 2020 to 3.19 million in 2040, refecting a notable rising
trend of 41% over the following two decades. Cancer is
becoming more prevalent in Pakistan, with 19 million new
cancers of all types recorded in 2020. In the context of
Pakistan, the annual incidence of breast cancer is predicted
to exceed 83,000 cases. Annually, over 40,000 women suc-
cumb to this debilitating ailment [4]. Medical practitioners
use several modalities for early prediction of breast cancer,
like mammography, ultrasound, and magnetic resonance
imaging (MRI). Mammography is a low-dose X-ray of the
breast and is the most common screening tool for breast
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cancer [5]. However, accurately interpreting mammograms
is challenging as these images are complex, and detecting
abnormalities can be difcult. Human reading of mam-
mograms can sometimes produce false-positive or negative
results. Variability in expertise can also lead to in-
consistencies in diagnosis and treatment decisions [6].

Te artifcial intelligence community is trying to help
with breast cancer detection. Training algorithms on a large
mammogram and clinical datasets conducts extensive re-
search. Tese models can recognize breast cancer patterns
and accurately analyze mammograms, reducing false posi-
tives and negatives and helping radiologists make better
diagnoses and treatment decisions. Machine learning (ML)
models can standardize analysis and reduce radiologists’
expertise [7, 8]. Machine learning algorithms can identify
subtle patterns and features that may not be readily no-
ticeable to human observers and can aid in the early de-
tection of BC.

ML can identify breast cancer, but it has limits. Training
data are crucial to such models. Te model’s performance
may be limited if the training data doesn’t include unusual or
atypical breast cancer cases. Comprehensive and represen-
tative datasets are essential to detecting breast cancer across
populations and variations. Tese models may fail to gen-
eralize to new data that difers signifcantly from the training
data [9–11].

Researchers [12] increasingly acknowledge the signif-
cance of tackling the issue of limited data representation to
enhance the performance and generalizability of these
models. Te technique of infating existing datasets is widely
employed. Data augmentation is a methodology that en-
compasses the generation of novel training samples by
applying diverse transformations to the preexisting data.Te
augmentation of mammogram images can encompass
various techniques, such as fipping, rotation, scaling, or
introducing noise. Tese techniques serve the purpose of
enhancing the diversity and variability of the training data.
Tis feature enables the model to acquire knowledge from
a more extensive array of instances. However, this approach
also has limitations.

In conjunction with continuous research and develop-
ment endeavors, these methodologies strive to tackle the
issue of inadequate data representation in machine learning
and enhance the efcacy and applicability of models across
diverse felds [13–16].

Te primary objective of this study is to employ
a DCGAN for data augmentation and subsequently validate
its efectiveness. DCGANs can create synthetic mammo-
grams from minimal real data, as shown in Figure 1.

Te primary motivation is to overcome data short-
ages, enhance diagnostic precision, and advance breast
cancer imaging using generative models to synthesize
realistic mammograms. Te generated data could im-
prove deep learning models and aid in providing patients
with better care. Te study aspires to improve patients’
lives worldwide by improving such models’ diagnostic
accuracy through more robust data augmentation. Te
accuracy of the proposed models helps clinicians detect
breast cancer earlier.

Te study’s objectives include utilizing DCGANs to
create synthetic mammograms to fll the data gap and in-
crease the dataset’s diversity and clinical applicability. En-
hancing deep learning by exposing it to a more extensive and
varied dataset during training can improve the precision of
deep learning models for detecting breast cancer. Increasing
the number of cases available for comparison and validation
through synthetic images will boost radiologists’ confdence
in their diagnostic abilities.

Section 2 presents recent literature on GAN. Section 3
presents the proposed methodology for mammogram
augmentation and subsequent validation. Te results of the
study are presented in Section 4. Te conclusion and future
work are discussed in Section 5.

2. Related Work

In the context of mammography, several data augmentation
approaches are frequently employed to improve the per-
formance and generalizability of the models. Machine
learning has experienced substantial progress in the last
decade, primarily due to advancements in deep neural
networks. Tese networks have demonstrated exceptional
performance in several medical imaging tasks, contributing
to the increased popularity of machine learning in this
domain. Meanwhile, the generative modelling and data
synthesis feld has made signifcant advancements in quality,
mainly attributed to the emergence of generative adversarial
networks. GANs currently exhibit remarkable capabilities
for generating visually realistic images that closely resemble
the content of the datasets they were trained on.

Wu et al. [18] conducted research to address the data
scarcity and imbalance problem in breast cancer detection
using a publicly available dataset from the UK, namely the
OPTIMAM Mammography Image Database. Te dataset
contains 8282 malignant, 1287 benign, and 16887 normal
mammographic images. Tey divided the data into 60% for
training, 20% for validation, and 20% for testing. Tey
trained a contextual GANmodel to augment the dataset with
the self-attention mechanism. Tey used both traditional
and GAN-based augmentations. Teir GAN-augmented
model produced an AUC of 0.846. Te model performs
a binary classifcation of normal and malignant.

Desai et al. [19] developed the DCGAN model using
a benchmark DDSM dataset. Tey utilized 218 for training
and 47 each for testing and validation. Teir experiments
reported an accuracy of 78.23% when the model was trained
on original images. At the same time, the combination of
synthetic and authentic images produced an enhanced ac-
curacy of 87% with an improvement factor of 8.77. Te
authors show that GAN is a workable choice for training
such models with a data shortage.

Alyaf et al. developed a DCGAN model for breast mass
augmentation using a subset of 80000 images from the UK-
based OPTIMAM mammography image database (OMI-
DB) [17]. Te authors demonstrate the performance of
a classifer in an imbalanced dataset with and without
synthetic data in the experiments. Tey created breast mass
patches with 128×128 pixel dimensions using a modifed
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version of DCGAN. GAN augmentation was compared to
traditional augmentation. Te results show that using
DCGANs with fipping augmentation improves the F1 score
by up to 0.09 compared to the original mammographic
images. Te job can be expanded to include other similar
tasks. Teir work is limited to small mammogram patches.

Shen et al. [20] developed a GAN-based system using
a benchmark DDSM dataset and a local dataset collected
from Nanfang Hospital, China. Te study aimed to address
the issue of limited data in medical image analysis by de-
signing a model to generate labelled images based on
contextual information within the breast mammograms.Te
model was evaluated, and the results showed that their
augmentation technique increased the diversity of the
dataset and achieved an improvement of 5.03% in the de-
tection rate. Te model is a viable option for generating
labelled breast images.

In [21], they proposed a deep learning-based mammo-
gram recognition model. Te model performs a special
autoencoder-generative adversarial network (AGAN) for
data augmentation. Te generator produces additional
images in a perfect way for training the model. Te fnal set
of original and generated images is given as input to the
CNN for classifcation. A total of 11,218 ROIs of mam-
mograms from DDSM were used in the experiments. Tey
reported an average accuracy in detecting abnormal vs
healthy cases of 89.71%.Te specifcity was 80.58%, while the
sensitivity and AUC were 93.54% and 0.9410, respectively.
Te work’s main contribution was its novelty in its data
augmentation compared to the other deep learningmethods.
Te proposed model AGAN is learned only on normal data.
Temodel does not consider other mammographic datasets.

Another study generated breast mammograms with
GANs [22]. Teir main aim was to detect mammo-
graphically occult (MO) cancer in women with dense
breasts. Te researchers employed a convolutional neural
network (CNN). Te network was trained on processed
mammographic images from the Radon cumulative distri-
bution transform (RCDT) 1366 processed mammograms

collected from the University of Pittsburgh Medical Center,
USA.Tey reported an AUC of 0.77.Te system can identify
patients for further screening in the early detection of MO-
related cancer. However, they did not consider benchmark
datasets.

Te authors developed a StyleGAN 2 system using
105,948 normal mammograms collected from Asan Medical
Center, Korea, from January 2008 to December 2017 [23].
Tey evaluated GAN-generated images through Fréchet
Inception Distance (FID) equal to 4.383 and the Inception
Score of 16.67. Te multiscale structural similarity index
measure (MS-SSIM) stood at 0.39, and the average value of
the peak signal-to-noise ratio (PSNR) was 31.35.Teir model
has performed with reasonable fdelity to real images. Te
system was only limited to normal mammographic local
images. Te summary of the literature is presented in
Table 1.

Tis study presents an innovative approach to
addressing the scarcity of annotated mammogram data by
employing DCGANs. Tis methodology is adept at gener-
ating synthetic mammograms that mirror real-data char-
acteristics with high fdelity. Key contributions of this
research are outlined as follows:

(i) Te research extensively tests the efectiveness of the
DCGAN-based synthesis in accurately replicating
various mammographic features, including diverse
tissue types, lesion characteristics, and breast views.
Te quality and authenticity of these synthetic images
are meticulously evaluated using mean similarity
measures and standard deviation analyses, ensuring
a rigorous assessment of their realism.

(ii) Te study employs a systematic approach to en-
hance data precision by identifying and removing
outliers. Tis is achieved through a threshold-based
outlier removal mechanism, signifcantly bolstering
the synthetic dataset’s reliability. Te refned dataset
demonstrates clinical relevance, as evidenced by its
consistency across diferent classes.

(a) (b)

Figure 1: (a) GAN-generated images (b) real images [17].
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(iii) Te reliability of the proposed model is further
corroborated through visual validation conducted
by expert radiologists.Teir professional assessment
confrms the clinical accuracy and utility of syn-
thetic mammograms.

(iv) Te study showcases the consistency of the synthetic
dataset through detailed visualizations of class clus-
tering. Tese visualizations highlight the congruence
between the generated mammograms and the real data
distribution. Te substantial number of images from
each class passing the similarity assessment underscores
the success of the proposed validation mechanism.

3. Methodology

Tis section describes the comprehensive methodology used to
determine the reliability of the dataset and ensure the validity of
the generated mammogram classes. Temethodology includes
creating mammogram classes with a DCGAN, determining
similarity, and removing outliers using a three-fold standard
deviation threshold. Te overall methodology is depicted in
Figure 2. Tis study aims to evaluate the generated classes’
quality methodically and improve the dataset’s robustness.

3.1. Data Collection. DDSM (digital database for screening
mammography) is a benchmark dataset [24]. Te DDSM
dataset consists of a more extensive collection of 2,620 digital
mammograms in DICOM format from 262 patients. Te
dataset consists of 695 normal mammograms, 141 benign
mammograms without callback, 870 benign, and 914 malig-
nant mammograms. Te description of DDSM contains the
ground truth information associated with each mammogram
image with suspect lesions. It includes both benign and ma-
lignant cases, ofering a diverse range of breast abnormalities.

3.2. Data Preparation. Preparing appropriate input data for
the model is essential to ensuring consistency and clinical
relevance. Medical images, including mammograms, can be

susceptible to noise and artifacts that might afect the quality
of the training data. A denoising algorithm, such as median
fltering or wavelet denoising, is applied to the mammogram
images. Tis denoising process efectively reduces noise
while preserving diagnostically relevant features, resulting in
cleaner images for training. To feed data to the network, the
mammograms were resized into the same size and format.

3.3. DCGAN Architecture. Te architecture of the DCGAN
[25] plays a pivotal role in generating realistic mammogram
images. Tis subsection presents a comprehensive overview
of its architecture tailored to the mammogram generation
task, including detailed descriptions and tables depicting key
components. Its general architecture is shown in Figure 3.

Dotted arrows show fake mammograms. First, a noise
batch z is generated; forward z through Generator (G);
forward the real and fake batches through Discriminator D;
calculate LD; update D; calculate LG; and update G.

In the diagram, random latent vector samples are taken
from z Pz; Pz�N (0, 1) for each training iteration (see step 1
in the above diagram). After being normalized to the range
[1, 1], this pure-noise batch is sent through G to create a set
of fake images (G(z), step 2). As shown in step 3 with the
dashed arrows, these fake images are normalized to the
interval [0, 1] before passing through D to obtain realism
probabilities. In step 4, LD is calculated, and D parameters
are updated in step 5. After that, the fake batch is forwarded
through D, and LG is calculated in step 6. Backpropagation
is done eventually to update the parameters of G in step 7.

3.3.1. Generator Network. A random noise vector is fed into
the generator network, which gradually converts it into
synthetic mammogram images. It starts with convolutional
layers and then adds nonlinearity with batch normalization
and ReLU activation functions. Skip connections preserve
key features during the downsampling process; they were
inspired by U-Net architectures. Te generator’s architec-
ture is summarized in Table 2.

Normal Mammograms Benign Mammograms

Deep Convolutional
Generative Adversarial

Network

Min-Max V (D, G) =
E [log (D (x))]+ E [log (1 -

D (G (z)))]

Min-Max V (D, G) =
E [log (D (x))]+ E [log (1 -

D (G (z)))]

Deep Convolutional
Generative Adversarial

Network

Malignant Mammograms

Performance Measure

Homogeneity

Mean

3X Standard
Deviation

Deep Convolutional
Generative Adversarial

Network

Min-Max V (D, G) =
E [log (D (x))]+ E [log (1 -

D (G (z)))]

Figure 2: Proposed methodology at Glance.
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3.3.2. Discriminator Network. Te primary function of
the discriminator network is to discern and difer-
entiate between authentic mammogram images and
artifcially generated ones. Te architecture consists of
convolutional layers, followed by batch normalization
and LeakyReLU activation functions to introduce non-
linearity. Te discriminator’s architecture is summarized
in Table 3.

Te training employs adversarial loss functions, such as
binary cross-entropy or Wasserstein loss, to simultaneously
optimize the generator and discriminator networks. Adam
optimizer is utilized for its robustness in handling non-
stationary data and complex loss landscapes.

3.4. Training Process. A crucial stage in this research is the
network’s training process, during which the generator
learns to create realistic mammogram images, and the
discriminator develops its capacity to tell real images from
fake ones. Te key components of the training process are
described in this subsection, including the tuning of
hyperparameters, loss functions, and convergence moni-
toring, as shown in Table 4.

Te generator and discriminator networks compete in
a two-player minimax game as part of the adversarial
training approach. While the discriminator strives to be-
come more accurate in distinguishing real from fake images,
the generator seeks to reduce the discriminator’s ability to
diferentiate between real and synthetic mammogram
images.

3.4.1. Loss Function. During training, the DCGAN uses
binary cross-entropy loss as the primary loss function for the
generator and discriminator. For the discriminator’s real/
fake classifcation, this loss measures the diference between
predicted and ground truth labels. Te Wasserstein loss

1

2

7

LG

LD

6

4

5

p~ [0,1]

3

Figure 3: General architecture of DCGAN.

Table 2: Generator architecture.

Layer no Layer type Output shape Activation
1 Dense (input) 512× 4× 4 —
2 Reshape 256× 4× 4 —
3 Conv2DTranspose 512× 8× 8 ReLU
4 Batch normalization 256× 8× 8 —
5 Conv2DTranspose 128×16×16 ReLU
6 Batch normalization 64×16×16 —
7 Conv2DTranspose 32× 32× 32 ReLU
8 Batch normalization 32× 32× 32 —
9 Conv2DTranspose 3× 64× 64 Tanh

Table 3: Te discriminator architecture.

Layer no Layer type Output shape Activation
1 Conv2D (input) 64× 32× 32 LeakyReLU
2 Conv2D 64×16×16 LeakyReLU
3 Batch normalization 64×16×16 —
4 Conv2D 128× 8× 8 LeakyReLU
5 Batch normalization 128× 8× 8 —
6 Conv2D 256× 4× 4 LeakyReLU
7 Batch normalization 256× 4× 4 —
8 Conv2D 512× 4× 4 —
9 Batch normalization 512× 4× 4 LeakyReLU
10 Flatten 1× 1× 1 Sigmoid

Table 4: Training hyperparameters.

Hyperparameter Value
Learning rate (generator) 0.0002
Learning rate (discriminator) 0.0002
Batch size 64
Number of epochs 100
Optimizer Adam
Beta 1 (Adam) 0.5
Beta 2 (Adam) 0.999

6 Applied Computational Intelligence and Soft Computing



enhances gradient fow and stabilizes training during
adversarial training.

3.5. Performance Evaluation. Assessing its output perfor-
mance and quality is critical to understanding the network’s
efectiveness and clinical applicability. Te evaluation
metrics used to evaluate the synthetic mammograms
thoroughly are presented in this subsection.

Te outliers were identifed and eliminated as necessary.
Te outliers were eliminated above or below the stipu-

lated threshold. Te proposed methodology is shown in the
following pseudo-code (see Algorithm 1).

Combining these evaluation metrics ensures a robust
and multidimensional assessment of the DCGAN-generated
mammograms. By scrutinizing the synthetic images’
structural, statistical, and diagnostic characteristics, the
study gains valuable insights into the DCGAN’s perfor-
mance and its potential contribution to advancing medical
imaging research and clinical practice.

4. Experiments and Results

Tis section presents the study’s results on the application of
DCGAN for mammogram generation and the subsequent
validation process.Te study focuses on three distinct classes
of mammograms. It analyzes the mean similarity of each
type and the distances of individual data points from their
respective means using a statistical approach involving the
three times standard deviation criterion.

4.1. Synthetic Mammogram Generation. Te proposed net-
work was frst trained on images from three diferent classes
of mammograms. Te network was taught to make fake
mammograms with many of the same features and char-
acteristics as real ones. During training, the model learned
each class’s unique patterns and structures. Tis gave it the
ability to make high-quality fake mammograms. Te pro-
posed model generated 600 images for each class during the
entire training.

Begin
CosineSimilarity (A, B) {
RETURN DotProduct (A, B)/(Norm (A) ∗ Norm (B));

}
CalculateMeanVector (Vectors) {
RETURN average of vectors along each dimension;

}
CalculateStandardDeviation (Vectors) {
RETURN standard deviation of vectors along each dimension;

}
CalculateCosineSimilarities (ImageVectors) {
CosineSimilarities←Empty list;
FOR each vector in ImageVectors {
Cosine←CosineSimilarity (Vector, CalculateMeanVector (All previous vectors in ImageVectors));
Append Cosine to CosineSimilarities;

}
RETURN CosineSimilarities;

}
CalculateTresholds (CosineSimilarities) {
Mean← calculate mean of CosineSimilarities;
StdDev←CalculateStandardDeviation (CosineSimilarities);
TresholdHigh←mean+ 3 ∗ StdDev;
TresholdLow←mean− 3 ∗ StdDev;
RETURN TresholdHigh, TresholdLow;

}
FilterImagesByCosineSimilarity (ImageVectors) {
CosineSimilarities←CalculateCosineSimilarities (ImageVectors);
TresholdHigh, TresholdLow←CalculateTresholds (CosineSimilarities);
FilteredImages←Empty list;
FOR each Cosine in CosineSimilarities {
IF Cosine is within TresholdHigh and TresholdLow {

Append corresponding ImageVector to FilteredImages;
}

}
RETURN FilteredImages;

}
End

ALGORITHM 1:Pseudo-code for similarity assessment and outliers removal.

Applied Computational Intelligence and Soft Computing 7



Figures 4(a) and 4(b) represent the images generated
during the initial phases. Initially, the training process takes
place over random noise.

Figure 5(a) represents the synthesized images from epoch
2 during training, while Figure 5(b) shows synthesized images
from epoch 3 during the training process of the DCGAN.

Figure 6(a) shows synthesized images from epoch 45
during the training process, while Figure 6(b) shows syn-
thesized images from epoch 50 during the training of
DCGAN.

Figure 7(a) represents synthesized images from epoch 99
during the training of the DCGAN. Te images are closer to
the real ones. Figure 7(b) Shows fnal synthesized images
from epoch 100 during training. Tese are the fnest images
of the proposed model during the entire training.

Figure 8 shows the losses of both the discriminator and
generator networks. Figure 9 shows the real and fake images
of the proposed model during training.

4.2. Mean Similarity Assessment. After generating synthetic
mammograms, all synthetic and original images were mixed
class-wise. For each class, the mean similarity is calculated,
which provides insight into the consistency and similarity of
the generated mammograms within that class.

During validation of the synthetic images in a normal
class, 95 images were declared outliers out of a total of 600
images. In the benign class, 105 images were used, while in
the malignant class, 110 images were declared outliers as per
the similarity score, as shown in Figures 10–12.

4.3. Statistical Validation. Te distance of each data point
from its respective class mean is computed further to val-
idate the quality and authenticity of the generated mam-
mograms. Tis distance calculation involved utilizing the
three times standard deviation criterion, which enabled us to
quantify how much each generated mammogram deviated

(a) (b)

Figure 4: (a) Synthesized images from epoch 0 during training (b) synthesized images from epoch 1 during training.

(a) (b)

Figure 5: (a) Synthesized images from epoch 2 during training (b) synthesized images from epoch 3 during training.
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from the class mean. A more considerable distance value
indicated a higher level of dissimilarity, whereas a smaller
value suggested a closer resemblance to the mean.

Te statistical validation approach is assessed to bolster the
credibility of the generated mammograms. Tis involved
calculating the distance of each image from its class mean

(a) (b)

Figure 6: (a) Synthesized images from epoch 45 during training (b) synthesized images from epoch 50 during training.

(a) (b)

Figure 7: (a) Synthesized images from epoch 99 during training (b) synthesized images from epoch 100 during training.
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Figure 8: Discriminator and generator network losses during training.
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using the three times standard deviation criterion. More
considerable distances indicatedmore signifcant dissimilarity,
while smaller distances suggested better alignment with the
class mean.

In Figure 13, distinct and coherent clusters of similar
data points were evident after removing outliers. Tis
highlighted the efectiveness of the proposed approach in
forming meaningful clusters. Distance-based validation

Scores
1.0

0.8

0.6

0.4

0.2

0.0

sc
or

e
0 20 40 60 80 100

epoch

Real
Fake

Figure 9: Real vs. fake losses during training.

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

Fr
eq

ue
nc

y

–6 –4 –2 0 2 4 6 8
Homogeneity

Clusters visualization of synthetic generated data (Normal)

(a)

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

Fr
eq

ue
nc

y

–6 –4 –2 0 2 4 6 8
Homogeneity

Clusters visualization of synthetic generated data (Normal)

(b)

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000
Fr

eq
ue

nc
y

–6 –4 –2 0 2 4 6 8
Homogeneity

Clusters visualization of synthetic generated data (Normal)

(c)

Figure 10: (a) Presents similarity score of normal class. (b) Presents similarity score with outliers in red of normal class. (c) Presents
similarity score of normal class without outliers.
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Figure 11: (a) Presents similarity score of benign class. (b) Presents similarity score with outliers in red of benign class. (c) Presents
similarity score of benign class without outliers.
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methods provided a robust means of quantifying the au-
thenticity of the synthetic mammograms, improving accu-
racy, and strengthening the reliability of the generated data
for breast cancer imaging applications.

4.4. Validation from Human Experts. Considering how re-
alistic some of the DCGAN-generated images look, we asked
three medical experts with more than 10 years of experience
in radiology and mammography to classify synthetic and
real images. Each radiologist was shown 80 images of a 50/50
mixture of real and synthetic images and was asked to rank
them based only on their visual appreciation. Te experts
achieved an average accuracy of only 68%, thus showing how
visually accurate the generated images are. In the Expert
Panel Review phase, a group of radiologists with extensive
experience in mammography evaluated the synthetic
mammogram images.Tis panel was carefully selected based

on their clinical expertise and familiarity with mammo-
graphic interpretation. Tey conducted a detailed assess-
ment of each synthetic image, focusing on critical diagnostic
features such as tissue density, lesion characterization, and
calcifcations or other anomalies indicative of potential
pathology. Teir assessment aimed to determine the realism
and diagnostic accuracy of the synthetic images, comparing
them to actual mammograms. Te radiologists’ feedback
provided valuable insights into the clinical viability of the
synthetic images, ensuring that they met the standards re-
quired for efective diagnostic use in a clinical setting.

5. Conclusions and Future Work

Tis research aims to give an in-depth study into the uti-
lization of DCGAN for the generation of mammograms and
the following validation. Te research was centered on three
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Figure 12: (a) Presents the similarity score of the malignant class. (b) Presents similarity score with outliers in red of malignant class.
(c) Presents the similarity score of the malignant class without outliers.
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Figure 13: (a) Show the similarity of data points of each cluster without outliers. (b) Show the similarity of data points of each cluster with
outliers in red.
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classes of mammography, and it utilized a statistical
methodology that involved the three times standard de-
viation criterion in examining the mean similarity of each
class and the distances of individual data points from their
respective means. Te fndings demonstrate that the pro-
posed network can successfully generate synthetic mam-
mograms that exhibit traits and properties comparable to
real mammograms. As a result of rigorous training, the
network was able to gain the capability to make synthetic
images of high quality that capture the one-of-a-kind pat-
terns and structures that are characteristic of each class. Tis
was demonstrated by the synthetic images produced during
the various training epochs. Te calculation of mean sim-
ilarity ofered insights into the consistency and similarity of
the generated mammograms within each class, further
highlighting the network’s capacity to capture class-specifc
properties. Tese insights are evident from the calculation of
mean similarity. Te statistical validation strategy relied on
calculating distances between mammograms to ensure the
generated mammograms were genuine. Some of the gen-
erated images were also validated by the human radiologist,
confrming the authenticity of the proposed model. Te
research provided a reliable approach for evaluating dis-
similarity and alignment by frst estimating the level of
variation from class means and then utilizing the three times
standard deviation criterion as the measuring stick. Notably,
eliminating outliers showed cohesive and distinct clusters of
similar data points, confrming that the strategy efectively
produces meaningful clusters. We plan to test more datasets
with more GAN architectures in the future.

Data Availability

Te dataset used in this study is publicly available at [24]. Code
will be made available on request to the corresponding author.
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[3] F. De Bueger, M. Decroës, and B. Macq, “Deep learning in
mammography: reducing annotation efort for breast mass
segmentation,” Master in Mathematical Engineering, Ecole
polytechnique de Louvain, Université catholique de Louvain,
Ottignies-Louvain-la-Neuve, Belgium, 2022.

[4] S. International, “Importance of breast cancer awareness in
Pakistan,” Shifa International Patients, vol. 2023, 2022.

[5] NIBIB, “Mammography,” 2023, https://www.nibib.nih.gov/
science-education/science-topics/mammography.

[6] N. Sharma, A. Y. Ng, J. J. James et al., “Multi-vendor evaluation
of artifcial intelligence as an independent reader for double
reading in breast cancer screening on 275,900 mammograms,”
BMC Cancer, vol. 23, no. 1, pp. 460–513, 2023.

[7] L. Abdelrahman, M. Al Ghamdi, F. Collado-Mesa, and
M. Abdel-Mottaleb, “Convolutional neural networks for breast
cancer detection in mammography: a survey,” Computers in
Biology and Medicine, vol. 131, Article ID 104248, 2021.

[8] R. Kumar, “Double internal loop higher-order recurrent
neural network-based adaptive control of the nonlinear dy-
namical system,” Soft Computing, vol. 27, no. 22, pp. 17313–
17331, 2023.

[9] I. Zyout, “Evaluation of deep convolutional neural networks
for detecting nonpalpable breast abnormalities in mam-
mography,” in 2023 Advances in Science and Engineering
Technology International Conferences (ASET), pp. 1–6, IEEE,
Dubai, UAE, February 2023.

[10] R. Kumar, “Memory recurrent Elman neural network-based
identifcation of time-delayed nonlinear dynamical system,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 53, no. 2, pp. 753–762, 2023.

[11] R. Kumar, S. Srivastava, and J. Gupta, “Modeling and adaptive
control of nonlinear dynamical systems using radial basis function
network,” Soft Computing, vol. 21, no. 15, pp. 4447–4463, 2017.

[12] P. Oza, P. Sharma, S. Patel, F. Adedoyin, and A. Bruno,
“Image augmentation techniques for mammogram analysis,”
Journal of Imaging, vol. 8, no. 5, p. 141, 2022.

[13] R. Kumar, S. Srivastava, J. Gupta, and A. Mohindru, “Self-
recurrent wavelet neural network–based identifcation and
adaptive predictive control of nonlinear dynamical systems,”
International Journal of Adaptive Control and Signal Pro-
cessing, vol. 32, no. 9, pp. 1326–1358, 2018.

[14] R. Kumar and S. Srivastava, “Externally Recurrent Neural Net-
work based identifcation of dynamic systems using Lyapunov
stability analysis,” ISA Transactions, vol. 98, pp. 292–308, 2020.

[15] S. Chaturvedi, N. Kumar, and R. Kumar, “A PSO optimized
novel PID neural network model for temperature control of
jacketed CSTR: design, simulation, and a comparative study,”
2023, https://www.researchsquare.com/article/rs-2851632/v1.

[16] R. Kumar, “A Lyapunov-stability-basedcontext-layered recurrent
pi-sigma neural network for the identifcation of nonlinear sys-
tems,” Applied Soft Computing, vol. 122, Article ID 108836, 2022.

[17] B. Alyaf, O. Diaz, and R. Marti, “DCGANs for realistic breast
mass augmentation in x-ray mammography,” in Medical
Imaging 2020: Computer-Aided Diagnosis, vol. 11314,
pp. 473–480, SPIE, Washington, DC, USA, 2020.

[18] E. Wu, K. Wu, and W. Lotter, “Synthesizing lesions using
contextual GANs improves breast cancer classifcation on
mammograms,” 2020, https://arxiv.org/abs/2006.00086.

[19] S. D. Desai, S. Giraddi, N. Verma, P. Gupta, and S. Ramya,
“Breast cancer detection using gan for limited labeled dataset,”
in 2020 12th International Conference on Computational
Intelligence and Communication Networks (CICN), pp. 34–39,
IEEE, Bhimtal, India, September 2020.

[20] T. Shen, K. Hao, C. Gou, and F.-Y. Wang, “Mass image
synthesis in mammogram with contextual information based
on GANs,” Computer Methods and Programs in Biomedicine,
vol. 202, Article ID 106019, 2021.

[21] B. Swiderski, L. Gielata, P. Olszewski, S. Osowski, and
M. Kołodziej, “Deep neural system for supporting tumor
recognition of mammograms using modifed GAN,” Expert
Systems with Applications, vol. 164, Article ID 113968, 2021.

12 Applied Computational Intelligence and Soft Computing

https://www.nibib.nih.gov/science-education/science-topics/mammography
https://www.nibib.nih.gov/science-education/science-topics/mammography
https://www.researchsquare.com/article/rs-2851632/v1
https://arxiv.org/abs/2006.00086


[22] J. Lee and R. M. Nishikawa, “Identifying women with
mammographically-occult breast cancer leveraging GAN-
simulated mammograms,” IEEE Transactions on Medical
Imaging, vol. 41, no. 1, pp. 225–236, 2022.

[23] S. Park, K. H. Lee, B. Ko, and N. Kim, “Unsupervised anomaly
detection with generative adversarial networks in mam-
mography,” Scientifc Reports, vol. 13, no. 1, p. 2925, 2023.

[24] U. O. S. Florida, “Digital Database for screening mammog-
raphy,” 2023, http://www.eng.usf.edu/cvprg/mammography/
database.html.

[25] A. Radford, L. Metz, and S. Chintala, “Unsupervised represen-
tation learning with deep convolutional generative adversarial
networks,” 2015, https://arxiv.org/abs/1511.06434.

Applied Computational Intelligence and Soft Computing 13

http://www.eng.usf.edu/cvprg/mammography/database.html
http://www.eng.usf.edu/cvprg/mammography/database.html
https://arxiv.org/abs/1511.06434



