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Brain tumor detection and segmentation are the main issues in biomedical engineering research felds, and it is always challenging due to
its heterogeneous shape and location in MRI. Te quality of the MR images also plays an important role in providing a clear sight of the
shape and boundary of the tumor. Te clear shape and boundary of the tumor will increase the probability of safe medical surgery.
Analysis of this diferent scope of image types requires refned computerized quantifcation and visualization tools. Tis paper employed
deep learning to detect and segment brain tumor MRI images by combining the convolutional neural network (CNN) and fully
convolutional network (FCN) methodology in serial. Te fundamental fnding is to detect and localize the tumor area with YOLO-CNN
and segment it with the FCN-UNet architecture.Tis analysis provided automatic detection and segmentation aswell as the location of the
tumor. Te segmentation using the UNet is run under four scenarios, and the best one is chosen by the minimum loss and maximum
accuracy value. In this research, we used 277 images for training, 69 images for validation, and 14 images for testing. Te validation is
carried out by comparing the segmentation results with the medical ground truth to provide the correct classifcation ratio (CCR). Tis
study succeeded in the detection of brain tumors and provided a clear area of the brain tumor with a high CCR of about 97%.

1. Introduction

A brain tumor is the 15th deadly disease with a high
mortality rate in Indonesia in 2018. According to the Global
Cancer Observatory [1], there were 4,229mortalities in 5,323
cases of brain and nervous system tumors.Te high accuracy
of medical treatment is needed since the brain tumor and
healthy part are not clearly separated; therefore, the clear
shape, boundary, and location of the brain tumor are useful
information to increase the safety probability, especially in
medical surgery. Te challenge in providing that in-
formation is mostly caused by the heterogeneous appearance
of the tumor and the quality of MRI images. Manual de-
tection and segmentation are time-consuming due to a large
number of MRI images and their error-prone to human

subjectivity. Terefore, a more objective and efective ap-
proach is needed to deal with this issue.

Te detection of brain tumor images through classif-
cation and segmentation has been widely proposed by the
supervised and unsupervised learning approaches. Un-
supervised learning is powerful due to the data number
limitation. However, unsupervised learning does not take
any feedback to check if the prediction provides the correct
output. It is more about fnding the hidden patterns in the
data. In the current state, supervised learning is favorable
since the training section considered provides better results.
Automatic detection with deep learning is a hot issue and
has shown ground-breaking performance in a variety of
sophisticated image tasks. Various methodologies and ar-
chitectures of deep learning are developed in the image
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processing area, such as CNN and FCN. CNN is powerful
and widely used in classifcation, while FCN is greatly used
in semantic segmentation.

CNN applications in medical image processing have
been extensively investigated across diverse contexts and
architectural frameworks. One study focused on brain tumor
classifcation implemented a deep CNN with transfer
learning [2]. Another research endeavor employed a novel
architecture termed multikernel depthwise convolution for
chest X-ray image analysis [3]. Te classifcation of brain
diseases was addressed using a landmark-based deep
learning approach with the VGG-f architecture as a pre-
trained model [4]. Deep ensemble learning on MRI brain
images was explored through the DeepESRNet architecture
[5]. Additionally, various CNN architectures, including
AlexNet, VGG-19, and ResNet, were utilized to categorize
osteoarthritis in the hip joint based on X-ray images [6].
Object detection in both real-time and artwork images was
achieved using the YOLO model [7], which was then
compared with other object detectors such as R-CNN, faster
R-CNN, and the deformable parts model (DPM). All pre-
vious architecture has great results in classifcation; however,
the time processing issue is also important besides its high
accuracy. Tis study uses the CNN-YOLO (You Look Only
Once) model since it could be dealing with this issue. In
classifying, the YOLO could localize objects in the input
image and process the entire image at once, unlike the
sliding window approach that is followed by the convolu-
tional neural network (CNN) architecture [8]. Tis is why
the YOLO model proved to be much faster.

Tis study has the purpose of providing the automatic
detection of a brain tumor and then segmenting it to pro-
duce a clear shape and boundary of the tumor. Te UNet
architecture of FCN is used for semantic segmentation
[9–13] since it has great performance on very diferent
biomedical segmentation applications and power powerful
for limited training number images. However, its complex
architecture makes UNet less desirable. Terefore, this study
generates four scenarios from the UNet to overcome its
complexity and choose the best scenarios with the loss and
accuracy criteria. Another study that employed automatic
detection [14] used the R-CNN in brain tumor detection and
segmentation. Te mask R-CNN was introduced to detect
multiple sclerosis lesions [15, 16]. Te comparisons of
several studies are summarized in Table 1.

Te automatic detection and clear segmentation results
are the main purposes of this research. An MRI brain image
of a patient is a group of images (of about 25 to 30 image
slices) assembled from scans of the head beginning at the
pharynx and ending at the tip of the skull. In conventional
segmentation, doctors and paramedics must manually select
which slice contains the tumor, which is time-consuming.
Te serial combination of YOLO and UNet, namely YOLO-
UNet, is the way for resolving manual detection in seg-
menting the serial MRI image. Moreover, this combination
has main advantages which could eliminate the pre-
processing step, because the YOLO could localize the tumor
area in the MRI image that impacts the UNet segmentation
process more focused on the tumor area and avoids noise

that interferes with segmentation. Tis kind of analysis
provided automatic detection and segmentation as well as
the location of the tumor. In addition, the results of the
segmentation of the proposed model are compared with the
previous method, i.e., the UNet and mask R-CNN, which
have the same implementation to classify individual objects
and localize them using bounding boxes and semantic
segmentation, respectively. Te correct classifcation ratio
(CCR) will be calculated to compare the segmentation re-
sults with the medical ground truth as the measure of
evaluation.Te training and validation datasets are provided
online while the testing dataset is from General Hospital Dr.
Soetomo Surabaya, and it is restricted due to the medical
ethical clearance privacy policy.

Managing the various levels and types of noise present in
real-worldMRI images is another signifcant challenge in the
feld of medical imaging. MRI images are essential for di-
agnosing and monitoring various medical conditions but
can be afected by various noise sources that can degrade
image quality and impact diagnostic accuracy. A limitation
of this study is the scarcity of datasets that encompass
various types of noise present in real-world MRI images.
Nevertheless, the research strives to tackle these challenges
by generating synthesized noise, in order to thoroughly
evaluate the given approach.

2. Proposed YOLO-UNet for Automatic
Detection Segmentation

Te YOLO-UNet model for automatic detection segmentation
is the serial combination of YOLO and UNet architecture.
YOLO (You Only Look Once) is an approach in deep learning
that performs object detection. It is targeted at real-time pro-
cessing and framing objects as a single regression problem from
direct image pixels to separate spatial bounding boxes and
associated probability classes. YOLO performs object detection
and recognition like the human brain. When humans look at
something, the brain instantly recognizes and makes a con-
clusion about what is being seen. In detecting an object, the
classifers that are utilized by the current detection framework
take the classifer to a particular object and evaluate it on various
scales and locations in the testing image [17]. Tis study used
YOLO architecture since it is very fast and accurate. YOLOv3
[18] andYOLOv4 [19] are the common variants of YOLObased
on the Darknet architecture that are easy to combine with UNet
and more compatible with our computer specifcations. To
assess the efectiveness of both architectures in detecting tu-
mors, we will compare YOLOv3 and YOLOv4.TeYOLO itself
will be combined with the several scenarios of the UNet ar-
chitecture.Te combinations were then compared to each other
to investigate the best model.

YOLOv3 has a total of 53 convolutional layers; therefore,
this architecture is also known as Darknet-53 [18]. In
YOLOv3, a convolutional layer is always followed by batch
normalization and leaky ReLU. Residual block or shortcut
connection on YOLOv3 is carried out by adding up the
inputs before the convolutional layer residual block with the
results from the 1× 1 convolutional layer flter followed by
batch normalization and leaky ReLU, followed by a 3× 3
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convolutional layer flter with batch normalization, and at
the end, a leaky ReLU is performed. YOLOv4 is the im-
proved version of YOLOv3 which has great performance in
speed and accuracy. Te features added in YOLOv4 are two
methods called Bag of Freebies (BOF) and Bag of Special
(BOS). Both of them are applied to the detector module’s
backbone.Te detection heads of YOLOv4 and YOLOv3 are
similar, but it has three feature maps at diferent levels of the
convolutional procedure. Tis makes YOLOv4 have a total
of 161 network layers that can improve the accuracy com-
pared to YOLOv3.

Te YOLO is used to perform the classifcation and
localization of the tumor coordinates. Te illustration of the
classifcation procedure for localizing the brain tumor image
is shown briefy in Figure 1.

3. Materials and Methods

3.1. Dataset. Te dataset used in this study contains 346
images of axial MRI slices. Te 277 images for the training
and validation sections are provided online by Bhuvaji
et al. [20] from Kaggle (https://www.kaggle.com/
sartajbhuvaji/brain-tumor-classifcation-mri), while the
rest of images for the testing section are from Dr. Soetomo.
Te dataset from Bhuvaji et al. provides various types of
tumors, including glioma tumors, meningiomas, and pi-
tuitary tumors. Te tumor images provided by this dataset
exhibit a wide range of variations in terms of size and
tumor location. Tis study does not classify the tumor
images; rather, it focuses on tumor detection and seg-
mentation. Consequently, the challenge at hand is to
design a proposed model capable of detecting tumor re-
gions regardless of their size or location.

Te dataset contains MRI grayscale images with various
sequence names T1, memp+C, and T2 FLAIR. Te T1
memp+C sequence is the slices that have been added with
a contrast media.Tis made the tumor segment more visible.
Te T2 FLAIR, on the other hand, is a sequence without
contrast media, in which the more visible feature is the
swelling or edema. Te training dataset is only chosen from
the axial point of view. Tis is carried out to match the
testing data from Dr. Soetomo with only available in axial.
Te summary of the dataset is given in Table 2.

Te diference between data training, validation, and
testing must be equated to facilitate the analysis. Terefore,
the testing data is converted to ∗.jpg type, and the dimension
is lumped to 256× 256. Preprocessing is carried out initially
to normalize the variables before the automated detection
and segmentation. In the training process, the dataset did
not take the augmentation process since we wanted to train
the architecture with the real dataset. Tis simple pre-
processing is taken for a reason to prove that the localized
image by YOLO could substitute the preprocessing step that
is commonly used. However, to add more challenge in the
testing process, we did some augmentation by generating
synthetic noise, i.e., Gaussian and speckle noise.

Te dataset ground truth is created by medical judgment
from the radiologist. Te training and validation sections
were carried out in serial by YOLO and UNet. Te output

localizes the image that contains the brain tumor and then
considers as the training data for the UNet. YOLOv3 and
YOLOv4 are the models used in this study; moreover, the
UNet is run under four scenarios. Te best-pretrained
models are chosen from several combinations of YOLO
and UNet models based on loss and accuracy metrics. Te
testing data will use the best pretrained model of YOLOv3-
UNet and YOLOv4-UNet. All of the models were created
using the Tensorfow, Keras, and NumPy libraries and the
Python programming language, which is run on a computer
with an Intel Core i7 CPU, 32GB of RAM, a 128GB SSD,
and no GPU or VRAM. As an experimental result, the
proposed model also compares with another method, i.e.,
UNet and mask R-CNN. Te use-case diagram for the
analysis is given in Figure 2.

3.2. Hyperparameter Setting. Based on Figure 1, the image
input has a dimension of 256× 256.Te pixels that have been
rescaled are in accordance with the hyperparameter, to
obtain the classifcation and localization of brain tumors on
a scale of 13×13, 26× 26, and 52× 52. Te YOLOv3 and
YOLOv4 hyperparameter settings for this study are shown in
Table 3.

Localize brain tumor area as the output of YOLO be-
comes the input of UNet architecture. UNet is one of the
FCN architectures for image segmentation [9]. Its goal is to
predict each pixel’s class. Te UNet network architecture
consists of a down-sampling (encoding) path and an up-
sampling (decoding) path. Te down-sampling path has 6
convolutional blocks. Each convolutional block has 2 layers,
and every layer has flters. Te number of feature maps is
increasing from the original size. In every up-sampling
block, two convolutional layers reduce the number of fea-
ture maps. In down-sampling and up-sampling, the path
used “same” padding for all convolution layers. Tis com-
plex structure of UNet has a disadvantage for execution,
especially in running time. Moreover, the complex archi-
tecture is not always compatible with all computer
specifcations.

Tis study will use four UNet architectural scenarios and
compare them with loss and accuracy measurements. Te
number of convolution layers and convolution blocks used is
very infuential in fnding the best model. Te number of
parameters and feature maps that are formed are also af-
fected by the convolution layer and block. Table 4 shows
a breakdown of the number of convolution layers and
convolution blocks in each scenario, and the model archi-
tecture diferences can be seen in Figure 3.

Figure 3(a) shows architectural visualization for model 1,
and Figures 3(b)–3(d), respectively, show architectural vi-
sualizations for models 2, 3, and 4. Model 1 and model 2 have
one convolution layer for each convolution block.Tis causes
a reduction in the number of parameters more than half of the
model than that had by the two convolution layers for each
convolution block, namely, model 3 and model 4. In model 1
and model 3, fve convolution blocks are used at the encoder
stage. Each output of the convolution block stage will produce
a matrix with a size half of the original size, a 1/32 matrix is
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[256, 256,3]

[32, 32, 3] 33

Feature map [13, 13, 33]

CNN

[C1, C2, C3, C4, C5, C6]

xB

Pc[tx, ty, tw, th]

box 3

box 2

box 1

Figure 1: Classifcation and localization of the tumor coordinates.

Table 2: Summary of the dataset.

Source Number of data Type Dimension (pixel) Used for
Online 277 ∗.jpg 256× 256 Training
Online 69 ∗.jpg 256× 256 Validation
Dr. Soetomo Hospital 14 ∗.dicom 256× 256 and 512× 512 Testing

Validation
Data

Training
Data

YOLOv3

YOLOv4

UNet
model 1

UNet
model 2

UNet
model 3

UNet
model 4

Best
Pre-trained

YOLOv4-UNet

Best
Pre-trained
Yolov3-Net

Testing
Data

Figure 2: Te use-case diagram.

Table 3: Hyperparameter setting.

Model Hyperparameter YOLOv3 YOLOv4

Darknet-53

Image size 256× 256 256× 256
Batch size 64 64
Subdivisions 16 16
Training step 6000 6000
Learning rate 0.001 0.001

Model Anchors

(10×13) (12×16)
(16× 30) (19× 36)
(33, 23) (40, 28)
(30, 61) (36, 75)
(62, 45) (76, 55)
(59, 119) (72, 146)
(116, 90) (142, 110)
(156, 198) (192, 243)
(373, 326) (459, 401)
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obtained at the end of the encoder stage (8× 8 dimensions of
a matrix). Model 2 and model 4 have four convolution blocks
at the encoder stage which cause the fnal matrix to be 1/16 of
the original size. Te fnal matrix for model 2 and model 4,
therefore, will be at 16×16 dimensions.

3.3. Model Evaluation. Te best model is chosen based on
several metrics’ evaluations. Te frst is the YOLO section,
which uses the mean average precision (mAP) as the
evaluation of the precision of detection results. Te mAP

value is the average value of average precision. Each pre-
cision value is calculated from each item generated by the
system after being sorted. It is simply calculated with the
following formula [21]:

mAP �
1
c



c

i�1
APi. (1)

Te AP is calculated with the all-point interpolation
method as follows:

Table 4: Convolution scenario.

Scenario
Number of data

Convolutional layer Convolutional block Parameter
Model 1 1 conv @ block 10 block 3,930,273
Model 2 1 conv @ block 8 block 980,385
Model 3 2 conv @ block 10 block 7,862,401
Model 4 2 conv @ block 8 block 1,962,625
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Figure 3: Te architectural visualization of each scenario: (a) model 1, (b) model 2, (c) model 3, and (d) model 4.
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AP � 
n�0

rn+1 − rn( pinterp rn+1( ,

pinterp rn+1(  � max
r:r≥rn+1

p(r),

(2)

where C is the number of classes, p is precision, pinterp is
precision interpolation, r is recall, and p(r) is the precision
calculated by the recall. AP value can be obtained by pro-
viding the intersection over union (IoU) value. Te IoU
measures the overlap between 2 boundaries. Te IoU will be
used to determine whether the predicted bounding box is
true positive (TP), false positive (FP), or false negative (FN).

Te second section is the YOLO-UNet comparison. Tis
stage uses the loss and accuracy from UNet performance
criteria. Te loss represents the value of error between
predicted and actual. Te case with two classes in machine
learning uses the binary cross-entropy loss function to
calculate the value of loss or error [22]. Te binary cross-
entropy is provided by the following equation:

Hp(q) � −
1
N



N

i�1
zi log p zi( (  + 1 − zi( log 1 − p zi( ( , (3)

where N is the number of data, zi is the class of classifcation
which has the value of 0 or 1, and p(zi) is the probability of
zi. Te formula for calculating the accuracy is shown by the
following equation:

accuracy �
TP + TN

TP + FP + TN + FN
. (4)

Te last section is the experimental results by comparing
the segmentation results from testing data with another
state-of-the-art architecture. Tis study uses the correct
classifcation ratio (CCR) to determine whether the region of
interest (ROI) from the segmentation results is in accor-
dance with the ground truth. Te greater the CCR value, the
better the segmentation result [23, 24]. Te CCR can be
calculated by the following equation:

CCR � 
2

i�1

GTj ∩ Segj





|GT|
, (5)

where GTj is ground truth, Segj is the segmented pixel, and
GT � ⋃2j�1GTj. Te index j � 1 and j � 1 denote the non-
ROI area and ROI area, respectively.

Te experimental setup in this study can be visualized in
Figure 4. In the activity diagram, it can be seen that detection
and segmentation are performed serially by applying 2
YOLO scenarios to detect tumors and segmenting themwith
4 UNet scenarios. Te combination of YOLO-UNet pro-
duces 8 models that are validated based on evaluation
metrics and CCR.

4. Results and Discussion

4.1. Training Section. Te training sections are carried out
separately for YOLOv3 and UNet. Te YOLOv3 runs under
the condition of a hyperparameter as shown in Table 3. For
the training dataset, both YOLOv3 and YOLOv4 provide an

mAP perfect score of about 100% as shown in Figure 5. As
a result, both architectures are taken into consideration
when combining the four UNet scenarios.

A 100% mAP (mean average precision) score signifes
the precision of the model’s prediction in terms of
bounding boxes and class probabilities in the ground truth
annotations across all images in the training dataset. Tis
comparison is based on the IoU (intersection over union)
between predicted boxes and ground truth boxes,
resulting in the values of TP (true positives—correctly
predicted bounding boxes), FP (false positives—predicted
bounding boxes that are incorrectly predicted), and FN
(false negatives—predicted bounding boxes that are in-
correctly missed). Terefore, achieving a 100% accuracy
indicates that the employed model has accurately and
efectively targeted the detection and classifcation of
tumors.

Te localized brain tumor images become the training
input for UNet. Training with the UNet model runs under
four scenarios as shown in Table 4 and Figure 4. All models
use the “same” padding in the encoder and decoder parts for
all convolution layers. Backpropagation operations are
performed for each update of each epoch for the calculation
of the accuracy and loss of training data and validation. It
improves the value of loss and accuracy in themodel for each
epoch. Figure 6 demonstrates graphs of the loss value and
accuracy of the validation data for each model under
YOLOv3 and YOLOv4.

From Figure 6, it is known that the loss value of each
model decreases close to 0, and the accuracy of each model
increases up to 0.99. Te minimum the loss value produced,
the better the classifcation results are obtained. Te loss and
accuracy of YOLOv3-UNet are better than YOLOv4-UNet.
It can be seen with a small loss and a higher accuracy. Table 5
shows the result of loss and accuracy in the training data and
validation at the last epoch.

Table 5 shows theminimum loss andmaximum accuracy
for YOLOv3-UNet in training and validation data. Te best
model in training data is model 2, while the best model in the
validation data is provided by model 3. YOLOv4-UNet has
diferent results. For training data, the best model is reached
by model 4. Te various results are provided by the vali-
dation data, which show the minimum loss in model 2 and
the maximum accuracy in models 1, 3, and 4. Based on these
results, the best models were determined by the minimum
loss for all models; therefore, model 3 in YOLOv3-UNet and
model 2 in YOLOv4-UNet were chosen. Both models will be
used for the next analysis.

4.2. Testing Section. Te testing section used 14 datasets
from Dr. Soetomo. To add more challenge to the experi-
mental results, the 14 original datasets were added by
Gaussian and speckle noise. All datasets are modeling with
YOLOv3-UNet and YOLOv4-UNet compared with UNet
(four model scenarios in Table 4, without YOLO) and mask
R-CNN. Figure 7 shows some results of segmentation with
all models.
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Te numerical comparison of each model is shown in
Table 6. It is the calculation of the average CCR for each
model and each dataset. From Table 6, it is clear that
YOLOv3-UNet is great in segmenting the original image and
the Gaussian noising dataset. However, for the dataset with
speckle noise, UNet model 3 has the best accuracy among the
other models. Yolov4-UNet gave unsatisfaction results, and
this model could not even detect the tumor area in a dataset
with Gaussian noise. Te mask R-CNN could provide great
segmentation results with a consistent CCR of about 96% per
dataset.

5. Discussion

Tis study’s main contribution is combining the
CNN-FCN methodology, namely, YOLO-UNet archi-
tecture, to provide automatic detection and segmentation.
Several studies have been conducted through detection
followed by classifcation which is carried out separately
from segmentation. Tis study combines two kinds of
analysis and could provide signifcant results. Yolov3 and
YOLOv4 are chosen since it has great performance and
work very fast than the others. Te UNet architecture

Training with YOLOv3 Training with YOLOv4

Comparing models
(loss &Acc)

Best YOLOv3-UNet
pre-trained model

Best YOLOv4-UNet
pre-trained model

Testing with
YOLOv3-UNet

Testing with
YOLOv4-UNet

Comparing models
(CCR)

Best YOLO-Unet
model

Input Data

Training with
UNet model 1

Training with
UNet model 2

Training with
UNet model 3

Training with
UNet model 4

Tumor

Non-Tumor Tumor detection & localization Non-Tumor

Tumor

Figure 4: Te activity diagram.
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Figure 5: Continued.
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complexity is overcome by creating four scenarios, and
the best model is chosen by the maximum value of ac-
curacy and minimum value of loss.

Several challenges in terms of the dataset arise when
performing tumor detection. Te varying sizes and locations
of diferent tumor types necessitate the developed model to
recognize and detect these tumors accurately. Several models
were experimented with, including YOLOv3 and YOLOv4,
for this purpose. Due to computational limitations, these
two models were ultimately chosen for implementation. In
the context of detection, this approach is considered capable
of addressing various types of brain tumors, their sizes, and
locations. Tumor detection is a crucial initial step in the
research, as inaccuracies in the detection phase can lead to
unreliable segmentation outcomes. Te serial combination
of YOLOv3, YOLOv4, and UNet in analyzing the testing
data could provide great results in detection and segmen-
tation. For the training section, model 3 is chosen as the best
model for YOLOv3-UNet, while model 2 is the best model
for YOLOv4-UNet based on the minimum loss and maxi-
mum accuracy criteria. Tese models were then performed
to segment the testing dataset.

In the testing section, despite using the original data
fromDr. Soetomo, this study adds more challenges by giving
data augmentation. Te original images added by Gaussian
noise and speckle noise are generated as the addition of
testing data. Te results show that YOLOv3-UNet is the best
model in segmenting the original images and Gaussian noisy
images with an average CCR of about 97%. Yolov4-UNet, on
the other hand, provides results that are not satisfactory.Tis
model’s average CCR is 95% for original images and 93% for
speckle noisy images. Te ROI of the image with Gaussian
noise did not recognized by YOLOv4-UNet; therefore, the
CCR is missing. Even though YOLOv4 could localize the
brain tumor area, the bounding box does not provide an
opportunity for the UNet to see a contrasting color other
than the tumor area. Tis is possible since, in the bounding
box, the UNet only sees almost the same color due to the
addition of the noise.

A comparison with related research, Pravitasari [10],
which uses the same source testing data, is carried out to
provide a better comparison. With VGG16-UNet segmen-
tation, the average CCR value is 95.69%. Te proposed
model provides a higher value of CCR, about 97%.

mAP = 100.00%

Tumor 1.0

0.80.0 0.2 1.00.60.4
Average Precision

Tumor

1e–12
–0.75 0.750.250.00 0.50–1.00 –0.50 1.00–0.25
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log-average miss rate
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detection-results
(277 files and 1 detected classes)

log-average miss rate

Tumor 0 279
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(b)

Figure 5: Te precision of training dataset: (a) YOLOv3 and (b) YOLOv4.
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Moreover, as in Table 1, the UNet-VGG16 did not include
automatic detection and only provided semantic segmen-
tation. Our proposed model has more advantages in auto-
matic detection and segmentation, which eliminate the
manual time-consuming process. Another comparison was
conducted between our proposed model and mask R-CNN
[15, 16], which have the same implementation to classify
individual objects and localize them using bounding boxes
and semantic segmentation.Te results of comparisons with
mask R-CNN are also examined in this study in order to
determine if the proposed model ofers a higher metric of
evaluation for both noisy images and original images. Table 6

shows that mask R-CNN produces a CCR value less than
YOLOv3-UNet. Terefore, the proposed model is consid-
ered better than the mask R-CNN.

A high CCR value holds positive implications for the
detection and segmentation processes. While CCR is
employed to measure the accuracy of segmentation out-
comes, in this study, segmentation is performed based on the
localization results of tumor images, which are cropped from
the YOLO bounding box outputs. As a result, the seg-
mentation results are closely tied to the detection outcomes
from the preceding phase, owing to the fact that the pro-
posed model follows a serial confguration of detection and
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Figure 6: Loss with (a) YOLOv3 and (b) YOLOv4 and accuracy with (c) YOLOv3 and (d) YOLOv4 for each epoch.

Table 5: Te comparison of loss and accuracy for each scenario.

YOLOv3-UNet YOLOv4-UNet
Training Validation Training Validation

Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy
Model 1 0.0103 (2) 0.9885 (4) 0.0126 (2) 0.9894 (3) 0.0553 (2) 0.9743 (3) 0.1211 (2) 0.9776 (1)
Model 2 0.0096 (1) 0.9 99 (1) 0.0135 (3) 0.9895 (2) 0.0587 (4) 0.9740 (4) 0.1059 (1) 0.9770 (2)
Model 3 0.0111 (3) 0.9893 (2) 0.0124 (1) 0.9 96 (1) 0.0576 (3) 0.9762 (2) 0.1706 (3) 0.9776 (1)
Model 4 0.0120 (4) 0.9887 (3) 0.0140 (4) 0.9891 (4) 0.0541 (1) 0.9777 (1) 0.1754 (4) 0.9776 (1)
(1/2/3/4) indicates the rank of lost and accuracy; (1) is the frst rank and so on. Bold value indicates the optimum number of loss and accuracy.
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Figure 7: Some of segmentation results for YOLOv3-UNet, YOLOv4-UNet, UNet in four scenarios, and mask R-CNN.

Table 6: Te comparison of average CCR for each methodology.

Methodology Original image Gaussian noise Speckle noise
YOLOv3-UNet ∗0.978519 ∗0.973193 0.973546
YOLOv4-UNet 0.958206 — 0.936050
UNet model 1 0.970946 0.959026 0.969738
UNet model 2 0.969377 0.959026 0.969678
UNet model 3 0.975070 0.965331 ∗0.976370
UNet model 4 0.973683 0.959354 0.974498
Mask R-CNN 0.964181 0.964679 0.964409
∗the maximum value of CCR between all methods.
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segmentation. A high CCR value indicates that the proposed
model excels in accurately recognizing tumors, a crucial
aspect in the medical feld for efectively distinguishing
tumor regions from healthy brain tissue.

6. Conclusions

Te study introduces an approach by combining the
CNN-FCN methodology, specifcally the YOLO-UNet ar-
chitecture. Tis combination enables automatic detection
and segmentation, which is distinct from previous methods
that treated detection and segmentation separately. YOLOv3
and YOLOv4 are chosen for their strong performance and
speed in tumor detection. To overcome UNet architecture
complexity, the study also explores four scenarios and selects
the best model based on high accuracy and low loss values.
Tumor detection is challenging due to varying tumor sizes
and locations. Te YOLOv3 and YOLOv4 are capable of
addressing diferent tumor types, sizes, and locations, crucial
for accurate detection.

YOLOv3-UNet is identifed as the superior model for
segmenting original and Gaussian noisy images, achieving
an average correct classifcation rate (CCR) of about 97%.
YOLOv4-UNet performs less satisfactorily, with an average
CCR of 95% for original images and 93% for speckle noisy
images. Te limitation of YOLOv4-UNet in recognizing
regions with contrasting colors is noted. A comparison is
made with VGG16-UNet and mask R-CNN, which share
similar implementation goals. Te proposed model’s ad-
vantages lie in automatic detection and segmentation and
eliminating manual eforts of preprocessing. Moreover, the
proposed model also shows better results in terms of CCR,
further establishing its efcacy.

Te study’s limitation lies in the localization during the
tumor detection process. Te bounding box image may not
always be the best-suited material for segmentation, espe-
cially when the data contain signifcant noise. Additionally,
the research relies on a limited YOLO version, primarily due
to the constrained computational specifcations of the local
hardware. Tere is potential for improvement and further
research in automatic classifcation and segmentation,
possibly through the adoption of updated methods that yield
better performance.
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