
Research Article
Exploring Physics-InformedNeural Networks for the Generalized
Nonlinear Sine-Gordon Equation

Alemayehu Tamirie Deresse and Tamirat Temesgen Dufera

Department of Applied Mathematics, School of Applied Natural Science, Adama Science and Technology University,
Adama 5118, Oromia, Ethiopia

Correspondence should be addressed to Tamirat Temesgen Dufera; tamirat.temesgen@astu.edu.et

Received 22 December 2023; Revised 12 March 2024; Accepted 16 April 2024; Published 30 April 2024

Academic Editor: Yiming Tang

Copyright © 2024 Alemayehu Tamirie Deresse and Tamirat Temesgen Dufera.Tis is an open access article distributed under the
Creative CommonsAttribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided
the original work is properly cited.

Te nonlinear sine-Gordon equation is a prevalent feature in numerous scientifc and engineering problems. In this paper, we
propose a machine learning-based approach, physics-informed neural networks (PINNs), to investigate and explore the solution
of the generalized non-linear sine-Gordon equation, encompassing Dirichlet and Neumann boundary conditions. To incorporate
physical information for the sine-Gordon equation, a multiobjective loss function has been defned consisting of the residual of
governing partial diferential equation (PDE), initial conditions, and various boundary conditions. Using multiple densely
connected independent artifcial neural networks (ANNs), called feedforward deep neural networks designed to handle partial
diferential equations, PINNs have been trained through automatic diferentiation to minimize a loss function that incorporates
the given PDE that governs the physical laws of phenomena. To illustrate the efectiveness, validity, and practical implications of
our proposed approach, two computational examples from the nonlinear sine-Gordon are presented. We have developed a PINN
algorithm and implemented it using Python software. Various experiments were conducted to determine an optimal neural
architecture. Te network training was employed by using the current state-of-the-art optimization methods in machine learning
known as Adam and L-BFGS-B minimization techniques. Additionally, the solutions from the proposed method are compared
with the established analytical solutions found in the literature. Te fndings show that the proposed method is a computational
machine learning approach that is accurate and efcient for solving nonlinear sine-Gordon equations with a variety of boundary
conditions as well as any complex nonlinear physical problems across multiple disciplines.

1. Introduction

Diferential equations provide a powerful framework for
describing a wide range of engineering, mathematical, and
scientifc phenomena. Tey are particularly valuable in
capturing heat transfer processes, fuid dynamics, wave
propagation in electronic circuits, and mathematical mod-
eling of chemical reactions. One notable example of
a nonlinear hyperbolic partial diferential equation (PDE) is
the nonlinear sine-Gordon equation (NLSGE), which dates
back to the nineteenth century and originally emerged in the
study of surfaces with constant negative curvature [1–3].
Tis equation fnds extensive application in simulating and
describing various physical phenomena across engineering
and scientifc disciplines, including nonlinear waves, the

propagation of fuxons in Josephson junctions, and the
dislocation behavior of metals [4–9].

NLSGE has found numerous applications in various
scientifc and engineering domains. In the feld of condensed
matter physics, this equation has been used to study phe-
nomena such as solitons and topological defects [10]. In the
realm of nonlinear optics, the equation is used to model the
propagation of optical pulses in nonlinear media, particu-
larly in the context of optical fbers [11]. Furthermore, in the
study of superconductivity, the NLSGE is used to describe
the behavior of Josephson junctions, which are key com-
ponents in superconducting devices [12]. Te equation has
also found application in surface science, where it describes
the dynamics of atoms and molecules on surfaces, including
the propagation of surface waves [13]. Furthermore, NLSGE

Hindawi
Applied Computational Intelligence and Soft Computing
Volume 2024, Article ID 3328977, 22 pages
https://doi.org/10.1155/2024/3328977

https://orcid.org/0000-0003-4922-0656
https://orcid.org/0000-0002-8612-7170
mailto:tamirat.temesgen@astu.edu.et
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

has been applied in biophysics to model phenomena such as
nerve impulse propagation and protein dynamics [14].Tese
are just a few examples of the wide-ranging applications of
the NLSGE in diverse scientifc and engineering problems.
Readers interested in additional information should consult
the monographs [15–24].

Te NLSGE has recently been the subject of extensive
computational and analytical analysis due to its signifcance
in non-linear physics. For example, Babu and Asharaf [25]
used a diferential quadrature technique based on a modifed
set of cubic B-splines to numerically solve non-linear SGEs
in one and two dimensions, as well as their coupled form.
Te modifcation employed in this approach achieves op-
timal accuracy of order four in the spatial domain. Spatial
derivatives are approximated using the diferential quad-
rature technique, and weight coefcients are calculated using
the set of modifed cubic B-splines. In a diferent study,
Shiralizadeh et al. [26] implemented the numerical method
of the rational radial basis function to solve the perturbed
and unperturbed NLSGEs with Dirichlet or Neumann
boundary conditions.Tis method is particularly suitable for
cases where the solution exhibits a steep front or sharp
gradients. Furthermore, Babu and Asharaf [27] employed
the Daftardar-Gejji and Jafari method to obtain an ap-
proximate analytical solution for the NLSGE. Tey com-
pared the obtained solution with the variational iteration
method to assess its accuracy.

In 2022, Deresse [28] achieved successful integration of
the double Sumudu transform with an iterative approach to
obtain an approximate analytical solution for the one-
dimensional coupled NLSGE. Te double Sumudu trans-
form alone is insufcient to solve this particular equation. As
a result, the linear component of the problem was addressed
using the double Sumudu transform, while the non-linear
part was handled through an additional iterative approach.
Te two-dimensional stochastic time fractional NLSGE was
investigated by the authors of the paper [29] in 2023. To fnd
the numerical solution, they employ the clique polynomial
approach. Te clique polynomial is regarded as a funda-
mental function for operational matrices in this method. For
more details, refer to the following references: [30–36].

Tese recent developments highlight the growing
interest in tackling the challenges posed by the NLSGE,
and researchers use various numerical and analytical
techniques to explore its solutions and properties. Tis
paper aims to introduce a deep learning-based method
called a physics-informed neural network (PINN), to
acquire the solution of NLSGE with Dirichlet and Neu-
mann boundary conditions. PINNs are a scientifc ma-
chine learning technique used to solve problems involving
PDEs [37]. By training an ANN to minimize a loss
function, PINNs approximate PDEs. Tis loss function
incorporates various terms, including the initial and
boundary conditions along the boundary of the space-
time domain, as well as the PDE residual evaluated at
specifc points within the domain, known as collocation
points. Tis approach allows PINNs to capture the es-
sential physics of the problem and provide accurate so-
lutions throughout the domain [38–40].

A parallel information-processing system, known as an
ANN, shares similarities with certain brain functions.
Comprised of neurons and synaptic weights, an ANN learns
to perform complex computations [41]. By emulating the
functioning of the human brain, the network receives inputs
from various sources, combines them, applies non-linear
operations, and produces an output [42–44]. Te archi-
tecture of an ANN consists of three types of layers: input,
hidden, and output, with neurons or units in each layer
[45–47]. Te architecture of the ANN processor is scalable,
allowing for an infnite number of layers and neurons in each
layer. It can also implement feedforward and dynamic re-
current networks [46, 48].

Approximating highly non-linear functions has become
an attractive application of NNs due to their inherent ca-
pabilities. However, in low to moderate dimensions, PDE
solvers based on NNs or deep NNs typically fall short when
compared to classical numerical solution methods. Tis is
primarily because solving an algebraic equation is generally
easier than dealing with the highly non-linear, large-scale
optimization problems associated with NN training [49, 50].

Furthermore, traditional numerical approaches have
developed sophisticated error analysis techniques, which is
an area where NN-based solvers currently lag. Consequently,
specialized techniques have emerged over time to tackle
specifc issues, often incorporating constraints or underlying
physical assumptions directly into the approximations [51].
One notable technique in this domain is PINNs, which have
gained popularity for rapid prototyping when efciency and
high accuracy are not the primary concerns. PINNs can be
applied to virtually any diferential equation, making them
versatile tools for approximation [52].

Te authors of the research presented in [53] demon-
strated promising results that indicate the ability of PINNs to
achieve good prediction accuracy, provided that the given
PDE is well posed and a sufcient number of collocation
points are available. PINNs seek to identify an NN within
a specifc class of NNs that minimizes the loss function,
resulting in an approximation of the PDE’s solution [53].
Unlike the classic variational concept, which minimizes an
energy function, PINNs have introduced modifcations to
this approach. A notable distinction between PINNs and
variational methods is that not all PDEs satisfy a variational
principle. However, the formulation of PINNs allows their
application to a wide range of PDEs, regardless of whether
the PDE possesses a variational principle [54].

In their work, Shin et al. [54] provide a theoretical
justifcation for PINNs in the context of linear second-order
elliptic and parabolic-type PDEs. Tey demonstrate that the
sequence of minimizers strongly converges to the PDE
solution in the set of continuous functions. Moreover, they
argue that when each minimizer satisfes the initial/
boundary conditions, the convergence mode becomes the
Sobolev space of order one.

Recently, the repertoire of scientifc publications on
PINNs has increased rapidly, which confrms the efec-
tiveness of PINNs. For example, Beck et al. [55] obtained the
solution of stochastic diferential equations, and Kolmo-
gorov PDEs sufer from the curse of dimensionality

2 Applied Computational Intelligence and Soft Computing

employing deep learning. Te authors derived and proposed
a numerical approximation method that aims to overcome
the related drawbacks. Tey solved examples including the
heat equation, the Black-Scholes model, the stochastic
Lorenz equation, and the Hestonmodel, and showed that the
proposed approximation algorithm is efective in high di-
mensions in terms of both accuracy and speed.

In the paper [37], the authors introduced an innovative
approach that combines the power of NNs with the
knowledge of physics to tackle complex problems related to
non-linear PDEs. Te authors propose a framework where
NNs are trained to approximate the solution of these
equations while incorporating physical principles as con-
straints. Tis approach enables the accurate and efcient
solution of both forward and inverse problems, ofering
great potential for applications in various scientifc and
engineering felds.Te study contributes to the growing feld
of physics-informed machine learning, providing a prom-
ising avenue for advancing the understanding and solving of
non-linear systems.

Blechschmidt and Ernst [40] provided a comprehensive
overview of recent approaches to solving PDEs using NNs.
Tey discuss the taxonomy of informed deep learning,
present a literature review in the feld, and highlight the
potential of using machine learning frameworks to accel-
erate numerical computations of time-dependent PDEs. Te
authors used the PINN to solve a high-dimensional linear
heat equation as an illustration and suggested that PINNs
can ofer attractive approximation capabilities for highly
non-linear and high-dimensional problems.

In the paper [56], the authors presented a novel ap-
proach to solving PDEs in complex geometries using deep
feedforward NNs.Te paper explores the application of deep
NNs in approximating solutions to PDEs and demonstrates
their efectiveness in solving systems of ordinary diferential
equations. Te authors provide insights into the architecture
of the NN and discuss the weight connections between the
neurons in diferent layers. Te research contributes to the
feld of computational mathematics by introducing a unifed
framework that combines deep learning techniques with the
solution of PDEs, paving the way for more accurate and
efcient numerical methods in complex geometries. To ef-
fectively solve diferential equations, the authors of the paper
[57] presented DeepXDE, a potent deep learning library that
combines the advantages of deep NN and PINN.

Furthermore, Schäfer [58] applied Dirichlet boundary
conditions to a PINN solution of the one-dimensional heat
equation. To solve a single instance of the PDE, the authors
compared a PINN to a NN with defned beginning and
boundary conditions. It turned out that PINNs are more
accurate than NNs for a limited number of training samples.
However, it should be noted that a PINN uses more com-
putation time than a NN because each iteration includes
a gradient evaluation. As the runtime grows exponentially
for an increasing number of input features, this can be
a serious bottleneck for higher-dimensional issues.

More recently, [59] presented two novel PINN archi-
tectures that satisfy various invariance conditions for con-
structing robust and efcient deep learning-based subgrid-

scale turbulence models for use in large Eddy simulation
procedures widely used in various fuid engineering appli-
cations. Te frst architecture is called tensor basis neural
networks (TBNN) and the second architecture is a Galilean
invariance embedded neural network (GINN) that in-
corporates the Galilean invariance and takes as input the
independent components of the integrity basis tensors in
addition to the invariant inputs in a single input layer. A
deep learning-accelerated computational framework based
on PINN is presented by the investigator of the paper [60]
for the solution of the linear continuum elasticity equation.
Te authors suggested a multi-objective loss function that
included terms that ft data-driven physical knowledge
across randomly chosen collocation points in the problem
domain, constitutive relations derived from the governing
physics, terms corresponding to the residual of the gov-
erning PDE, and diferent boundary conditions. In a dif-
ferent study, a multi-objective loss function-based PINN is
used by the authors of the monograph [61] to obtain the
solution to the data-driven elastoplastic solid mechanics
problem.

Even though many studies are conducted to use PINN
to solve a variety of problems, many of them focus on
elliptic and parabolic DEs. Tere are very few research
papers on the use of PINNs to solve hyperbolic PDEs. Tis
is due to hyperbolic PDEs like the NLSGE involving both
second-order time derivatives and spatial derivatives. Such
a problem contained an initial condition involving time-
derivative that adds an extra layer of complexity to the
solution process, as the solution must satisfy the dynamics
of the PDE while also matching the specifed initial data. In
research published in the journal [62], the PINN method
was used to solve linear hyperbolic PDEs while taking into
account forward and inverse issues. Examples considered
by the author are homogeneous linear wave equations. Te
author did not, however, investigate the PINN for the non-
linear, hyperbolic PDEs that are inhomogeneous. In the
present work, we use PINNs to solve NLSGE (1), which is
the inhomogeneous non-linear class of hyperbolic wave
equation containing a derivative of second order in time,
taking inspiration from the work of the paper’s author [62].
We focus on exploring two boundary condition categories:
Dirichlet and Neumann. To minimize the loss function of
the residuals of the governing equation, initial conditions,
and boundary conditions, a PINN technique with a multi-
objective loss function is employed. In addition, we con-
ducted experimental simulations to assess the impact of
diferent neural architectures on the performance of the
model. Subsequently, we implement the algorithm de-
veloped using the Python-based software library, Deep-
XDE, as a computational tool [57].

Te remaining parts of this manuscript are organized as
follows: In Section 2, the governing problem is presented
with some preliminary descriptions. Fundamental ideas,
theorems, defnitions, and an algorithm for PINNs are
addressed in Section 3 for the specifed issues. Te method is
validated in Section 4 using a numerical experiment for
Dirichlet and Neumann boundary conditions, and fnally,
concluding remarks are drawn in Section 5.

Applied Computational Intelligence and Soft Computing 3

2. The Governing Equation

Te generalized Cauchy-type NLSGE employed in this paper
is given by [63]:

z
2
u(x, t)

zt
2 + β

zu(x, t)

zt
� αΔu(x, t) − ϕ(x) sin(u(x, t)) + f(x, t), (1)

where x � (x1, x2, . . . , xd) ∈ Ω ∈ Rd and d � 1, 2, . . . , n.
Here, Δ represents the Laplacian operator and n the di-
mension of the space variable x. Te function ϕ(x) can be
interpreted as the Josephson current density, while the
parameters α and β are real numbers with α, β≥ 0. Te
dissipative term, denoted by β, characterizes the presence of
damping in the equation. When β> 0, (1) reduces to the
damped SGE, while β � 0, equation (1) reduces to undamped
SGE

utt(x, t) � αΔu(x, t) − ϕ(x) sin(u(x, t)) + f(x, t). (2)

If f(x, t) � 0 the undamped SGE (2) has the conser-
vation for the energy defned by

E(t) �
1
2
􏽚
Ω

ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ ∇u| |
2

+ ϕ(1 − cosu)􏽨 􏽩dV, (3)

which is not valid for the damped system (1) [64]. Here dV �

dnx is the Euclidean n− dimensional volume diferential.
In the case of d � 1, with x � x and △u � z2u

(x, t)/zx2 � uxx, (1) represents the NLSGE in one di-
mension. Te equation is subject to initial conditions:

u(x, 0) � f1(x),

ut(x, 0) � f2(x), x ∈ [a, b],
(4)

along with either Dirichlet boundary conditions:

u(a, t) � k1(t),

u(b, t) � k2(t),
(5)

or Neumann boundary conditions:

ux(a, t) � k3(t),

ux(b, t) � k4(t).
(6)

In this study, our aim is to address the solution of this
equation using PINNs [37]. PINNs employ NNs specifcally
designed for solving PDEs byminimizing a loss function that
incorporates the given PDE and both initial and boundary
conditions. We develop a PINN algorithm and implement it
using the Python-based software library, DeepXDE. Addi-
tionally, we conduct various deep experiments to identify the
optimal neural architecture for our purposes.

3. Physics-Informed Neural Networks

3.1. Te Mathematical Description of Neural Network

Defnition 1 (see [65, 66]). Let d ∈ N. We defne an artifcial
neuron v: Rd⟶ R as a mapping with weight w ∈ Rd, bias
b ∈ R, and activation function σ: R⟶ R. Te neuron’s
output is given by the expression

v(x) � σ(w · x + b),where x ∈ Rd
. (7)

Te role of the activation function σ is to produce the
output from a set of input values fed to a node (or a layer).
Tere are benefts and drawbacks to each activation func-
tion. Note that there is no set rule regarding the selection of
an activation function for a particular activity. In machine
learning, the most commonly used activation functions with
PINN are the sigmoid function σ(x) � 1/1 + e−x, the tan
hyperbolic function σ(x) � tanh(x) and the ReLU function
σ(x) � max 0, x{ } [67].

Defnition 2. A deep feedforward neural network is defned
as a function of the form

􏽢Y ≔ FW,b(X) � f
(L)

W(L) ,b(L) · · · ∘f(1)

W(1) ,b(1)􏼐 􏼑(X), (8)

where it consists of multiple layers. Each layer is represented
by a semi-afne function

f
(l)

W(l) ,b(l) ≔ σ(l)
W

(l)
X + b

(l)
􏼐 􏼑, (9)

incorporating a univariate and continuous non-linear ac-
tivation function σ(l). Te weight matrices W �

(W(1), . . . , W(L)) and the ofsets (biases) b � (b(1), . . . , b(L))

defne the parameters of the network. Tis deep feedforward
NN is designed to process input data X and produces output
􏽢Y, representing predictions or results of the network
computation [66].

3.2. Te PINNs Algorithm for 1D NLSGE with Dirichlet BCs.
In this subsection, we present the PINN approach for ap-
proximating the solution u: [0, T] ×Ω⟶ R of the one-
dimensional problem (10) with Dirichlet boundary condi-
tions. Te problem can be stated as follows:

4 Applied Computational Intelligence and Soft Computing

z
2
u(x, t)

zt
2 + β

zu(x, t)

zt
� α

z
2
u(x, t)

zx
2 − ϕ(x) sin(u(x, t)) + f(x, t), (10)

subject to the conditions:

u(a, t) � k1(t), t ∈ [0, T],

u(b, t) � k2(t), t ∈ [0, T],

u(x, 0) � f1(x), x ∈ Ω,

ut(x, 0) � f2(x), x ∈ Ω,

(11)

where (x, t) ∈ (0, T] ×Ω,Ω � x: a≤ x≤ b{ } ⊂ R represents
a bounded domain, and T denotes the fnal time. Te PINN
method combines the supplied PDE with physical con-
straints placed on the network to ensure the answer respects
the physics of the problem. In the PINNs method, a NN is
used to approximate the solution, and a set of nodal points is
where the equations are imposed in the least-squares sense.

Te literature provides the following four well-known
steps for utilizing the proposed method to solve a PDE
[37, 40, 62, 68–70].

(i) Construct an ANN 􏽢u(x, t; P) to serve as an ap-
proximation of the true solution u(x, t).

(ii) Set up a training set that will be used to train
the NN.

(iii) Formulate an appropriate loss function that con-
siders residuals of the PDE, initial, boundary, and
fnal conditions.

(iv) Train the NN by minimizing the cost function
established in the previous step.

3.3. Step 1: Deep Neural Network. We employ the following
notations: Te superscript (i) denotes the ith data point
(collocation) or training example, while superscript (l)

represents the lth layer in the network. Te input size is
denoted as nx, and the output size as ny. Additionally, nl

refers to the number of neurons in the lth layer, and L

signifes the total number of layers in the network. Te input
is denoted by X, which is the set of collocation points
comprising points from the interior and boundary of the
domain. Te weight matrix for the lth layer is denoted as
W(l) ∈ Rnl+1×nl

, and the bias vector in the lth layer is rep-
resented as b(l) ∈ Rnl+1

. Te predicted output vector is
denoted as 􏽢u∈ Rny or equivalently written as a(L), where L

indicates the total number of layers in the network. Figure 1
displays a demonstration of a sketch-deep NN diagram. Te
structure shown is an advancement of the NN structure in
papers [48, 71] designed for the systems of ordinary dif-
ferential equations.

To solve the one-dimensional NLSGE, our input data
will have the form (xi, ti) ∈ R1+1. Tat is, according to the
notations described above, nx � 2. Furthermore, ny � 1
since we have only one network output 􏽢u(x, t; P), where P

represents the parameter consisting of weights and biases.
We selected the DNN scheme to have two nodes in the input
layer and one node in the output layer that contains the value
of 􏽢u(x, t) to generate u(x, t) that solves (7) using PINN.
Tere were four hidden layers in the structure, and each
layer contained ffty units (neurons). We consider a deep-
feedforward NN, whose main objective is to approximate
a function, in this case u(x, t) for any input (x, t), among
other options.

In our case, the solution 􏽢u(x, t; P), which corresponds to
the output of the NN, is constructed as described in [72],
mainly:

Input layer: a(0)
� (x, t) ∈ R1+1

,

Hidden layers: a(l)
� σ W

la(l−1)
+ bl

􏼐 􏼑 ∈ Rnl

, l � 1, . . . , L − 1, and,

Output layer: 􏽢u(x, t; P) � a(L)
� W

La(L−1)
+ bL ∈ R,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

where:

(i) al: Rdin⟶ Rdout is the l layer with nl nodes,
(ii) Wl ∈ Rnl×nl−1 and bl ∈ Rnl are the weights and the

biases and θ � Wl, bl
􏽮 􏽯

L−1
l�1 are the parameters of the

NNs, and
(iii) σ is an activation function which acts component-

wise.

3.4. Step 2: Training Dataset. When using a PINN to solve
a PDE, it is important to properly split collocation points
into two disjoint sets: training and test data to ensure

accurate model evaluation [73]. Training data will be used to
train the PINN, while test data will be used to evaluate the
model’s performance. Tese data are typically split into
ratios of 20% for testing and 80% for training in machine
learning [74]. Tis division ratio is sometimes referred to as
the 80 − 20 rule. In this study, we used 500 for training and
125 for testing. Te training data X ⊂ Ω is the union of the
set XΩ ⊂ Ω which contains points selected from the interior
domain and the set XΓ ⊂ Ω which contains points taken
from the boundary. Te general training set X of the PINN
model for the initial/boundary value problem is a union of
the following:

Applied Computational Intelligence and Soft Computing 5

(i) Te interior domain XΩ ⊂ (a, b) × (0, T),
(ii) Te boundaries XΓ ⊂ a, b{ } × [0, T] and,
(iii) X0 ⊂ (a, b) × 0{ }.

Tus,

X � X
Ω ∪X

Γ ∪X
0
. (13)

3.5. Step 3: Loss Function. Te total loss function J(X; P) is
the contributions of the losses due to: the residual of a given
NN approximation 􏽢u: [0, T] ×Ω⟶ R of the solution u,
that is,

r(x, t; P) ≔
z
2
􏽢u

zt
2 + β

z􏽢u

zt
− α

z
2
􏽢u

zx
2 + ϕ(x) sin(􏽢u) − f(x, t).

(14)

(i) Diferences from network approximations on the
initial collocation points.

Similar to the originally proposed approach by authors
of the paper [37], the PINN approach for the solution of the
initial and boundary value problem now proceeds by
minimization of the loss function of parameter P which is
given by

J(X; P) � JΩ X
Ω

; P􏼐 􏼑 + JΓ X
Γ
; P􏼐 􏼑 + J0 X

0
; P􏼐 􏼑, (15)

where

JΩ X
Ω

; P􏼐 􏼑 ≔
1

NΩ
􏽘

xi,ti()∈XΩ
r x

i
, t

i
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
, (16)

JΓ X
Γ
; P􏼐 􏼑 ≔

1
NΓ1

􏽘

xi,ti()∈XΓ1
􏽢u x

i
, t

i
􏼐 􏼑 − k1 t

i
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
1

NΓ2
􏽘

xi,ti()∈XΓ2
􏽢u x

i
, t

i
􏼐 􏼑 − k2 t

i
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
, (17)

J0 X
0
; P􏼐 􏼑 ≔

1
N0

􏽘
xi,ti()∈X0

􏽢u x
i
, t

i
􏼐 􏼑 − f1 x

i
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
1

N0
􏽘

xi,ti()∈X0

􏽢ut x
i
, t

i
􏼐 􏼑 − f2 x

i
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
. (18)

Tus, the optimal parameters P∗ of the network satisfy

û(i)

b(l−1)

x(i)

t(i)

b(l) b(L)

layer: 0 layer: l − 1 layer: l layer: L

a(0)
1

a(0)
2

a(l)
1a(l−1)

1

a(l)
j

a(l)
h–1

a(L)
1

a(l)
h

a(l−1)
k w(l)

jk

a(l−1)
h–1

a(l−1)
h

Figure 1: Illustration of a fully connected deep feedforward neural network with two nodes, (xi, ti), in the input layer and one node,
􏽢u(xi, ti), in the output layer. Layer 0 is the input layer, the layers l − 1 & l are the hidden layers with associated weight matrix functions wl &
bias vectors b(l−1) & b(l), and the layer L is the output layer. Input data passes through the network by following (8).

6 Applied Computational Intelligence and Soft Computing

P
∗

� argmin
P

J(X; P). (19)

3.6. Step 4: Training Process. Te fnal step in the PINN
algorithm amounts to minimizing (10). Terefore, we apply
the loss function given by (15) on the training samples (parts
of the domain and the boundary, see Figure 2), and we get
the blue line in Figure 3, which implies that the loss function
of the train decreases with respect to the training time. At the
same time, we calculate the loss function.

J(X; P) � Jtest,Ω X
Ω

; P􏼐 􏼑 + Jtest,Γ X
Γ
; P􏼐 􏼑 + Jtest,0 X

0
; P􏼐 􏼑,

(20)

on the test samples.

3.6.1. Te Combined Adam and L-BFGS-B Optimization
Algorithms. Like NNs, the training process for PINNs
corresponds to the minimization problem min

P
J(X; P).

Training of network parameters P is carried out using
a gradient descent approach such as Adam [75] or L-BFGS-B
(limited memory algorithm Broyden-Fletcher-Goldfarb-
Shanno) [76]. However, the required number of iterations
depends highly on the problem “(e.g., smoothness of the
solution)” see [57]. Te partial derivatives are necessary at
every stage of the training process. Terefore, it is com-
putationally difcult to calculate the PINN loss in each it-
eration if the interior domain contains a signifcant number
of points. Lu et al. [57] proposed a method called residual-
based adaptive refnement to increase the efectiveness of the
training procedure. To validate the efcacy of these opti-
mization techniques and enable their reuse, we conduct
three separate experiments in this paper: one for the Adam
optimization algorithm, one for L-BFGS-B optimization,
and a fnal one for the combination of both Adam and L-
BFGS-B optimization algorithms.

3.6.2. Weight Initialization. Due to the randomness of the
initial weight state in deep learning, each training can
produce a distinct set of outcomes. Te variance of the input
signal decreases as it moves through each layer of the
network if the weights are set too close to zero. If the weights
are excessively large, the network either approaches a van-
ishing gradient problem or the variance of the signal tends to
amplify as it moves through the network layers. Terefore,
choosing weights that are either too high or too small is not
a feasible initialization since in both circumstances, the
initialization is outside the optimization procedure’s right-

hand basin of attraction. Tere are several well-known
randomized weight initialization techniques, including
uniform, Gaussian, Glorot uniform, and Glorot normal
initialization over time. When used in conjunction with
symmetric activation functions, the Glorot uniform weight
initializer ofers a systematic method of weight initialization
that can aid in training stability, gradient fow, and con-
vergence in NNs [77, 78]. Taking this inquiry into account,
Glorot uniform initialization was used for the demands of
this article with a learning rate of 0.001.

3.6.3. Weakness and Limitation of the PINN Model. Te
PINNs model, while powerful, has several limitations [79]. A
fair weakness and limitation of the PINNs model is the
requirement of a large amount of labeled data for training.
To enforce physical constraints, PINNs usually rely on
solving PDEs, which calls for a good understanding of the
underlying physics. However, it can be difcult to get labeled
data that faithfully capture the physical system, particularly
in situations where access to experimental data is expensive
or limited. Tis restriction may make the PINN model less
useful and less generalizable [80]. To address this weakness,
one possible improvement is to incorporate transfer learning
techniques. Trough transfer learning, performance on
a target task with limited data can be improved by utilizing
pre-trained models on related tasks or domains. Explicitly
integrating domain knowledge into the model design is
another way to enhance PINNs. One can direct the model to
produce more accurate predictions by feeding it with prior
knowledge in the form of physical principles, equations, or
constraints. Additionally, an ensemble-based approach can
be used to enhance the predictive capacity of PINNs. Instead
of relying on a single neural network, multiple networks with
diverse architectures or initializations can be trained. In this
paper, we also consider various networks with distinct ar-
chitectures to efectively solve the NLSGE using the PINN
algorithm as presented in Algorithm 1.

4. Implementation

In the following section, we use Python code to build the
PINN algorithm to solve the NLSGE (1) in one dimension.
As an illustration, we take into account both Dirichlet and
Neumann boundary conditions to validate the efectiveness
of the models.

4.1. 1D NLSGE with Dirichlet BCs. Consider the following
one-dimensional NLSGE:

z
2
u

zt
2 �

1
π2

z
2
u

zx
2 − sin(u) + sin(cos(πx)cost), 0≤ x≤ 1, 0< t< 2, (21)

Applied Computational Intelligence and Soft Computing 7

Training set

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

t

0.2 0.4 0.6 0.8 1.00.0
x

Figure 2: Illustration of the training dataset.

100

10-1

10-2

10-3

10-4

10-5

0 2000 4000 6000 8000 10000 12000 14000
Steps

Train loss
Test loss

(a)

100

10-1

10-2

10-3

10-4

10-5

10-6

0 200 400 600 800 1000 1200
Steps

Train loss
Test loss

(b)

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

0 2000 4000 6000 8000 10000 12000 14000 16000

Train loss
Test loss

Steps

(c)

Figure 3: Train and test loss of PINN process for 15000 epochs (training iterations) for the dirichlet BCs case by using (a) adam, (b) L-BFGS-
B, and (c) combined adam and L-BFGS-B optimization algorithms.

8 Applied Computational Intelligence and Soft Computing

with Dirichlet boundary conditions

u(0, t) � cost, 0≤ t≤ 2, (22)

u(1, t) � −cost, 0≤ t≤ 2, (23)

and initial conditions

u(x, 0) � cos(πx), 0<x< 1, (24)

ut(x, 0) � 0, 0<x< 1. (25)

Te exact solution of the IBVP is given by u(x, t) �

cos(πx)cost [32].

4.1.1. Te PINNs Algorithm

(1) Step 1: Neural Network. To obtain u(x, t) that solves (21)
using the proposed method, we chose the structure of the
NN to have two nodes in the input layer (x, t) and one node
in the output layer that contains the prediction for the value
of u(x, t). Te structure had four hidden layers, each of
which contained 50 nodes (neurons).

(2) Step 2: Training Dateset. Te general training set X of this
model is selected in the interior domain XΩ ⊂ (0, 1) × (0, 2)

and on the boundaries XΓ1 ⊂ 0{ } × [0, 2], XΓ2 ⊂ 1{ } × [0, 2],
X0 ⊂ (0, 1) × 0{ }. Tus

X � X
Ω ∪X

Γ1 ∪X
Γ2 ∪X

0
. (26)

Te training set we used consisted of 500 samples
(xi, ti); u(xi, ti)􏼈 􏼉

500
i�1 where u(xk, tk) is the solution of (21) at

(xk, tk). 300 training samples were chosen from (0, 1) ×

(0, 2) and the rest was taken from the boundary of the
domain (see Figure 2).

(3) Step 3: Loss Function. Te loss function used to train the
PINN with the parameter P is given by (15) where

JΩ X
Ω

; P􏼐 􏼑 �
1

NΩ
􏽘

xi,ti()∈XΩ
r x

i
, t

i
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
, (27)

where

r x
i
, t

i
􏼐 􏼑 � 􏽢utt x

i
, t

i
􏼐 􏼑 −

1
π2􏽢uxx x

i
, t

i
􏼐 􏼑 + sin 􏽢u x

i
, t

i
􏼐 􏼑􏼐 􏼑 − sin cos πx

i
􏼐 􏼑 cos t

i
􏼐 􏼑, (28)

JΓ X
Γ
; P􏼐 􏼑 �

1
NΓ1

􏽘

xi,ti()∈XΓ1
􏽢u x

i
, t

i
􏼐 􏼑 − cos t

i
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
1

NΓ2
􏽘

xi,ti()∈XΓ2
􏽢u x

i
, t

i
􏼐 􏼑 + cos t

i
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
, (29)

J0 X
0
; P􏼐 􏼑 �

1
N0

􏽘
xi,ti()∈X0

􏽢u x
i
, t

i
􏼐 􏼑 − cos πx

i
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
1

N0
􏽘

xi,ti()∈X0

􏽢ut x
i
, t

i
􏼐 􏼑 − 0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
. (30)

(4) Step 4: Training Process. With the training samples, we
apply the loss function (10) to obtain the blue line in Fig-
ure 3, which indicates that the train loss function decreases
with the number of model training repetitions. At the same
time, we calculate the loss function on the test samples
using (20).

Te number of steps in Figure 3 (also known as the
number of epochs) indicates the number of iterations used to
train the model and thus the number of times the weights of

the network are updated. In our case, we used 15000 epochs,
which indicates that the NN was trained for 15000 passes
over the training dataset. Te loss in train and test decreases
as the number of epochs increases, as the fgure illustrates.
As a result, using more training iterations results in smaller
train and test losses, indicating that the suggested strategy
produced a better solution. Additionally, the L-BFGS-B
optimization algorithm produces fewer train and test los-
ses than the Adam optimization algorithm, and combining

Require: Training data, collocation points X � XΩ ∪XΓ ∪X0, contains interior and boundary points.
Initial condition, boundary condition, and the NLSGE.

(1) Defne network architecture (input layer, hidden layers, output layer, activation function, and optimizer).
(2) Initialize weights W and biases b, P � W, b{ }.
(3) for all epochs do
(4) apply forward propagation: û(x, t; X)←FP(X; P)

(5) compute the residual: r(x, t; P)

(6) compute loss: J(X; P)

(7) apply the optimizer: argminPJ(X; P).
(8) end for

ALGORITHM 1: PINN algorithm for NLSGE.

Applied Computational Intelligence and Soft Computing 9

the two optimization algorithms results in smaller train and
test losses. Terefore, it is preferable to use both optimi-
zations simultaneously rather than one of them alone.

Figures 4–6 present the precise solution and result of
problem (21) using the suggested method. Te graphs of the
2D and 3D solution plots for the model optimizations
proposed in step 4 of Subsection 4.1 allow for a comparison
of the two solutions. Furthermore, Figure 7 and Table 1 are
used to compare the estimated solution error for the Adam,
L-BFGS-B, and combined Adam and L-BFGS-B optimiza-
tion algorithms.

Te solution to NLSGE (16), depicted in 3D Figures 4–6,
shows that there is not much diference between the precise
solution and the solution produced using the suggested
technique PINN. However, the result obtained using the L-
BFGS-B optimization algorithm is relatively better than that
obtained using the Adam optimization algorithm, and the
result obtained using the Adam and L-BFGS-B mixture is
better than that obtained by both optimizers, as we can
observe from Figure 7.

Te 2D line plot in Figure 8 shows comparisons of the
solution of the suggested method with the exact solution at
x � 0.5 with their corresponding absolute error by diferent
optimization algorithms. As we can see in Figures 8(a), 8(c),
and 8(e), the line plots of the two solutions overlap, sug-
gesting that they are possibly much related. Observing the
result for the selected optimization algorithm, as we can see
from Figures 8(b), 8(d), and 8(f), the result obtained uti-
lizing the L-BFGS-B optimization approach is relatively
more successful than the one obtained using the Adam
optimization technique, and the result produced using the
combination of Adam and L-BFGS-B is of higher quality
than both of them.

Te precise answer and the suggested method are
compared in Table 1, and the results are explained using L2,
L∞, relative and mean square error. Tis comparison also
shows that the PINN approach with the L-BFGS-B opti-
mization algorithm yields a better solution than the one
with the Adam optimization algorithm and that the so-
lution resulting from the combination of Adam and L-
BFGS-B is better than the individual algorithms with the
least amount of absolute error. It takes a longer time for the
model to compile when both techniques are used
simultaneously.

4.1.2. Error Analysis and Computational Time

(1) Training Error. Te training error provides insight into
how well the predicted outputs of the training inputs ft the
training outputs, i.e., how the model performs in the
training set.

Te training error varies as the number of training
samples increases, as seen in Figure 9. It shows that the
training error increases for the frst few training samples
before gradually decreasing for the remaining training trials.
Tis fnding indicates that using few samples results in high
error rates and using more training samples is preferable to
getting good results with low error rates.

(2) Error on a Validation Set. Te training error is important
to fnd out whether our model can be applied to any input
data and still produce accurate results, even if it performs
exceptionally well on training data (the error is small).
According to this method, τ � (xi, ti; ui) should be ran-
domly divided into two disjoint sets; a training set and
a validation set, where τ represents the set of all
available data.

Figure 10 illustrates how, for a given number of training
samples, the error initially reduces. Still, we fnd that even for
a relatively modest collection of additional training exam-
ples, the error is close to 0. As the training set size grows, the
error remains consistently insignifcant.

(3) Computational Time. Costly computations are involved
when the number of training samples is increased. When
a large number of training samples were taken into account,
the code execution was incredibly slow. Tis is shown in
Figure 11 below (time is given in seconds). We take into
account eight diferent training samples, each having the
following sizes: 5, 15, 25, 55, 90, 185, and 350. We can see
that the compilation time increases with the size of the
training set size diferences.

Te link between the size of training samples and the
amount of time needed for compilation or model training is
depicted in Figure 11. Te training samples that were
mentioned have specifed sizes of 5, 15, 25, 55, 90, 185, and
350. Te fgure shows that the amount of time needed for
model compilation or training increases with the number of
training samples. Tis implies that the amount of time re-
quired for these procedures and the quantity of training
samples are positively correlated.

(4) Test Error vs. Computational Time. We can examine the
performance of our machine learning model in further
depth thanks to the plot that depicts the dependence of the
test error on the computational time required. Our goal is to
create a model that performs well (test loss is minor) and that
can be completed in a reasonable amount of time.

Te decrease in test loss is initially accompanied by an
increase in processing time, as seen in Figure 12. Even when
the model takes longer to run, we see that this pattern
disturbs and that the test loss is essentially constant.

(5) Discussion on the Number of Nodes in the Neural Net-
work. We investigate how the size of the NN afects our
model’s performance by using fve diferent NN layouts in
the model construction and test loss collection. We fx our
NN structure having four hidden layers and conduct ex-
periments for 30, 50, 100, 150, and 200 nodes of the NN
architectures. Te test loss vs. computing time for the
aforementioned NN structures for the NLSGE Dirichlet BCs
example is depicted in Figure 13. Te graph shows how the
test error changes as the number of iterations (i.e., the
processing time) rises for these fve diferent NN settings.
Figure 14 illustrates the absolute errors between the results
of the proposed model and the exact solution for various
nodes of the NN structures. Te error for the NN archi-
tecture containing 50 is very close to zero relative to others,

10 Applied Computational Intelligence and Soft Computing

PINN solution Adam Optimization

0.0 0.2 0.4 0.6 0.8
1.0

0.0
0.5

1.0
1.5

2.0

0.5

0.0

–0.5

0.5

0.0

–0.5–1.0

t
x

(a)

Exact solution Adam Optimization

0.0 0.2 0.4 0.6 0.8
1.0 0.0

0.5
1.0

1.5
2.0

0.50
0.75
1.00

0.25
0.00

–0.75
–0.50
–0.25

0.5

0.0

–0.5–1.00

t
x

(b)

Figure 4: 3D plots of the (a) PINN solution and (b) true solution for the dirichlet BCs using the adam optimization algorithm.

PINN solution L-BFGS-B Optimization

0.0 0.2 0.4 0.6 0.8
1.0

0.0
0.5

1.0
1.5

2.0

0.5

1.0

0.0

–0.5

0.5

0.0

–0.5–1.0

t

x

(a)

Exact solution L-BFGS-B Optimization

0.0 0.2 0.4 0.6 0.8
1.0 0.0

0.5
1.0

1.5
2.0

0.50
0.75
1.00

0.25
0.00

–0.75
–0.50
–0.25

0.5

0.0

–0.5–1.00

t
x

(b)

Figure 5: 3D plots of the (a) PINN solution and (b) true solution for the dirichlet BCs using the L-BFGS-B optimization algorithm.

PINN solution Adam+L-BFGS-B

0.0 0.2 0.4 0.6 0.8
1.0

0.0
0.5

1.0
1.5

2.0

0.50
0.75

0.25

1.00

0.00

–0.50
–0.25

0.5

0.0

–0.5
–0.75

t

x

(a)

Exact solution Adam+L-BFGS-B

0.0 0.2 0.4 0.6 0.8
1.0 0.0

0.5
1.0

1.5
2.0

0.50
0.75
1.00

0.25
0.00

–0.75
–0.50
–0.25

0.5

0.0

–0.5–1.00

t
x

(b)

Figure 6: 3D plots of the (a) PINN solution and (b) true solution for the dirichlet BCs using combined adam and L-BFGS-B optimization
algorithms.

Applied Computational Intelligence and Soft Computing 11

indicating that our model showed the greatest performance
improvement when the number of nodes is 50. Furthermore,
a comparison between the solution produced using the
suggested method and the exact one, based on L∞, relative
and mean square error for the fve distinct nodes, is pre-
sented in Table 2.

As we can see from the table, NNs with node counts of
30, 100, 150, and 200, along with the corresponding hidden
layers, have a nearly uniform pattern, and the NN with node
50 gives smaller L∞, relative and mean squared error, in-
dicating that the suggested approach is efcient for the NN
architecture with 50 nodes.

(6) Discussion on the Selection of Activation Function.
When using PINNs to solve PDEs, the choice of activation
functions have an impact on the performance and con-
vergence of the model. We provided a comparison between
a few well-known activation functions in to determine
which activation best minimized the loss function of our
suggested model.

In Table 3 the approximation error of the proposed
model based on L∞, relative and mean square error is
presented for the activation functions of Tanh, sigmoid, and
ReLu. According to the fndings, applying the sigmoid ac-
tivation function yields a better result than the ReLu

PINN Error Adam Optimization

0.0 0.2 0.4 0.6 0.8
1.0

0.0
0.5

1.0
1.5

2.0

1.5

2.0

1.0

0.5

1.5

1.0

0.5

t
x

×10–3

(a)

PINN Error L-BFGS-B optimization

0.0
0.2 0.4 0.6 0.8

1.0
0.0

0.5
1.0

1.5
2.0

4
5
6
7

3

1
2

5

4

3

2

1

t
x

×10–3

(b)

PINN Error Adam+L-BFGS-B

0.0
0.2 0.4 0.6 0.8

1.0
0.0

0.5
1.0

1.5
2.0

0.8
1.0
1.2
1.4

0.6

0.2
0.4

8

6

4

2

t

x

×10–4

(c)

Figure 7: 3D plots of the PINN point-wise absolute error (the diference of exact and PINN solution) for the dirichlet BCs using (a) adam (b)
L-BFGS-B, and (c) combined adam & L-BFGS-B optimization algorithms.

Table 1: Te comparisons of error approximation for diferent model optimizers.

Optimizer L2 error L∞ error Relative error MSE Time in
seconds

Adam 6.659841e − 02 4.862466e − 03 1.039621e − 03 3.329921e − 04 30.022
L-BFGS 5.103039e − 02 3.959396e − 03 7.965995e − 04 2.551519e − 04 58.996
Combined 2.930245e − 02 1.861282e − 03 4.574200e − 04 1.465123e − 04 70.341

12 Applied Computational Intelligence and Soft Computing

PINN vs Exact solution Adam Optimization

PINN Solution
Exact Solution

1.00

0.75

0.50

0.25

0.00

–0.25

–0.50

–0.75

–1.00
0.0 0.2 0.4 0.6 0.8 1.0

u
(x

, t
)

x

(a)

Absolute error Adam Optimization

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

u
(x

, t
)

x

1e–3

(b)

PINN vs Exact solution L-BFGS-B Optimization

PINN Solution
Exact Solution

1.00

0.75

0.50

0.25

0.00

–0.25

–0.50

–0.75

–1.00
0.0 0.2 0.4 0.6 0.8 1.0

u
(x

, t
)

x

(c)

Absolute error L-BFGS-B Optimization

5

4

3

2

1

0
0.0 0.2 0.4 0.6 0.8 1.0

u
(x

, t
)

x

1e–4

(d)

PINN vs Exact solution Adam+L-BFGS-B

PINN Solution
Exact Solution

1.00

0.75

0.50

0.25

0.00

–0.25

–0.50

–0.75

–1.00
0.0 0.2 0.4 0.6 0.8 1.0

u
(x

, t
)

x

(e)

Absolute error Adam+L-BFGS-B

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

u
(x

, t
)

x

1e–4

(f)

Figure 8: Te line plots of the comparison of PINN-predicted with the exact solution and the corresponding absolute error for NLSGE
dirichlet BCs case at t � 0.5 using the adam optimization algorithm (the frst row (a) and (b)), the L-BFGS-B optimization algorithm (the
second row (c) and (d)), and the combined adam and L-BFGS-B optimization algorithms (the third row (e) and (f)).

Applied Computational Intelligence and Soft Computing 13

Training error vs. no of training samples1e–5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 er
ro

r

50 100 150 200 250 3000
No. training samples

Figure 9: Training error dirichlet BCs case.

Validation error vs. no of training samples

50 100 150 200 250 3000
No. training samples

0.0

0.1

0.2

0.3

0.4

0.5

Va
lid

at
io

n
er

ro
r

Figure 10: Error on a validation set dirichlet BCs case.

Computational time vs. no of training samples

900

1000

1100

1200

1300

1400

1500

1600

C
om

pu
ta

tio
na

l t
im

e

50 100 150 200 250 3000
No. training samples

Figure 11: Computational time dirichlet BCs case.

14 Applied Computational Intelligence and Soft Computing

Test error vs. Computational time

100 150 200 250 300 350 40050
Computational time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

er
ro

r

Figure 12: Test loss vs. computational time dirichlet BCs case.

Test error vs. Computational time for diferent nodes

30 nodes
50 nodes
100 nodes

150 nodes
200 nodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Te
st

er
ro

r

20 40 60 80 1000
Computational time (s)

Figure 13: Test loss against processing time for PINN to handle the dirichlet BCs case for nodes 30, 50, 100, 150, and 200 at t � 0.5.

Plots of absolute errors for diferent nodes
1e–4

30 nodes
50 nodes
100 nodes

150 nodes
200 nodes

0.2 0.4 0.6 0.8 1.00.0
x

0

1

2

3

4

u
(x

, t
)

Figure 14: Plots of the absolute errors between PINN prediction and the real solution for the dirichlet BCs issue (16) considering diferent
nodes of NNs at t � 0.5.

Applied Computational Intelligence and Soft Computing 15

activation function. However, compared to the other
methods, using the tangent hyperbolic function (tanh) yields
the best approximation with the least amount of error.

Figure 15 demonstrates a comparison of the suggested
approximate error line plots for these three diferent acti-
vation functions. Te graph shows that the inaccuracy of the
tanh activation function is nearly zero compared to the other

lines, which also indicates that the tangent hyperbolic
function is appropriate for our proposed model.

4.2. 1D NLSGE with Neumann BCs. Consider the one-
dimensional NLSGE

z
2
u

zt
2 �

1
π2

z
2
u

zx
2 − sin(u) + sin(cos(πx) cos t), 0≤x≤ 1, 0< t< 2, (31)

with the Neumann boundary conditions

ux(0, t) � 0, 0≤ t≤ 2, (32)

ux(1, t) � 0, 0≤ t≤ 2, (33)

and initial conditions

u(x, 0) � cos(πx), 0<x< 1, (34)

ut(x, 0) � 0, 0<x< 1. (35)

Te function u(x, t) � cos(πx) cos(t) satisfes the (31)
and conditions (26)–(29) [32].TeNNwith two nodes in the
input layer (x, t), one node in the output layer (value of
u(x, t))), and four hidden layers, each with 50 nodes,
produces u(x, t)), which solves (25), for the given input
(x, t)). We set this model’s epoch count to 15000.

4.2.1. Training Dataset. Te training set we used in this
example consisted of 500 samples (xi, ti); u(xi, ti)􏼈 􏼉

500
i�1

where u(xk, tk) is the solution of (31) at (xk, tk) found by
a PDE solver python ofers deepxde. 300 training samples
were chosen from (0, 1) × (0, 2) and the rest was taken from
the domain boundary.

4.2.2. Loss Function. Similarly to the above example, the loss
function is expressed as the summation of the square of the
diference corresponding to each of the equations in (31).
Te loss function used to train the PINN with the parameter
P is given by (15) where

JΩ X
Ω

; P􏼐 􏼑 �
1

NΩ
􏽘

xi,ti()∈XΩ
r x

i
, t

i
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
, (36)

where

Table 2: Te comparisons of PINN approximation errors for diferent nodes.

Nodes L∞ error Relative error MSE

30 3.582307e − 03 5.617903e − 04 1.799422e − 04
50 1.580038e − 03 2.676965e − 04 8.574355e − 05
100 3.517338e − 03 6.090592e − 04 1.950825e − 04
150 3.645369e − 03 5.776454e − 04 1.850206e − 04
200 3.912070e − 03 5.346607e − 04 1.712526e − 04

Table 3: Te comparisons of PINN error approximation for diferent activation functions.

Activation functions L∞ error Relative error MSE

Tanh 1.580038e − 03 2.676965e − 04 8.574355e − 05
Sigmoid 4.186728e − 03 8.194311e − 04 2.083582e − 04
ReLu 2.937392e− 02 4.524396e − 03 1.449170e − 03

16 Applied Computational Intelligence and Soft Computing

Plots of absolute errors for diferent activation functions
1e–3

tanh
Sigmoid
ReLu

0.2 0.4 0.6 0.8 1.00.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

u
(x

, t
)

Figure 15:Te comparisons of PINN approximation error to handle the dirichlet BCs case for tanh, sigmoid, and ReLu activation functions
at t � 0.5.

100

10-1

10-2

10-3

10-4

10-5

10-6

0 2000 4000 6000 8000 10000 12000 14000 16000
Steps

Train loss
Test loss

Figure 16: Train and test loss of PINN process for 15000 epochs (training iterations) for the neumann BCs case by using combined adam
and L-BFGS-B optimization algorithms.

PINN solution Neuman BCs

0.0 0.2 0.4
0.6 0.8

1.0
0.0

0.5
1.0

1.5
2.0

0.50
0.25

1.00
0.75

0.00
–0.25
–0.50

0.5

0.0

–0.5
–0.75

t
x

(a)

Exact solution Neuman BCs

0.0 0.2 0.4
0.6 0.8

1.0
0.0

0.5
1.0

1.5
2.0

0.50
0.25

1.00
0.75

0.00
–0.25
–0.50

0.5

0.0

–0.5
–0.75
–1.00

(b)
Figure 17: Continued.

Applied Computational Intelligence and Soft Computing 17

r x
i
, t

i
􏼐 􏼑 � 􏽢utt x

i
, t

i
􏼐 􏼑 −

1
π2

􏽢uxx x
i
, t

i
􏼐 􏼑 + sin 􏽢u x

i
, t

i
􏼐 􏼑􏼐 􏼑 − sin cos πx

i
􏼐 􏼑 cos t

i
􏼐 􏼑, (37)

JΓ X
Γ
; P􏼐 􏼑 �

1
NΓ1

􏽘

xi,ti()∈XΓ1
􏽢ux x

i
, t

i
􏼐 􏼑 − 0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
1

NΓ2
􏽘

xi,ti()∈XΓ2
􏽢ux x

i
, t

i
􏼐 􏼑 − 0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
, (38)

J0 X
0
; P􏼐 􏼑 �

1
N0

􏽘
xi,ti()∈X0

􏽢u x
i
, t

i
􏼐 􏼑 − cos πx

i
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
1

N0
􏽘

xi,ti()∈X0

􏽢ut x
i
, t

i
􏼐 􏼑 − 0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
. (39)

PINN absolute Error Neuman BCs

0.0 0.2 0.4
0.6 0.8

1.0
0.0

0.5
1.0

1.5
2.0

6

4

2

0

1

2

0

–1

–2

–2

t
x

×10–3

(c)

Figure 17: 3D plots of the (a) PINN solution, (b) true solution, and (c) PINN point-wise absolute error (the diference of exact and PINN
solution) to the problem (25) with the neumann BCs.

PINN Solution
Exact Solution

PINN vs Exact solution Neuman BCs

0.2 0.4 0.6 0.8 1.00.0
x

–1.00

–0.75

–0.50

–0.25

0.00

0.25

0.50

0.75

1.00

u
(x

, t
)

(a)

1e–4 Absolute error Neuman BCs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

u
(x

, t
)

0.2 0.4 0.6 0.8 1.00.0
x

(b)

Figure 18: Te line plots of (a) PINN-predicted and exact solution and (b) absolute error to SGE equation (25) with neumann BCs case for
t � 0.5.

18 Applied Computational Intelligence and Soft Computing

Te train and test loss of this model is shown in Fig-
ure 16. Since we have previously demonstrated that, for
example one, the combined Adam and L-BFGS-B optimi-
zation algorithm is the optimal optimization for our model,
we employed this mixed optimization technique to mini-
mize the loss function of the problem (31). Similarly, we used
the tanh as an activation function to predict the solution of
the suggested instances given by (31) by PINN.

Figures 17 and 18 show the exact solution and the
resulting PINN solution with the corresponding absolute
error to the problem (31). Te graphs of the 2D and 3D
solution plots for the combined model optimization Adam
and L-BFGS-B allow a comparison of the two solutions.

Te distinction between the precise and PINN solutions
is seen in Figure 17(c), and we observe that the diference
between these solutions equals mostly zero, which suggests
a reasonable match between these two solutions.Te overlap
between the line plots representing the precise solution and
the predicted solution, as seen in Figure 18(a), indicates that
our suggested model provides an excellent approximation
with the least amount of error, as demonstrated by the
corresponding error plots in Figure 18(b).

5. Conclusions and Outlook

In this paper, we have presented a deep learning framework-
based approach known as PINNs for the solution of non-
linear SGE with source terms. To solve efciently the pro-
posed problem, we provided PINN with a multi-objective
loss function that incorporates the initial condition,
Dirichlet/Neumann boundary conditions, and governing
PDE residual over randomly selected collocation points in
the problem domain. We used a feedforward deep neural
network with two input layers, four hidden layers, and one
output layer to train the PINN model. Te weights of the
feedforward NNs were initialized using a Glorot uniform
initialization, also called a uniform Xavier initialization,
which is the most appropriate when employing a symmetric
activation function, such as the tanh or sigmoid. We looked
at the NLSGE with Dirichlet and Neumann boundary
conditions as benchmark examples to demonstrate how well
the suggested model performed. We conducted several
experiments and utilized graphs and tables to simulate the
results using the Python DeepXDE software module. Te
PINN model’s train and test loss for both the Dirichlet and
Neumann boundary conditions are decreasing with respect
to training iterations; this suggests that the model is making
progress in resolving the given problem by improving its
approximation of the NLSGE solution. Te experiment on
choosing the optimal optimization method for the proposed
problem shows that the L-BFGS-B model optimization al-
gorithm yields better results than the Adam optimization
strategy. However, integrating the two gives the best result,
but compiling the model takes more time. Furthermore,
three activation functions ReLU, Sigmoid, and hyperbolic
tangent (tanh) function are examined to determine the best
choice of activation function to utilize with the suggested
model. Results indicate that the tanh activation function
produces the most accurate results, whereas the ReLU

activation function produces the least accurate results (see
Table 3 and Figure 15). Graphs and tables are used to depict
the simulation for comparison between the exact solution
and the PINN-predicted solution. Te results show that the
method can accurately capture the solution for the NLSGE,
with the diference being extremely close to zero. To further
strengthen the foundation of PINN for solving diferent
classes of physical phenomena involving PDEs, further in-
vestigation must be performed in future work. More re-
search is required to examine the stability, convergence, and
robustness of the suggested method to solve NLSGE. Fur-
thermore, investigating higher-order and multidimensional
variants of the SGE can improve PINNs’ ability to represent
the complex dynamics and behavior of non-linear waves.
Moreover, real-time simulations and greatly increased
computational efciency can be attained via the imple-
mentation of adaptive and parallelizable PINN architectures,
such as Extended PINNs, Bayesian PINNS, Multi-fdelity
PINNS, and Adaptive PINNs.

Data Availability

Te literature listed in this article provides all of the data
necessary for this research report.

Conflicts of Interest

Regarding the development of this manuscript, the authors
have not disclosed any conficts of interest.

Authors’ Contributions

Te submitted version of the article was approved by all
authors who contributed equally.

Acknowledgments

Te authors acknowledge the fnancial support provided by
the Adama Science and Technology University for con-
ducting this research. Te authors of this publication would
like to express their gratitude to the School of Natural
Sciences at Adama Science and Technology University, es-
pecially the Department of Applied Mathematics, for pro-
viding crucial research resources.

References

[1] E. Bour, “Teorie de la deformation des surfaces,” de l’École
impériale polytechnique, vol. 22, no. 39, pp. 1–148, 1861.

[2] F. Pedit and H. Wu, “Discretizing constant curvature surfaces
via loop group factorizations: the discrete sine-and sinh-gordon
equations,” Journal of Geometry and Physics, vol. 17, no. 3,
pp. 245–260, 1995.

[3] J. Rubinstein, “Sine-gordon equation,” Journal of Mathe-
matical Physics, vol. 11, no. 1, pp. 258–266, 1970.

[4] E. G. Ekomasov, K. Y. Samsonov, A. M. Gumerov, and
R. Kudryavtsev, “Nonlinear waves of the sine-gordon equa-
tion in the model with three attracting impurities,” Izvestiya
VUZ. Applied Nonlinear Dynamics, vol. 30, no. 6, pp. 749–765,
2022.

Applied Computational Intelligence and Soft Computing 19

[5] M. El Tawil and H. El Zoheiry, “Stochastic propagation of
fuxons on josephson lines,” Chaos, Solitons & Fractals, vol. 8,
no. 1, pp. 45–50, 1997.

[6] J. J. Mazo and A. V. Ustinov, “Te sine-gordon equation in
josephson-junction arrays,” Nonlinear Systems and Com-
plexity, pp. 155–175, 2014.

[7] H. Susanto, “Josephson junctions with phase shifts: stability
analysis of fractional fuxons,” PROEFSCHRIFT, vol. 68, no. 2,
2006.

[8] M. Arakelyan, “Analysis of the motion of frenkel-kontorova
dislocations in single crystals of aluminum with allowance for
the peierls barrier,” OALib, vol. 05, no. 3, pp. 1–11, 2018.

[9] M. De Angelis, “Mathematical contributions to the dynamics
of the josephson junctions: state of the art and open prob-
lems,” 2015, https://arxiv.org/abs/1509.03054.

[10] L. M. Alonso, “Soliton classical dynamics in the sine-gordon
equation in terms of the massive thirring model,” Physical
Review D, vol. 30, no. 12, pp. 2595–2601, 1984.

[11] G. Agrawal, Nonlinear Fiber Optics, academic, Cambridge,
MA, USA, 5th edition, 2013.

[12] M. Tinkham and V. Emery, Introduction to Superconductivity,
University of California, California, Irvine, 1996.

[13] V. G. Bykov, “Sine-gordon equation and its application to
tectonic stress transfer,” Journal of Seismology, vol. 18, no. 3,
pp. 497–510, 2014.

[14] A. Scott, Nonlinear Science, Oxford University Press, Oxford,
UK, 1999.

[15] S. P. Joseph, “Traveling wave exact solutions for general sine-
gordon equation,” Advances in Mathematics: Scientifc Journal,
vol. 9, no. 4, pp. 2293–2298, 2020.

[16] G. Chen, Z. Ding, C.-R. Hu, W.-M. Ni, and J. Zhou, “A note
on the elliptic sine-gordon equation,” Contemporary Math-
ematics, vol. 357, pp. 49–68, 2004.

[17] S. Watanabe, H. S. van der Zant, S. H. Strogatz, and
T. P. Orlando, “Dynamics of circular arrays of josephson
junctions and the discrete sine-gordon equation,” Physica D:
Nonlinear Phenomena, vol. 97, no. 4, pp. 429–470, 1996.

[18] J. D. Gibbon, I. N. James, and I. M. Moroz, “Te sine-gordon
equation as a model for a rapidly rotating baroclinic fuid,”
Physica Scripta, vol. 20, no. 3-4, pp. 402–408, 1979.

[19] J. E. Maćıas-Dı́az, “Numerical study of the transmission of
energy in discrete arrays of sine-gordon equations in two
space dimensions,” Physical Review A, vol. 77, no. 1, Article ID
016602, 2008.

[20] M. Hairer and H. Shen, “Te dynamical sine-gordon model,”
Communications in Mathematical Physics, vol. 341, no. 3,
pp. 933–989, 2016.

[21] O. Goubet, “Remarks on some dissipative sine-gordon
equations,” Complex Variables and Elliptic Equations,
vol. 65, no. 8, pp. 1336–1342, 2020.

[22] Q. Zhou, M. Ekici, M. Mirzazadeh, and A. Sonmezoglu, “Te
investigation of soliton solutions of the coupled sine-gordon
equation in nonlinear optics,” Journal of Modern Optics,
vol. 64, no. 16, pp. 1677–1682, 2017.

[23] M. Wu, G. Chen, and S. Luo, “Generalized sine–gordon
equation and dislocation dynamics of superlattice,” Super-
lattices and Microstructures, vol. 59, pp. 163–168, 2013.

[24] L. Q. English, “Experimental results for the sine-gordon
equation in arrays of coupled torsion pendula,” Nonlinear
Systems and Complexity, pp. 111–129, 2014.

[25] A. Babu and N. Asharaf, “Numerical solution of nonlinear
sine-gordon equation using modifed cubic b-spline-based
diferential quadrature method,” Computational Methods
for Diferential Equations, vol. 11, no. 2, pp. 369–386, 2023.

[26] M. Shiralizadeh, A. Alipanah, and M. Mohammadi, “Nu-
merical solution of one-dimensional sine-gordon equation
using rational radial basis functions,” Journal of Mathematical
Modeling, vol. 10, no. 3, pp. 387–405, 2022.

[27] B. Batiha, “New solution of the sine-gordon equation by the
daftardar-gejji and jafari method,” Symmetry, vol. 14, no. 1,
p. 57, 2022.

[28] A. T. Deresse, “Double sumudu transform iterative method
for one-dimensional nonlinear coupled sine-gordon equa-
tion,” Advances in Mathematical Physics, vol. 2022, Article ID
6977692, 15 pages, 2022.

[29] Z. Eidinejad, R. Saadati, J. Vahidi, and C. Li, “Numerical
solutions of 2d stochastic time-fractional sine–gordon
equation in the c aputo sense,” International Journal of Nu-
merical Modelling: Electronic Networks, Devices and Fields,
vol. 36, no. 6, Article ID e3121, 2023.

[30] J. Fang, M. Nadeem, M. Habib, S. Karim, and H. A. Wahash,
“A new iterative method for the approximate solution of
klein-gordon and sine-gordon equations,” Journal of Function
Spaces, vol. 2022, Article ID 5365810, 9 pages, 2022.

[31] X. Xu, X. Luo, and H. Rabitz, “Numerical meshless solution of
high-dimensional sine-gordon equations via fourier hdmr-hc
approximation,” Journal of Mathematical Chemistry, vol. 57,
no. 7, pp. 1683–1699, 2019.

[32] A. T. Deresse, Y. O. Mussa, and A. K. Gizaw, “Analytical
solution of two-dimensional sine-gordon equation,”Advances
in Mathematical Physics, vol. 2021, Article ID 6610021,
15 pages, 2021.

[33] F. Mirzaee, S. Rezaei, and N. Samadyar, “Solution of time-
fractional stochastic nonlinear sine-gordon equation via fnite
diference and meshfree techniques,” Mathematical Methods
in the Applied Sciences, vol. 45, no. 7, pp. 3426–3438, 2022.

[34] A. Kamchatnov, “Modulation theory for the sine-gordon
equation,” 2023, https://arxiv.org/abs/2301.04360.

[35] A. T. Deresse, Y. O. Mussa, and A. K. Gizaw, “Solutions of
two-dimensional nonlinear sine-gordon equation via triple
laplace transform coupled with iterative method,” Journal of
Applied Mathematics, vol. 2021, Article ID 9279022, 15 pages,
2021.

[36] K. Raslan, A. Soliman, K. K. Ali, M. Gaber, and S. R. Almhdy,
“Numerical solution for the sin-gordon equation using the
fnite diference method and the non-stander fnite diference
method,” Applied Mathematics, vol. 17, no. 2, pp. 253–260,
2023.

[37] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-
informed neural networks: a deep learning framework for
solving forward and inverse problems involving nonlinear
partial diferential equations,” Journal of Computational
Physics, vol. 378, pp. 686–707, 2019.

[38] H. Lee and I. S. Kang, “Neural algorithm for solving difer-
ential equations,” Journal of Computational Physics, vol. 91,
no. 1, pp. 110–131, 1990.

[39] L. P. Aarts and P. Van Der Veer, “Neural network method for
solving partial diferential equations,” Neural Processing
Letters, vol. 14, no. 3, pp. 261–271, 2001.

[40] J. Blechschmidt and O. G. Ernst, “Tree ways to solve partial
diferential equations with neural networks—a review,”
GAMM-mitteilungen, vol. 44, no. 2, Article ID e202100006,
2021.

[41] N. Yadav, A. Yadav, andM. Kumar,An Introduction to Neural
Network Methods for Diferential Equations, Springer, Berlin,
Germany, 2015.

20 Applied Computational Intelligence and Soft Computing

https://arxiv.org/abs/1509.03054
https://arxiv.org/abs/2301.04360

[42] I. A. Basheer and M. Hajmeer, “Artifcial neural networks:
fundamentals, computing, design, and application,” Journal of
Microbiological Methods, vol. 43, no. 1, pp. 3–31, 2000.

[43] S. Chakraverty and S. Mall, Artifcial Neural Networks for
Engineers and Scientists: Solving Ordinary Diferential Equa-
tions, CRC Press, Boca Raton, FL, USA, 2017.

[44] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artifcial neural
networks for solving ordinary and partial diferential equa-
tions,” IEEE Transactions on Neural Networks, vol. 9, no. 5,
pp. 987–1000, 1998.

[45] C. Bland, L. Tonello, E. Biganzoli, D. Snowdon, P. Antuono,
and M. Lanza, “Advances in artifcial neural networks,”
Advances in Artifcial Neural Networks, p. 119, 2020.

[46] D. Valencia, S. F. Fard, and A. Alimohammad, “An artifcial
neural network processor with a custom instruction set ar-
chitecture for embedded applications,” IEEE Transactions on
circuits and systems I: Regular Papers, vol. 67, no. 12,
pp. 5200–5210, 2020.

[47] M. Puri, A. Solanki, T. Padawer, S. M. Tipparaju,W. A.Moreno,
and Y. Pathak, “Introduction to artifcial neural network (ann)
as a predictive tool for drug design, discovery, delivery, and
disposition: basic concepts and modeling,” in Artifcial Neural
Network for Drug Design, Delivery and Disposition, pp. 3–13,
Elsevier, Amsterdam, Netherlands, 2016.

[48] T. T. Dufera, Y. C. Seboka, and C. Fresneda Portillo, “Pa-
rameter estimation for dynamical systems using a deep neural
network,” Applied Computational Intelligence and Soft
Computing, vol. 2022, Article ID 2014510, 10 pages, 2022.

[49] A. Jooya, B. Keshavarz, N. Dimopoulos, and J. S. Oberoi,
“Accelerating neural network ensemble learning using opti-
mization and quantum annealing techniques,” in Proceedings
of the Second International Workshop on Post Moores Era
Supercomputing, pp. 1–7, New York, NY, USA, November
2017.

[50] L. Daolun, S. Luhang, Z. Wenshu, L. Xuliang, and T. Jieqing,
“Physics-constrained deep learning for solving seepage
equation,” Journal of Petroleum Science and Engineering,
vol. 206, Article ID 109046, 2021.

[51] E. Small, “An analysis of physics-informed neural networks,”
2023.

[52] K. Tang, X. Wan, and C. Yang, “Das-pinns: a deep adaptive
sampling method for solving high-dimensional partial dif-
ferential equations,” Journal of Computational Physics,
vol. 476, Article ID 111868, 2023.

[53] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics in-
formed deep learning (part i): data-driven solutions of
nonlinear partial diferential equations,” 2017, https://arxiv.
org/abs/1711.10561.

[54] Y. Shin, J. Darbon, and G. E. Karniadakis, “On the conver-
gence of physics informed neural networks for linear second-
order elliptic and parabolic type pdes,” Communications in
Computational Physics, vol. 28, no. 5, pp. 2042–2074, 2020.

[55] C. Beck, S. Becker, P. Grohs, N. Jaafari, and A. Jentzen,
“Solving the Kolmogorov pde by means of deep learning,”
Journal of Scientifc Computing, vol. 88, no. 3, pp. 73–28, 2021.

[56] J. Berg and K. Nyström, “A unifed deep artifcial neural
network approach to partial diferential equations in complex
geometries,” Neurocomputing, vol. 317, pp. 28–41, 2018.

[57] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, “Deepxde:
a deep learning library for solving diferential equations,”
SIAM Review, vol. 63, no. 1, pp. 208–228, 2021.

[58] V. Schäfer, Generalization of physics-informed neural net-
works for various boundary and initial conditions, Ph.D. thesis,

Technische Universität Kaiserslautern, Kaiserslautern, Ger-
many, 2022.

[59] R. Bose and A. M. Roy, “Invariance embedded physics-
infused deep neural network-based sub-grid scale models
for turbulent fows,” Engineering Applications of Artifcial
Intelligence, vol. 128, Article ID 107483, 2024.

[60] A. M. Roy, R. Bose, V. Sundararaghavan, and R. Arróyave,
“Deep learning-accelerated computational framework based
on physics informed neural network for the solution of linear
elasticity,” Neural Networks: Te Ofcial Journal of the In-
ternational Neural Network Society, vol. 162, pp. 472–489,
2023.

[61] A. M. Roy and S. Guha, “A data-driven physics-constrained
deep learning computational framework for solving vonmises
plasticity,” Engineering Applications of Artifcial Intelligence,
vol. 122, Article ID 106049, 2023.

[62] D. Sana, “Approximating the wave equation via physics in-
formed neural networks: various forward and inverse prob-
lems,” 2022, https://dcn.nat.fau.eu/wp-content/uploads/
FAUMoD_DaniaSana-InternReport_PINN.pdf.

[63] J. Li and J. Qu, “Barycentric Lagrange interpolation collo-
cation method for solving the sine–gordon equation,” Wave
Motion, vol. 120, Article ID 103159, 2023.

[64] L. T. K. Nguyen and N. F. Smyth, “Modulation theory for
radially symmetric kink waves governed by a multi-
dimensional sine-gordon equation,” Journal of Nonlinear
Science, vol. 33, no. 1, p. 11, 2023.

[65] O. Calin, Deep Learning Architectures, Springer, Heidelberg,
Germany, 2020.

[66] M. F. Dixon, I. Halperin, and P. Bilokon,Machine Learning in
Finance, Springer, Heidelberg, Germany, 2020.

[67] D. V. Dung, N. D. Song, P. S. Palar, and L. R. Zuhal, “On the
choice of activation functions in physics-informed neural
network for solving incompressible fuid fows,” in Pro-
ceedings of the AIAA SCITECH 2023 Forum, p. 1803, Hei-
delberg, Germany, January 2023.

[68] C. Beck, S. Becker, P. Grohs, N. Jaafari, and A. Jentzen,
“Solving stochastic diferential equations and Kolmogorov
equations by means of deep learning,” 2018, https://arxiv.org/
abs/1806.00421.

[69] C. Beck, M. Hutzenthaler, A. Jentzen, and B. Kuckuck, “An
overview on deep learning-based approximation methods for
partial diferential equations,” 2020, https://arxiv.org/abs/
2012.12348.

[70] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi,
and F. Piccialli, “Scientifc machine learning through physics-
informed neural networks: where we are and what’s next,”
2022, https://arxiv.org/abs/2201.05624.

[71] T. T. Dufera, “Deep neural network for system of ordinary
diferential equations: vectorized algorithm and simulation,”
Machine Learning with Applications, vol. 5, Article ID 100058,
2021.

[72] C. J. Garćıa-Cervera, M. Kessler, and F. Periago, “Control of
partial diferential equations via physics-informed neural
networks,” Journal of Optimization Teory and Applications,
vol. 196, no. 2, pp. 391–414, 2023.

[73] Z. Reitermanova, “Data Splitting,” WDS, Matfyzpress Prague,
pp. 31–36, 2010.

[74] V. R. Joseph, “Optimal ratio for data splitting,” Statistical
Analysis and Data Mining: Te ASA Data Science Journal,
vol. 15, no. 4, pp. 531–538, 2022.

[75] A. Williams, N. Walton, A. Maryanski, S. Bogetic, W. Hines,
and V. Sobes, “Stochastic gradient descent for optimization

Applied Computational Intelligence and Soft Computing 21

https://arxiv.org/abs/1711.10561
https://arxiv.org/abs/1711.10561
https://dcn.nat.fau.eu/wp-content/uploads/FAUMoD_DaniaSana-InternReport_PINN.pdf
https://dcn.nat.fau.eu/wp-content/uploads/FAUMoD_DaniaSana-InternReport_PINN.pdf
https://arxiv.org/abs/1806.00421
https://arxiv.org/abs/1806.00421
https://arxiv.org/abs/2012.12348
https://arxiv.org/abs/2012.12348
https://arxiv.org/abs/2201.05624

for nuclear systems,” Scientifc Reports, vol. 13, no. 1, p. 8474,
2023.

[76] T.-D. Guo, Y. Liu, and C.-Y. Han, “An overview of stochastic
quasi-Newton methods for large-scale machine learning,”
Journal of the Operations Research Society of China, vol. 11,
no. 2, pp. 245–275, 2023.

[77] X. Glorot and Y. Bengio, “Understanding the difculty of
training deep feedforward neural networks,” in Proceedings of
the thirteenth international conference on artifcial intelligence
and statistics. JMLR Workshop and Conference Proceedings,
pp. 249–256, Quebec, Canada, January 2010.

[78] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into
rectifers: surpassing human-level performance on imagenet
classifcation,” in Proceedings of the IEEE international con-
ference on computer vision, pp. 1026–1034, Santiago, Chile,
December 2015.

[79] S. Wang, S. Sankaran, and P. Perdikaris, “Respecting causality
is all you need for training physics-informed neural net-
works,” 2022, https://arxiv.org/abs/2203.07404.

[80] N. Doumèche, G. Biau, and C. Boyer, “Convergence and error
analysis of pinns,” 2023, https://arxiv.org/abs/2305.01240.

22 Applied Computational Intelligence and Soft Computing

https://arxiv.org/abs/2203.07404
https://arxiv.org/abs/2305.01240

