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Te more “manufacturable” a product is, the “easier” it is to manufacture. For two diferent product designs targeting the same
role, one may be more manufacturable than the other. Evaluating manufacturability requires experts in the processes of
manufacturing, “manufacturing process engineers” (MPEs). Human experts are expensive to train and employ, while a well-
designed expert system (ES) could be quicker, more reliable, and provide higher performance and superior accuracy. In this work,
a group of MPEs (“Team A”) externalized a portion of their expertise into a rule-based expert system in cooperation with a group
of ES knowledge engineers and developers. We produced a large ES with 113 total rules and 94 variables. Te ES comprises a crisp
ES which constructs a Fuzzy ES, thus producing a two-stage ES. Team A then used the ES and a derivation of it (the “MAKE A”) to
conduct assessments of the manufacturability of several “notional” designs, providing a sanity check of the rule-base. A pro-
visional assessment used a frst draft of the rule-base, and MAKE A, and was of notional wing designs. Te primary assessment,
using an updated rule-base andMAKE A, was of notional rotor blade designs. We describe the process by which this ES was made
and the assessments that were conducted and conclude with insights gained from constructing the ES. Tese insights can be
summarized as follows: build a bridge between expert and user, move from general features to specifc features, do not make the
user do a lot of work, and only ask the user for objective observations. We add the product of our work to the growing library of
tools and methodologies at the disposal of the U.S. Army Engineer Research and Development Center (ERDC). Te primary
fndings of the present work are (1) an ES that satisfed the experts, according to their expressed performance expectations, and (2)
the insights gained on how such a system might best be constructed.

1. Introduction

We frst present the user with an understanding of “man-
ufacturability,” a core concept to this work. We then in-
troduce expert systems at a conceptual level, with
implementation details made available later in Section 3. We
then highlight this work’s contributions and give a brief
breakdown of the remainder of the paper.

1.1. An Introduction to Manufacturability.
Manufacturability analysis is used to make an economic
decision at the core of engineering: “Is this engineered
solution (a design) to our problem worth building over
other, competing, solutions?” Te manufacturability of
a design is defned as the ease with which a target manu-
facturer can use the resources at their disposal to manu-
facture a corresponding end product. Tis ease can be

Hindawi
Applied Computational Intelligence and Soft Computing
Volume 2024, Article ID 4985090, 17 pages
https://doi.org/10.1155/2024/4985090

https://orcid.org/0009-0007-5367-4788
https://orcid.org/0000-0003-2779-0076
mailto:ams1988@msstate.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


defned, and diagnosed, broadly or narrowly: narrowly,
where considerations of production are spatially, temporally,
and causally localized towards the core manufacturing fa-
cility, and broadly, when one endeavors to capture cause and
efect further out down the supply chains involved.

For any given “problem-role” (ex: we need an aircraft
that can carry this many passengers this many kilometers in
this speed range, etc.), several designs may be proposed. As
designs advance from concept to product, their numbers fall
to cycles of selection. Only one or a few designs are ever
manufactured. Tis actual manufacture might conclude the
process, until a new generation of solutions is required. It
might also be a further winnowing step, comparing the
products in action. Te highest volume of evaluations, si-
multaneously conducted with the least data and the most
speculation, is at the concept (“notional”) stage (DOD
product life-cycle Milestone A [1]). Assuming any proposed
notional designs would succeed as a solution to the target
problem-role, there remains the matter of comparatively
ranking those hypothetical solutions in terms of cost-to-
manufacture, with the aim of selecting the least expensive, or
most efcient, use of resources. Examples of these com-
parative analyses can be seen in Section 3.3.3.

Cost, here, is rendered as a “manufacturability score”
(MS), rather than monetarily. Attempts to compute an MS
require a direct interrogation of factors often obscured by
money. By the fuzzy noise of the market, a product at a store
has a specifc price. Tis price is opaque as to the abundance,
or dearth, of all that which occupies the supply chains which
telescope behind the fnished product. Tis includes such
factors as labor, skill, material, machinery, transportation,
danger, political complications, and more. Te categories
into which these cost concerns are sorted can be seen in
Table 1.

1.2. Building a Rule-Based Expert System. Tis project
constructed a rule-based expert system to allow MPEs to
better solve this economic design problem. Rule-based ex-
pert systems can broadly be understood as sets of If-then
rules which infer new knowledge from that already pos-
sessed [2]. A rule might be “if it is raining, then the ground is
wet.” Supplying a system that possesses this rule with the fact
“it is raining” means it will then, on its own, infer that the
ground is wet. Tis example, though perhaps unimpressive,
demonstrates a mechanism by which sophisticated functions
can be computed by the opportunistic fring of many rules
sharing a database. Te rules are like many workers gath-
ering to shape a block of marble into a sculpture no one of
them could produce. To give a domain example: if the
primary material for a design is unavailable in the nation
that wishes to manufacture the design, then the manu-
facturability is lowered in that context. Tus, the rule is “if
the primary material is not a national product, then man-
ufacturability is lowered.” Details on the implementation of
the ES can be found in Section 3.2.

A manufacturability score is a nonobjective measure.
Firstly, the process by which it is derived is nonobjective.
When produced by human evaluators, even experts, there is

immense subjectivity. Te ES we developed, though stable in
that any iteration of its rule-base is deterministic, is an
externalization of ultimately subjective human reasoning.
Secondly, the authors are aware of no sense in which there is
a “ground truth” to the “manufacturability” of a design. It is
best used as a means to rank competing, closely comparable
designs (as an “ordinal value”).

1.3. Te Motivations and Contributions of Tis Work. Te
motivation for this work is primarily a problem of scale. As
mentioned, MPEs are subject matter experts (SMEs) who
specialize in designing and assessing the processes which
manufacture things and the manufacturability of proposed
products. We will use MPE when we wish to emphasize the
role of the experts in this particular project, which concerns
specifcally manufacturability. We will use SME when we are
speaking more generically of the parties involved in con-
structing an ES. We will also occasionally use “expert” when
we wish to talk about a knowledgeable person outside of
their relationship to expert system construction.We will also
sometimes use ES to refer to the system as a whole and
sometimes to the rule-base it operates on and which is its
core distinguishing feature. Given a design, MPEs assess its
manufacturability relative to its alternatives. At the notional
stage, products have very little in the way of quantitative
detail, and the number of notional designs is quite high.
Tere is thus a mismatch, there are not enough experts to
evaluate all the designs, and each evaluation requires con-
siderable expert knowledge due to the sparse design details.

An assessment assistant ES, which could be operated by
non-MPE users, while allowing them to perform at an expert
level, is an appealing but ambitious goal. Indeed, ESs have
been used as assistants in such diverse domains as mineral
discovery [3] and medicine [4], though more recent decision
support systems often rely on artifcial neural networks [5].
Our project moves towards this goal by creating a frst draft
of such a design-agnostic rule-base. While no longer as
common a solution in the age of big data, this path was
selected because the MPEs had no dataset sufcient for
machine learning (ML) to be employed.Te resulting system
is a hybrid, containing two distinct ESs, assembled into
a pipeline that manages the transformation from user inputs
to the output of the manufacturability score.

Tis work’s contributions include the following:

(i) Te design and development of a general-purpose
rule-base to perform manufacturability assessments
across an arbitrary domain of notional products
(Sections 3 and 4)

(ii) Te formalization of a simple, systematic, and re-
placeable interview procedure to be employed by
knowledge engineers with subject matter experts
(Section 3.1)

(iii) Te articulation of heuristics for the construction of
a rule-base for the class of problems that manu-
facturability evaluations belong to, allowing hard
won experience to beneft other knowledge engi-
neers (Section 4.2)
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Tis concludes the introduction; the reader should now
be equipped to understand the rest of the paper, which is
formed as follows. Section 2 presents the prior art. Section 3
presents our methodology and salient implementation de-
tails (including our interview process and a breakdown of
the ES and its components). Section 4 presents our results
and discusses them to ofer context. Finally, Section 5
summarizes the paper and ofers suggestions for future
work. An overview of the work can be seen in Figure 1.

2. Prior Art

ESs have been used to solve a wide range of manufacturing
problems. Tese range from relatively small problems, such
as selecting 3D-printing materials [6], up to comprehensive
planning of every step in a product’s creation [7]. Indeed,
attempts at computer-aided-process-planning are nothing
new [8, 9], and their recurrence in the literature indicates the
challenge of automating so abstract a set of tasks. However,
a recent survey indicates a relatively low number of pub-
lications concerning their use in the design and imple-
mentation of manufacturing processes, with the majority
focusing on the design of the tools used in working materials
instead [10]. Te utility of these systems extends beyond the
mechanical and into the conceptual. Because manufacturing
pipelines are built as much out of communicated expertise as
they are from machines and materials, ESs have been
brought to bear on managing interoperability between
domains of expertise to improve the functionality of
manufacturing processes [11]. While manufacturability has
always been an integral concern when creating a product, it
has rarely been the direct subject of assessment and is instead
treated as a constraint on an ongoing manufacturing process
[9].Te current work provides a modern contribution to this
domain and instead concerns the direct assessment of the
manufacturability of a design.

Te MAKE (“Manufacturability Assessment Knowledge-
based Evaluation”) C assessment tool, developed by McCall
et al., is best understood as rigorously developed rubric.
Here, a rubric is defned as a formalized means of assessing
something. A rubric does at least three things. First it de-
fnes/names the factors to evaluate. Secondly, it provides
a means of operationalizing and scoring the factors. Lastly it

defnes a procedure for aggregating those scores. TeMAKE
C exists to standardize how to conduct assessments of
manufacturability. It exists as software and is intended for
conducting assessments of designs at DOD milestone C
(prototyping) [12].

Prior to the present project, work was done that defned
a taxonomy of concerns, which are the antecedents to the
cost-subdomains, the “criteria” which this work uses [13]
(see Section 3 for more details). Software tools which in-
corporated expert knowledge were also explored [14]. In all
of these, the refrain has been that the earlier the manu-
facturability assessment can be made, the better. Tis is
because a low manufacturability design, identifed early on,
can be avoided before more R&D resources are committed
to it.

Te MAKE A was developed during the present project,
in tandem with the ES. Both are designed to conduct as-
sessments at milestone A (notional). Te MAKE A exists as
an Excel spreadsheet using the same prompts as the ES, and
an approximation of its control and inference rules (see
Section 3.2.2 for more details). Te ES and its associated
software were the primary products of this project. Te
salient components are its variable defnitions, control and
inference rules, variable weighting schemes, and the be-
havior of these when used to perform manufacturability
assessments (see Section 3 for more details).

3. Methodology and Implementation

In their prior work [15], the MPEs broke down “cost” into
six subdomains, described for the reader in Table 1. A
manufacturability score summarizes and quantifes cost
through these subdomains. Each of the six “criteria” cor-
responds to two things: frst to a “cost-theme.” As seen in
Table 1, the “Sustainability” criterion concerns “costs as-
sociated with environmental impact, personnel safety, and
long-term sustainability.” Tese costs (like environmental
pollution or workplace hazards) share the theme of sus-
tainability in that their unchecked presence endangers the
sustainability of any manufacturing project. Te second
thing to which each criterion corresponds is a set of ES
variables and a set of ES rules which make inferences using
those variables. Tese elements were implemented into our

Table 1: Cost criteria.

Criterion Description/“cost-theme”

Sustainability Costs associated with environmental impact, personnel safety, and long-term
sustainability

Material availability Costs associated with how easy or difcult it is to acquire the components and raw
materials the design calls for

Process difculty and experience Costs associated with the maturity and robustness of the salient manufacturing
processes

Industrial-base experience and capability gaps
Costs associated with how available the industrial pipelines, infrastructure, and
environments are that support the salient manufacturing processes and production

pipeline

Labor and workforce Costs associated with the challenge of acquiring personnel of the required quantity
and quality

Facilities and equipment Costs associated with locating and equipping manufacturing facilities
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system. Te variables and rules related to a criterion express
expert reasoning about that criterion of cost. Te themes,
and names, of all criteria are listed for the reader in Table 1.

Designs at the notional stage assessed well before any
kind of “blueprint” are available. Assessment of a design’s
manufacturability can be challenging with so little detail.Te
estimation the experts make when evaluating manufactur-
ability is speculative and highly qualitative as a result, even
though it is founded on their robust experience. Te rule-
base is a set of if-then inferences that are designed to embody
the reasoning of these experts. As such, it operates at these
same levels of hypothesis but benefts from being the syn-
thesis of several experts. It is also, unlike them, deterministic.

3.1. Te Interview Process. Following the guidelines set in
[16], and using their terminology, our method of variable
identifcation/defnition, and rule extraction, was the in-
terview. Semistructured interviews came frst (see Figure 2),
in the discovery stage, with structured interviews conducted
in the review and refnement stage. Te structure of these
later interviews was exactly that of the then extant rules and
variables. Tese were structured in that extant things with
established relationships were being reviewed. We con-
ducted two to four interviews per criterion, with each in-
terview conducted by the knowledge engineer (KE) and
a subset of the MPEs who would supply knowledge for that
criterion. Each interview lasted in the range of a half hour to
two and a half hours in person. Tis was followed by several
hours to several days of asynchronous work. Te interviews
can be divided into the rule-formation (discovery, both of
rules and the variables they act upon) interviews and the
rule-validation (review) interviews. Prior to the interviews,
the SMEs were briefed on rule-based expert systems. Tey
were also briefed on the variable types they could use to

explain and express their reasoning, seen in Table 2. Of the
four variable types listed in Table 2, the “Fuzzy” variables are
the most mechanistically important in our work. Tis is
because all ES values are eventually converted into fuzzy
variables. Confict resolution for fuzzy variables is easily
performed. Defuzzifcation is performed to produce each
criterion score.

Figure 2 describes the interview process used in the
discovery interviews. Te MPEs were asked to identify the
nameable factors they used to evaluate a design’s manu-
facturability within the criterion in question. Tese factors
became the variables (vars) of the ES, and the relationships
between vars became the rules. After supplying each var, and
the range of values it might assume, the SMEs were asked if
the target user(s) could be expected to know how to identify
and assign a value to it when using the system. If the SMEs
believed the user would be capable of providing a value for
the var, then that branch of the interview ended. If not, then
the SMEs were prompted to produce as many variables as
necessary which the target user would bemore able to supply
values for. In Figure 2, these variables are described as
“closer to the user” (see 1 for more on this terminology)
because the user would be more familiar with them. Tat
a variable is closer to the user does not mean that the user
would yet be able to use it. Variables even closer to the user
might need to be defned. Te values supplied to user-close
variables are used to infer the values of expert-close vari-
ables. Tese expert-close variables are important because
they are the terms in which experts conduct their reasoning,
which is what the ES needs to capture. Te SMEs were
prompted to provide these rules for inferring expert vari-
ables from user variables as well. Tis interview cycle re-
peated (notice that Figure 2 demonstrates recursion) until
each chain of logic terminated at the user-end, with input
variables the SMEs had declared the user would be able to

The RB/ES

The knowledge engineer
(KE) interviews the

manufacturing process
engineers (MPEs) to

produce the rule-base (RB)
for the expert system (ES).

The ES is used to produce
a large random sample

of the hypothetical
input-output space

of ES inputs and
manufacturability scores.

The random
sample

The
performance

of the ES

The RB is revised by
the MPEs and KE based

on how satisfactory
the performance

of the ES was.

The
evaluations
conducted

The MPEs use the ES to
conduct one or more

manufacturability
evaluations. The

performance of the
ES as a tool for such

evaluations is observed.

The trained
model

A basic multi-layer
perceptron is fitted to

the random sample
(this is an instance

of machine learning).

Figure 1: We began with an initial interview (dashed) to establish the rule-base, which was then iterated on.
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provide values for directly. Te ES infers the manufactur-
ability score from the values of these inputs.

A var is “user-facing” if the user is expected to provide
a value for it when using the ES. Tis is opposed to those
variables for which the values are inferred. Tese “user-
facing” vars are the closest to the user. As an example, the
criteria score for the sustainability criterion is a manu-
facturability score across all costs associated with sustain-
ability. Te user cannot be expected to provide this score,
and the ES is constructed to do this for them. But the user
might be expected to provide any number of inputs con-
cerning sustainability. For instance: “What percentage of the
equipment used at the core manufacturing facility is elec-
trically powered?” If the experts expected the user to be able
to answer that, then the user would need to be able to supply
a value. Te experts might reason that any equipment which
is electrically powered can eventually be powered by non-
polluting energy sources (nuclear power, for example) but
equipment that is powered by the combustion of fossil fuels
cannot be made nonpolluting. For user-facing vars,
a prompt is required which would solicit the value from the
user. Identifying which variables were user-facing, and what
their prompts should be, was also initiated in the interview
process described in Figure 2. Each prompt identifes the
variable, presents the user with options or ranges for its
value, and asks the user to input the value as they perceive it
in/for the design they are evaluating. A named entity in the

prompt, such as a manufacturing process, might be one of
many. In these cases, the prompt instructs the user to only
consider the most costly/risky one (weakest link) or to
consider all instances as a whole (in aggregate).

3.2. Components of the Hybrid System

3.2.1. Overview. In Figure 3, we can see a representation of
the ES components, which were established in the in-
terviews. Te system we constructed consists of more than
just the ES, as will be described later in this section. Te ES
actually comprises two separate ESs, the frst constructing
the second at run-time (see Section 3.2.4 for further ex-
planation). Table 3 contains a breakdown of the system’s
major fles and their functions. Our breakdown in this
fashion was intended to facilitate easy editing by persons
not necessarily familiar with the programming language or
libraries we used. Te defnition fles and the fles holding
the weight arrays are all read by programs but are formatted
in user-readable syntax. Tis easy-to-edit syntax encour-
ages iteration on the ES/pipeline. While superfcially
similar to diagrams of neural networks or control systems,
the reader should understand Figure 3 to be fgurative, not
literal.

After the ESs, there is a linear function computing
a weighted sum. In Figure 3, the user is given a set of weight
arrays (Ex: array A: a1, . . . , a6, array Z: z1, . . . , z6). Tese are

Higher level interview recursion

End

Start

Lower level interview recursion

NO

NO

NO

YES

YES

YES

Moving
closer to the

expert

Moving
closer to the 

user 

Define the focused-upon-
variable.

Identify the variable closer to the
user needed to derive the value

of the current variable.

Will the user be able
to supply the value
for this variable?

Moving
closer to the

expert

Moving
closer to the

user

Have all those
variables been

defined?

Was this variable
defined as an input to
another variable closer

to the expert?

Define the rules that derive the
value of the higher variable from

the focused-upon-variable.

Figure 2: Flowchart of the discovery-interview process. As can be seen, the fowchart recurs when a variable has been generated at the
current level of the interview which itself will need to be inferred from variables still closer to the user. Te interview starts from the experts’
domain of knowledge and works back towards the user’s domain of knowledge.
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used to weight the relative importance of each criteria score
according to the user’s judgment. For example, a user
evaluating a particular designmay deem that sustainability is
of little importance in the evaluation of that design. In that
case, they would select/input a weight array which weighted
the sustainability criteria score low, perhaps at 0. Te
weighted values being summed (x1, . . . , x6) are the man-
ufacturability scores for each criterion, the “criteria scores.”
Tese can be seen in Figure 3, the arrows exiting each criteria
pipeline contributing one element of the set to be weighted.
For example, the coefcient weighting the sustainability
criteria value will reduce that value to p% of itself. Here, p is
the proportion of the manufacturability score which sus-
tainability concerns should account for (according to the
user). Let us suppose that sustainability was fully 50% of
what manufacturability should measure. If its criteria score
(a value in [0, 1]) were 1, then the weighted sustainability
value would be 0.5.

Tis same logic applies to each criterion score in the sum.
Te weighting coefcients used in our experiments are the
product of an SME led “Analytic Hierarchy Process” [17].
Teir derivation was the product of a small set of MPEs

providing pairwise judgments of the importance of the
criteria. Each criterion is judged to be more, or less, im-
portant than each other criterion using a ten-point scale.
After a normalization step, these comparisons are rendered
into the weights. Each weight indicates the average degree of
importance of a criterion, in the eyes of the experts, relative
to the other criteria. A weight greater than 1/6 (there are six
criteria so, if they were equally important, the weight on each
would be 1/6) indicates a criterion is more important than its
fellows. Te opposite is indicated when a weight is less than
1/6. At this time only one array of these weights is available
but more could be easily added, to refect diferent user
preferences.

Users are shown the prompts and supply input via
a command-line interface. Te opportunistic inference rules
infer new values from those supplied, or derived, without an
explicitly expressed order of rule execution. In contrast, the
control rules were programmed with explicitly expressed
control fow. Tese rules determine which of the 70 input
vars even receives a value, prior to inference by the ES, and
were put in place to manage the large number of input
variables.

Input

weights

…

[a1,a2,a3,a4,a5,a6]
[b1,b2,b3,b4,b5,b6]

[z1,z2,z3,z4,z5,z6]

wixi = M
N

i=0

[X1,X2,X3,X4,X5,X6]

C1

C2

C3

C4

C5

C6

User

Figure 3: Logical pipeline of our system. Each subtree (C1–C6) fguratively represents the variables and rules concerning a particular cost
criterion. Te user supplies the inputs to both the ES (via the input variables, here represented as red and dark blue circles) and the weights
(w1, . . . , w6) used to modify the aggregation of the criteria scores (x1, . . . , x6). From some user-defned set of weight arrays (ex: array A
a1, . . . , a6, array Z z1, . . . , z6) the user can select those which are used to participate in the weighted sum (summation at the right of the
pipeline) which produces the manufacturability score (M). Dark blue circles represent control variables, which decide which input variables
are active. Red circles represent input variables supporting rule execution. Light blue circles represent intermediate values produced by rule
execution. Blue squares are penultimate variables used to compute the criteria subscores. Mathematically, these operations are executed in
one of three ways. Fuzzy logic is used to convert crisp input values into fuzzy intermediate values in a process called fuzzifcation. Fuzzy rules
map between fuzzy values. Last are defuzzifcation operations, which are not rules. Te concluded weighted average uses predefned weights
defned by the experts. More information is available in Section 3.2.3.
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3.2.2. Rule Breakdown

(i) Control rules: Tese rules operate on user-facing
variables and determine which input variables are
instantiated. Tey are executed with explicitly
specifed control fow in the ES. Control logic which
modulates the fring of the rules is not impossible in
a pure ES, but we found the value and efort in-
commensurate. Te control rules are represented by
the green lines in Figure 3, and their syntax is shown
in Figure 4.

(ii) Inference rules: Tese rules (red lines in Figure 3,
syntax shown in Figure 5) form the core of the ES
and are further divided between the crisp and the
fuzzy sub-ESs.Te crisp rules are implemented using
the Experta library [18]. Tey infer the values of
intermediate vars from input vars and then populate
the database of the fuzzy ES. Te fuzzy ES has fuzzy
rules and is implemented in the Simpful library [19].

Our system contains 35 control rules and 78 inference
rules. Te way we implement the construction of our fuzzy
ES by actions of the crisp ES is seen in Figures 6 and 7. We
can see “rule_list” being appended to many times, followed
by two references to an object, “FS.” FS is a fuzzy system, and
the rule list is its rule-base. To it is added a linguistic variable,
the value of which is then set. Tus, as our crisp ES executes
its rules, it takes the actions which construct the corre-
sponding infrastructure in the fuzzy ES. To learn more about
fuzzy logic, Experta, or Simpful, we recommend to the
reader [18–20], respectively.

Both types of rules are read at run-time from text fles.
Te fles contain a simplifed syntax suitable for easy editing
by nonprogrammers. Examples of each syntax can be seen,
annotated, in Figures 4, 5, and 8. Figures 4 and 5 deserve
further explanation.

In Figure 5, we see the syntax for expressing one of the
fuzzy inference rules which accepts input from the user and
modifes the value of a criterion’s manufacturability score on
the basis of that input. Te reader will remember that rules
have an “If x then y” structure. Te “x” portion is a re-
lationship an antecedent variable holds with a value, such as
“if weather� rain.” Here the antecedent is written on the line
in Figure 5 which begins with “x� .” Te antecedent
“Risk_from_materials_of_features_consequence” is a vari-
able articulated by the MPEs during the discovery interviews
(as described in Section 3.1). It expresses the degree of risk
a manufacturing project incurs as a function of having one
or both of the following difculties. A “materials difculty”
could include the challenge of machining a particular ma-
terial, such as one that is hard, brittle, or must be kept at
certain precise temperatures. A “features difculty” could
include the challenge of creating a particular shape, such as
an organic curve with many hollows and nonlinear details. If
the presence of one or both of these is necessitated by the
design, then there is a reduction in manufacturability. Te
criteria category of this variable is “process difculty and
experience,” as described in I. It is abbreviated as “Proc-
ess_availability” in the fle excerpt Figure 5 shows. If the

value of the risk representing antecedent rises towards the
fuzzy value “high,” then the value of this criterion-subscore
falls towards the fuzzy value “very low.” Te values the
antecedent might assume are written on the line below the
antecedent itself. On the line beginning with “z � ” we see
fuzzy values separated by vertical bars. Below that, the line
beginning with “y � ” lists the consequent variable
(“Process_availability”). Lastly, the line beginning with
“w � ” lists the fuzzy values the consequent variable might
assume.Te correspondence between values on the z and w

lines is both in order and one-to-one.Tus, in our “if x then
y” articulation, we can assert that “if x � zi then y � wi.” Te
“f” on the line above the antecedent declaration marks the
rule as fuzzy. All rules have a fuzzy consequent, but a rule is
marked as being completely fuzzy if its antecedent is fuzzy
as well because it is handled diferently by the fle parsing
program.

In Figure 4, we see a single line of strings broken up by
vertical bars. Tere are four segments which articulate
a control rule (these rules were described earlier, in Section
3.2.2). Tose four rule segments are as follows: frst, the
criterion the rule concerns; second, the antecedent variable
of the control rule; third, the value or values (if there were
multiple values, they would be separated by commas) which
the antecedent variable must assume to allow the consequent
variable(s) to be granted a value; and fourth, the consequent
variable(s) (again, comma separated if multiple) which are
being allowed to have values, or not, based on the antecedent
variable’s value. In the example shown in Figure 4, we see
that the criterion is “Labor and workforce,” as seen in Ta-
ble 1. Te antecedent variable “Special_training,” as artic-
ulated by the MPEs, is a binary variable asserting whether or
not the manufacturing project will require its workforce to
receive unusual or otherwise uncommon training. Te value

Labor_and_workforce | Special_training | True | Training_checklist

Criterion Name of antecedent
variable.

Value to admit
consequent variable (s)
under.

Name of consequent
variable (s).

Figure 4: Example of control rule syntax. Each of the four
components is labeled in red for the reader.

Figure 5: Tis is an example of a fuzzy rule as articulated in the
user-editable syntax we developed. Te defnition is labeled (red)
for the reader. Tis is a fuzzy rule with one antecedent (x line) and
one consequent (y line) variable. Te antecedent conditions (z line)
and consequent conditions (w line) have a one-to-one relationship.
As an example, if “Risk_from_materials_or_features_conse-
quence” equals “low,” then “Process_availability” is set to “high.”
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“True” is listed alone in the third segment, showing that the
variables in the fourth segment are only allowed to be
granted values of their own if the antecedent variable has the
value “True.” In the fourth segment, we see the single
consequent variable “Training_checklist.” Te user is only
required to supply values to this consequent variable if the
binary is true.Tis consequent variable gathers user input on
the type of training required. We feel Figure 8 is sufciently
understandable on its own.

Te fle parser expands the contents of the text fles into
the code implementations of the rules. Tis was enabled by
the low complexity of each rule in this rule-base, with one
antecedent and one consequent. Te control and inference
rules are articulated in separate fles, each with its own
syntax. Te fuzzy and crisp inference rules share a fle and
syntax. Crisp and fuzzy rules are converted into code after
being read by the ES construction program described in
Table 3. Examples of the code can be seen in Figures 6
and 7.

3.2.3. Variable Breakdown

(i) Control Variables. Tese variables (red circles in
Figure 3) are used in the antecedents and conse-
quents of the control rules.

(ii) Expert System Variables. Tese variables are used in
the antecedents and consequents of the inference
rules. Tese are further subdivided into the
following:

(1) Input vars (dark blue circles in Figure 3).
(2) Intermediate vars (pale blue circles Figure 3).
(3) Output vars (pale blue squares Figure 3).

Users provide values to input vars, some of which are
control vars and some inference vars. An input var can be
both a control and an inference variable. Te values of
intermediate vars are inferred from those of input vars and/
or other intermediate vars. Output vars have their value
inferred from intermediate vars and are used in computa-
tions in the post-ES pipeline. Many input vars are crisp, and
all output vars are fuzzy and are defuzzifed before being
displayed. Te syntax used to defne each variable is shown
in Figure 8.

Variables are rendered in a highly descriptive syntax (see
Figure 8). All variables are defned with this syntax, intended
to facilitate easy editing by the users. Tere are four variable
subtypes (multiple choice, binary, simple numerical, and
fuzzy, see Table 2) that determine what kind of input the user is
asked for.Tis simple syntax eases edits and preserves the easy
interpretability of the rule-base, a long-standing beneft of ESs.

3.2.4. Te Two-Stage Expert System. A vast majority of our
rule-base is implemented in Experta, which has no native
fuzzy logic support. By virtue of being implemented in
Python, a general-purpose programming language, the
consequent of each rule can perform tasks other than edit the
ES fact base. Functions, variable declarations, and more can
be placed here. By the nature of our particular rule-base,

Figure 6: Example of CRISP-TO-FUZZY rule syntax (Experta).

Figure 7: Example of FUZZY-TO-FUZZY rule syntax (Experta).
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many of our rules had crisp variables in the antecedent
segment of the rule and a fuzzy variable in the consequent
segment (as seen in Figure 6). Tese fuzzy variables were
themselves often antecedents in later rules where only fuzzy
variables were concerned (as seen in Figure 7). We imple-
mented the hybrid rules using a two-stage method.Te crisp
antecedents were stage one and were implemented in
Experta. Te fuzzy consequents were stage two and were
implemented in Simpful. In any such hybrid rule, the
consequent segment contains the rule defnitions and var-
iable declarations to be executed as part of Simpful’s fuzzy
ES. We thus had two ESs. Te frst one was crisp. It con-
structed the second one, which was fuzzy.Te latter executed
only after the former had concluded.

3.3. Use of the ES and the MAKE A

3.3.1. Use of the MAKE A. As mentioned before, the MAKE
A, produced by team A, is an approximation of the ES.
To establish its accuracy, and thus demonstrate that the ES

could be judged against it, a test was needed. To establish
independence in this test, a second teamwas brought on.Te
two teams were to both conduct the same manufacturability
assessment with the MAKE A. Te MAKE A would be
deemed accurate and reliable to the degree that it could
produce agreeing manufacturability assessments when used
by the two teams as they performed the same manu-
facturability assessment task. Tis was again to establish that
the MAKE A was a suitable baseline of accuracy and re-
liability for the ES to be compared against. TeamA and Team
B (Team B was composed of a single member) both pos-
sessed some experience in the aerospace engineering do-
main. Tese two teams separately performed
manufacturability evaluations using the MAKE A. Te
evaluation assessed the manufacturability of four pieces of
a notional UAV wing (see Figure 9) across three materials:
aluminum, fberglass, and carbon composite. Tere were
four components, and each component could be made of
any of the three materials. Tus, there were twelve per-
mutations of part and material. Each team committed

Figure 8: Here we see an example of variable defnition syntax for a multiple-choice variable. Each subsection of the defnition is labeled
(red) for the reader. Tis variable is named “LAP_to_CMF_prox.” It describes the proximity (prox) of the source of the “least available
process” (LAP) to the “core manufacturing facility” (CMF). It is a multiple-choice variable. We see also a defnition of the prompt the user is
shown. Te user is asked a question, shown the choices, and selects the one which best applies to the notional design they are assessing.
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a manufacturability evaluation of each permutation using
the MAKE A assessment system. Tere were thus twenty-
four data points in total. Given that these components of the
wing are independent of one another, any hypothetical wing
might have any permutation of parts-materials (eighty-one
permutations were scored). Te manufacturability score of
a wing permutation was computed as the sum of the
manufacturability scores of its parts. Teams A and B pro-
duced diferent manufacturability scores for each of the
twelve foundational assessments. Te manufacturability
score of the aluminum variant of a part was always the
highest, the fberglass variant the second highest, and the
carbon composite score the lowest. Tis pattern held, across
all parts, across both teams. Tus, the teams always agreed
on whichmaterial made a part themost manufacturable.Te
members of the teams felt the manufacturability scores
produced by their use of the MAKE A accurately refected
the manufacturability of the notional product assessed. In
conclusion, the two teams of MPEs conducted assessments
with the MAKE A which, in the expert judgment of both
teams, were accurate assessments of manufacturability. Tey
also agreed, across all parts, that aluminum makes for
a higher manufacturability score than fberglass, and f-
berglass a higher score than carbon composite.

3.3.2. Updates to the ES. Based on the SMEs’ experience with
the prompts (shared between the ES and the MAKE A), the
ES was updated and revised after the wing-component as-
sessment. Te ES shares with the MAKE series the property
that it is substantially dependent on the expertise of the
team/user(s) who employ it in their assessments.TeMAKE
C (the rubric) is wholly dependent on their reasoning, in-
cluding their understanding of the terms used in the
prompts, their domain knowledge informing them of which
response is correct, and which feature in the notional design
makes that response correct. Te ES diferentiates itself in an
important way from the MAKE C.Te ES is not a guide, but
an embodiment of knowledge and reasoning outside of the

experts (team A in particular). It was constructed in an
attempt to capture a signifcant portion of their knowledge
and reason in its rules and variables. It is thus much more of
a function (taking input and giving output) than a rubric
(guiding an evaluation). Te ES and MAKE A are currently
equally dependent on the user possessing the expert-level
knowledge needed to understand, and respond accurately to,
the prompts.

3.3.3. Use of the ES. In order to check the consistency of the
ES with their own evaluative reasoning, team A performed
a side by side comparison. Team A took the MAKE A,
derived from the ES, as their baseline of correctness, and
tested the correctness of the ES against it. Tey did this by
evaluating notional rotor blade designs, giving the same
input to each evaluation system. We describe the details
below before describing the results of the comparison.

Team A used an updated version of the MAKE A (in-
cluded revised prompts, and newly added control rules/
variables, all to match the updated ES) to conduct an as-
sessment of the manufacturability of notional rotor-blades
(see Figure 10). Tey conducted the same assessment in
parallel using the ES. Both the ES and MAKE A were given
the same inputs.

Te rotor-blade evaluation assessed the manufactur-
ability of three diferent “core morphologies” by way of two
diferent additive methods, as explained to our KE team by
one of the MPEs. Here a core morphology refers to the shape
of the hollow interior channel (the “core”) that runs the
longest axis of the rotor blade. Te three variants were as
follows: frst, a “uniform core,” where the cross section of the
core is uniform along the length of the blade; second,
a “modifed as is” core, where the cross section narrows
towards the center of the blade and widens towards the
extremities of the rotor-blade; and lastly, an “original” core,
which has a nonuniform cross section that varies across the
length of the blade in a not simply articulated way. Te exact
nature of this variance is immaterial to its use in this project,
save that it presents the most varied of the three
morphologies.

Te two additive methodologies were the “layup” and the
“fber winding” methods. In the layup method, the rotating
armature that the blade is formed around has sheets of the
selected material layered around it, somewhat analogous to
wrapping a gift. In the fber winding method, a flament of
the material is wound around the armature instead. In both
cases, glue is used to make the structure cohere. Te space
made inside the blade when the armature is removed is the
“core,” even though it is hollow.

Te manufacturability of the six permutations of core
morphology and additive method was assessed by team A
using these two assessment tools (the MAKE A and the ES),
and twelve scores were produced: six by the MAKE A as-
sessment and six by the ES assessment. Te outputs of the
two tools were ranked in terms of manufacturability. Tere
was ordinal agreement across tools for the four highest
ranks. Tus, the tools agreed on which four permutations
were the most manufacturable relative to one another. Te

SPAR

SPAR TUBE

WING NOSE

RIBS

STRINGERS

Figure 9: Anatomy of a wing [21]. Skin (not shown): the outer
surface of the wing. Spar: structural element running parallel to the
longest axis of the wing. Rib: structural element running parallel to
the direction of airfow over the wing. Stringer: thin linear elements
connecting the skin to the frame.
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two lowest-scoring permutations (layup method—original
core, winding method—original core) were ranked 5th and
6th in one assessment and 6th and 5th in the other. By the
scales of both assessments, the scores of these two lowest-
scoring variants are close to one another. Tere is thus
ordinal agreement between the two methods of assessment
(MAKEA assisted and ES assisted) on the rank of four out of
the six assessed variants.

3.4. Computational Costs. In practice, the users are the
operational bottleneck of this system, with costs to read and
respond to the questions far exceeding execution time. Users
must also evaluate queries in sequence, limiting the degree to
which parallelization can take place. For any given fring of
a particular rule, its cost is constant. Tere are thus two ways
the execution of the ES on a design would be distinguished.
If two designs are evaluated using the same rule-base, then
the answers to the control rules would be the only difer-
entiating factor, since these control the number and identity
of input variables which in turn control which rules are
executed. If rule bases vary across the evaluations, then
larger rule bases, and more permissive control rules, can
create larger execution loads on the inference engine. Dif-
ferent rule types do have a diferent cost establishing feature.
Control rules have a constant cost in their type of condi-
tional.Tus, Boolean control rules cost less than those which
compare an entry to a list of values. Crisp-to-Fuzzy rules are
the most expensive, as they require the construction of all
fuzzy sets across the universe of discourse for their target
variables. Tis then triggers the execution of all fuzzy rules
for that set, even if only a few sets are involved. Fuzzy-to-
Fuzzy rules instead only instantiate and execute the fuzzy
sets already involved, as the values have already been
fuzzifed.

4. Results and Discussion

Our results are encouraging, and the primary contributions
can be seen in Table 4. We were able to construct an expert

system with 35 control rules, 78 inference rules, and 94
variables in total, all to the satisfaction of the MPE team.Te
performance satisfed both the MPE/SMEs, experts in this
domain, and also our funding agency’s technical person of
contact. Due to the qualitative nature of these results, the
metric of performance was the ES having acceptable fdelity
to the SME’s own subjective evaluations during the use case
trials. Te SMEs declared the ES as a success becasue their
evaluations with and without it produced equivalent results.
Te construction of a rule-base, especially one of this size, is
often quite time-consuming, but initial drafts of our rule-
base were completed in eight months (from June 2021 to
January 2022). Despite a large number of rules, the execution
time is rapid, a testament to both the quality of the libraries
we used and the efciency of logic the MPEs articulated. Te
MPEs’ desire to make the ES conform to the behavior of the
MAKE A has been facilitated by the ease of editing the rule-
base and weight arrays. Tis rule-base is an excellent frst
step, the frst of its kind (to our knowledge), and can be
distributed across other teams seeking to advance the state of
the art in this area.

Te software, made to facilitate easy revision, also fa-
cilitates easy iteration, even without a complete un-
derstanding of the underlying code. Our production of
a rule-base reminds us that an absence of a dataset is not
a dead end, provided experts are on hand to replace it. Lastly,
the insights into constructing an ES, and the methodology of
the interviews, were not available to us before we started and
are here made available to others who can beneft from them
going forward.

To make this work more meaningful, we now discuss the
tractability of producing a system such as what was
attempted here and present the heuristics we advise people
to use, based on our experience of our production process.

4.1. Te Tractability of Reliability and Validity Testing of
a Manufacturability Assessment System. Cost is objective;
some dollars were spent and we can count them. But as any
economist will attest to, the cost of a product is subject to

R = D/2
r

(A)

(A)

(B)

(a) (b)

(B)

(D)

(D)

c = f (r)

ββ c
β

Gel-coat

Adhesive

Adhesive

Adhesive

Adhesive

Structural Carbon
UD Laminate

LE Band

Sandwich-Foam
PMI Glass BX

Sandwich-Foam
PVC Glass TX

Sandwich-Foam
PVC Glass TX

Structural Carbon
UD Laminate

Notional Rotor-blade Case Study

Figure 10: Anatomy of a rotor-blade excerpted from [22, 23]. (a) A blade cross section showing the structural elements, including the
hollow inner cavity. (b) We see the whole of the blade fxed to the point of rotation. Te local chord length c and the blade angle β (twist
angle) depend on the radius coordinate r.
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many factors. A clear example is the specialization of an
economy’s industrial base. Petroleum plastic may have
material properties that make it energetically and
mechanically less expensive to deploy for a given use case
than metal (higher required temperatures) or glass (that plus
being heavy and fragile). But even if methods were invented
today which eliminated these advantages, our industrial base
already has matured pipelines for deploying plastics that
make doing so hypothetically less expensive than reftting
competing pipelines.Tus, themanufacturability of plastic is
high because it is a mature, often problematically wide-
spread, and afordable option. All this is to point out that,
but for a diferent choice of industrial specialization in the
past, the cost of a given product could be very diferent. Tis
itself is to give an example of how subject to change cost can
be, to show that even it is not so steady and objective as its
familiar quantifcation might suggest.

Even compared to this, manufacturability is yet more
subjective. It departs the measurable without becoming
a purely subjective narrative. It cannot be objectively
quantifed, even after the fact of a thing’s production, and the
current requirement of experts as the creators of datasets, or
the pilots of evaluation systems, presents a bottleneck to the
generation of the kinds of datasets from which mathematics
can draw insights. Te authors view the validation of any
manufacturability scoring method to be challenged by the
liminality of the manufacturability metric between the ob-
jective and the subjective, and between the measurable and
the fgurative. Tese subjectivities confound reliability and
bring into question what it means for a manufacturability
assessment to be accurate.

4.2. Recommendations for Knowledge Engineers. Firstly, our
two-stage ES architecture is appropriate for specifc appli-
cations only. Its crisp-frst-fuzzy-second sequence is specifc
to a highly hierarchical rule-base with simple rule structure
and few structural classes of rules. If only crisp (or only
fuzzy) computations are performed, then there is no need for
a division like this. A less predictable or less separable fring
order of a mixture of fuzzy and crisp computations would
not fnd this hybrid appropriate either.

Secondly, our experience producing our rule-base sug-
gests to us several recommendations listed below. We feel
they apply most strongly to rule-base construction for an ES
used for a particular archetype of task. Tis task archetype

has two main features. Firstly, it should concern expert
judgments which are challenging to objectively quantify. For
example, the task of answering this question: “If a rotor-craft
with engine type A and blade arrangement B were compared
to one with engine type C and blade arrangement D, all else
being equal, then which is more manufacturable?” Secondly,
there should be a signifcant knowledge gap between the
expert and the layperson. In cases where the “expert” is
hardly diferent from the layperson, and where evaluations
are more objective, we expect these observations to be less
applicable. We wish to emphasize that though the following
recommendations are given in good faith and as a result of
deliberation, their validation would be its own project.

4.2.1. Rule “Distance”. Let a rule be “distant” from a lay-
person and “close” to an expert to the degree that it artic-
ulates reasoning that is nonobvious to a layperson. An
expert is so because they possess rare knowledge and/or
a rare concentration of common knowledge. Some rules an
expert makes will make sense to a layperson, and the
layperson would have generated them too. Some will be
understandable after the fact by the layperson, but the
layperson would not have thought of the rule themselves.
Some rules are not even understandable to the layperson. It
is these last rules which are closest to the expert. We suggest
that every team constructing an ES attempt to start here.
Exploit the highly nonobvious relationships before moving
on to anything closer to the layperson, with the below
caveat.

Te users of an ES are often going to be less expert than
those used to create it. Indeed, this is often the point.Te less
training it takes to make someone suitable to pilot an ES, and
the better that ES is at replicating the reasoning of higher
experts, the more functional experts one can simulate. Te
rule-base of an ES must exploit these nonobvious re-
lationships to embody expert reasoning. Tese nonobvious
relationships will be articulated in very expert-close rules,
and they must be connected to antecedents the less expert
person can easily and accurately supply. Producing rules that
bridge the gap between the layperson and the expert is itself
a creative and nonobvious process, but if the system is to
augment the capabilities of a layperson, it must do so. Tis
gap need not be crossed in one step, moving directly from
the layperson to the expert. Chains of inference can take
smaller steps, but the gap must be crossed. Te expert must

Table 4: Contributions of this work.

Contribution Explanation

Easy platform for iteration
Te simple syntax we developed, which requires little needed knowledge of the
underlying code, allows others to iterate on our work without having to write their

own programmatic infrastructure

Demonstrates the tenability of an ES in this domain
We started this project aware of our lack of data with which to pursue a more
conventional machine learning approach. Our methodology suggests that experts

are a suitable replacement for data in the manufacturability domain.

Methodological insights
Te insights into constructing an ES, and the methodology of the interviews, were
not available to us before we started and are here made available to others who can

beneft from them going forward
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try to see how they can perform their reasoning by proxy,
using what the user will understand and be able to accurately
know. Tis is analogous to the task before space probe
designers, who have to design an automated system that can
conduct science and move around with sub/nonhuman
abilities.

Te “target user,” then, must be modeled. Tey are the
kind of person the system is designed to be used by. A rule-
base designed for use by one level of expertise might well be
suboptimal for use by another. An expert made to perform
with the terms of a layperson would be forced to articulate
approximately what they know exactly. A layperson forced
to perform at the level of an expert would be unable to
perform accurately, being unfamiliar with the terms the rule-
base uses. In our own work, the target users were defned as
teams ofMPEs.Tis allowed the SMEs, who were themselves
a team of MPEs, to estimate well the terminology that would
be familiar to their peers.

4.2.2. Te Generality of the Features Focused on by a Rule.
A team should strive frst to make the rules concerning the
most robust variables and relationships, being general before
they are specifc. One must decide for one’s use case what
this means based on functionality. It may mean that one
should incorporate rules pertaining to manufactured vehi-
cles of all kinds in an ES that will be used to evaluate aircraft
designs.Tis is related to reference class forecasting [24] and
the reference class problem. For one, rules concerning
specifcs can easily multiply the number of rules and input
variables (see Section 3.2). But beyond this, there is a danger
in overspecifying. Let us understand “feature” here to be
anything the user might report on to the ES. Some aircraft
have fxed wings, while others have rotors. If the rules
generated for assessing manufacturability only concern fxed
wing aircraft, then there is a large subset of designs the ES
cannot usefully be applied to. More rules would need to be
written, and the ES would need to be designed to ask early on
which aircraft archetype is being assessed. Te basic lesson
here is to know exactly the job the ES will be asked to do
ahead of time. Tis might be much more work and so one
might focus on features that determine manufacturability
across both rotor and fxed winged craft. As an example, the
maturity of engine production pipelines is relevant to both
fxed wing and rotorcraft, and should thus be more focused
on than any manufacturing element unique to either sub-
genre. Tese rules are more robust across use cases, and
should thus be generated frst.

4.2.3. Te User-Side Cost of an ES. Rule complexity and rule
amount are diferent. Te complexity of a rule describes the
simplicity of logic it articulates. “If x then y” is simple while
“If x and (z or w) and (a xor b) then y” is less so. While
complex rules are harder for the KE and SMEs to create, the
user is often not required to understand them. Te burden
on the user is instead a function of the number of input
variables, and the difculty of supplying them. In the present

case, most rules in the ES had a unique anticedent variable.
Tis means that the number of rules and variables is roughly
equal. A large number of input variables is often less de-
sirable as it requires the user to provide more input. For
every degree of efort it takes to use a tool, the tool is less
likely to be used. It may also be desirable to have your SMEs
feel a pressure towards efciency. Tis pressure can drive
them to identify the most salient, potent, and robust signals/
variables/inputs from which can be derived the desired
output(s). We should thus prefer to use as few input vari-
ables as we can while still achieving useful performance. We
should strive to justify the addition of every new input as
worth the cost of having to enter it, and worth the associated
costs like querying it in a database or fguring it out by doing
a literature review. Te best ES never used does no more
good than the worst ES.

4.2.4. Inputs Should Be Observations rather than Judgments.
Ideally, a good expert system, operated by separate users
with similar expectations, would produce similar outputs for
similar inputs. In short, its performance should be robust
across users. Tis robust performance requires both validity
and reliability, and reliability is a prerequisite for validity
because an inconsistent tool cannot be trusted. While the
designers of an ES will need to model their target user, the
actual users will have some variation and that variation can
be a source of inconsistency, if given an opportunity. We can
consider a spectrum between two extremes. On the one end
we place judgments which, if made by any two individuals,
we would be surprised to fnd any salient diference in.
Examples:

(i) Given a picture of a small crowd, how many people
are there?

(ii) What is the length of a given piece of timber in
meters?

(iii) What operating system is a computer using?

At the other extreme we fnd judgments where we would
be surprised to fnd exact agreement between any two
randomly selected individuals. Examples:

(i) Who is the greatest science-fction novelist of the
20th century?

(ii) What is the experience of dying like?
(iii) When are humans likely to colonize Mars?

We often casually call the frst group objective, and the
second group subjective (though a great deal of rigor can be
brought to bear in attempts to make the latter judgments).
An ES can broadly do two things. First, it can ask the user to
supply basic facts, upon which the SMEs, via the ES, commit
reasoning/make judgments. Second, it can direct the user to
make judgments, which the ES might then use in its own
reasoning. As much as can be, rule-base designers should
prefer the former because any variation in the users is
amplifed as the judgments they are asked to make become
more “subjective.” As this subjectivity grows, the reliability
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of the ES is endangered, as diferent users may produce
importantly diferent subjective evaluations of the same
situation given the same prompt.

5. Summary

In summary, we constructed a functional externalization of
a portion of the expertise of our MPEs, progressing towards
a stabilized, standardized, design-agnostic pipeline for
evaluating the manufacturability of notional designs. Te
produced system uses a two-stage design where a crisp ES
executes frst and constructs a fuzzy ES in the process. Te
primary computations are carried out by this hybrid expert
system which contains 113 rules and 94 variables in total. As
a result of our eforts, we also identifed potential heuristics
by which future rule-bases may be made for analogous
problems. Tese heuristics advise the careful and early
modeling of the target user as a guiding constant during the
design of the rule-base.Tey further advise theminimization
of reasoning not captured in the rule-base itself.

6. Future Work

As to our future work, the standardization step forms the
groundwork for our automation step, where we will engineer
the human out of the evaluation. With automation, we can
achieve the goal of actually increasing the number of de-
signs that can be evaluated and can move towards rapid,
higher scale R&V tests and iteration, to ensure the quality
of the now automated evaluations. Alongside automation,
there are many directions for specialization of such an ES.
While the current rule-base is designed to evaluate a gen-
eral product, versions could be specialized towards con-
sumer electronics, militarized vehicles, and infrastructure,
to name a few highly valuable areas. Additionally, expert
systems have continued to evolve, and applications of
neural networks (neuro-expert-systems), and other forms
of knowledge representation could be applied to produce
better results.

Data Availability
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and Development Center (ERDC) and will be made publicly
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vol. 9, no. 3, pp. 89–102, 2023.

[7] X. F. Zha, H. Du, and J. H. Qiu, “Knowledge-based approach
and system for assembly oriented design, part i: the ap-
proach,” Engineering Applications of Artifcial Intelligence,
vol. 14, no. 1, pp. 61–75, 2001.

[8] D. K. Liu, “Te hiclass software system: a manufacturing
expert system shell,” in Proceedings of the Te Fourth Con-
ference on Artifcial Intelligence Applications, pp. 256–261, San
Diego, CA, USA, March, 1988.

[9] T. Shojaie, L. Zeidner, S. Sadri, and Y. Hazony, “Te boston
university manufacturing expert system (bumes),” ACM
SIGAPL- APL Quote Quad, vol. 21, no. 4, pp. 278–288, 1991.

[10] S. P. Leo Kumar, “Knowledge-based expert system in
manufacturing planning: state-of-the-art review,” In-
ternational Journal of Production Research, vol. 57, no. 15-16,
pp. 4766–4790, 2019.

[11] B. S. Adamczyk, A. L. Szejka, and O. Canciglieri, “Knowledge-
based expert system to support the semantic interoperability
in smart manufacturing,” Computers in Industry, vol. 115,
Article ID 103161, 2020.

[12] S. Fuller, T. McCall, E. Wall, and T. Falls, “Utilization of
a manufacturability assessment methodology and metric:
a case study application,” in Proceedings of the 10th Model
Based Enterprise Summit (MBE 2019), Gaithersburg, MD,
USA, March, 2019.

[13] C. Walden, T. McCall, and R. Gedik, “Taxonomy based as-
sessment methodology: improving the manufacturability of
a product design,” in Proceedings of the from the 2016 In-
dustrial and Systems Engineering Research Conference, Ana-
heim, CA, USA, May, 2016.

[14] E. S. Wall, S. C. Fuller, and T. C. Falls, “Design of the
manufacturability assessment knowledge-based evaulation
tool,” in Proceedings of the International Annual Conference of

16 Applied Computational Intelligence and Soft Computing

https://pypi.org/project/experta/
https://pypi.org/project/experta/


the American Society for Engineering Management, pp. 1–10,
American Society for Engineering Management (ASEM),
Denver, CO, USA, January, 2018.

[15] T. G. McCall, C. H. Rinaudo, and D. B. P. D. P. E. Paul,
“Development of an early lifecycle conceptual confguration
manufacturability assessment metric for tradespace analyt-
ics,” in Proceedings of the International Annual Conference of
the American Society for Engineering Management, pp. 1–11,
American Society for Engineering Management (ASEM),
Denver, CO, USA, November, 2020.

[16] R. R. Hofman, “Te problem of extracting the knowledge of
experts from the perspective of experimental psychology,” AI
Magazine, vol. 8, no. 2, p. 53, 1987.

[17] A. Cahyapratama and R. Sarno, “Application of analytic hi-
erarchy process (ahp) and simple additive weighting (saw)
methods in singer selection process,” in Proceedings of the
2018 International Conference on Information and Commu-
nications Technology (ICOIACT), pp. 234–239, IEEE,
Yogyakarta, Indonesia, June, 2018.
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tacional de hélices,” Master Tesis, Universidade Federal de
Juiz de Fora (UFJF), Juiz de Fora, Brazil, 2019.

[24] D. Kahneman and A. Tversky, “Intuitive prediction: biases
and corrective procedures,” Decisions and Designs Inc
Mclean Va, Technical report, Decision Research, A Branch of
Perceptronics, 1201 Oak Street, Eugene, Oregon 97401, 1977.

Applied Computational Intelligence and Soft Computing 17

https://pypi.org/project/experta/
https://pypi.org/project/experta/
https://community.sw.siemens.com/s/question/0D54O00006VOssISAT/mesh-of-the-wing
https://community.sw.siemens.com/s/question/0D54O00006VOssISAT/mesh-of-the-wing



