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Communication through speech can be hindered by environmental noise, prompting the need for alternative methods such as lip
reading, which bypasses auditory challenges. However, the accurate interpretation of lip movements is impeded by the uniqueness
of individual lip shapes, necessitating detailed analysis. In addition, the development of an Indonesian dataset addresses the lack of
diversity in existing datasets, predominantly in English, fostering more inclusive research. Tis study proposes an enhanced lip-
reading system trained using the long-term recurrent convolutional network (LRCN) considering eight diferent types of lip
shapes. MediaPipe Face Mesh precisely detects lip landmarks, enabling the LRCN model to recognize Indonesian utterances.
Experimental results demonstrate the efectiveness of the approach, with the LRCNmodel with three convolutional layers (LRCN-
3Conv) achieving 95.42% accuracy for word test data and 95.63% for phrases, outperforming the convolutional long short-term
memory (Conv-LSTM) method. Te proposed approach outperforms Conv-LSTM in terms of accuracy. Furthermore, the
evaluation of the original MIRACL-VC1 dataset also produced a best accuracy of 90.67% on LRCN-3Conv compared to previous
studies in the word-labeled class. Te success is attributed to MediaPipe Face Mesh detection, which facilitates the accurate
detection of the lip region. Leveraging advanced deep learning techniques and precise landmark detection, these fndings promise
improved communication accessibility for individuals facing auditory challenges.

1. Introduction

Speech is the most fundamental type of human commu-
nication that uses both visual and auditory elements. Vo-
calizations in the audio signal are represented by lip
movements in speech. Although audio signals typically do
a good job of conveying information, lip reading could be
necessary in some circumstances, particularly in noisy areas
where audio understanding might be compromised. Lip
reading can interpret speech based only on visual cues and
has recently attracted signifcant attention due to its possible
uses in language identifcation [1], emotion recognition [2],
and human-computer interaction [3].

Lip-reading applications that only identify lip move-
ments are considered more respectful of individual privacy

by not including speech during communication [4]. Te
impact may reduce concerns about the misuse of speech
datasets. In addition to that, it is also very useable for deaf
people during communication [5]. However, it may be
difcult to interpret lip movements efectively, especially
when there are similarities in the forms of lips of distinct
words or when there are outside infuences such as back-
ground noise [6].

In this regard, advances in technology present viable
ways to interpret lips using visual information recorded by
a camera [7, 8]. Te goal of conventional machine learning
methods for lip reading is to identify temporal patterns in
data streams. Many researchers employ deep learning
models for lip reading in addition to advancing machine
learning into deep learning [9]. Te key to achieving
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a successful recognition system in lip reading is the precise
detection of the lip region and the subsequent classifcation
of utterances, a task infuenced by factors such as language,
dialect, and individual lip structure. Although some studies
have developed language-specifc lip-reading systems tai-
lored to distinct regions [7, 10–14], the diversity of lip shapes
and external noise poses challenges to efective detection and
classifcation algorithms.

Tis study addresses these challenges by proposing an
Indonesian lip-reading dataset, as well as a detection and
recognition system based on the diversity of lip shapes
considering the unique characteristics of eight types of lip
shapes [15]. Te MediaPipe face mesh [16] was used for the
detection and elimination of surrounding noise, and the
long-term recurrent convolutional network (LRCN) [17] for
the classifcation of utterances.

Te structure of this paper is organized as follows.
Section 1 provides an introduction to the background and
challenges of lip reading. Section 2 reviews related works and
highlights the contributions of our research. Section 3 de-
scribes materials and methods, including data acquisition,
detection algorithms, preprocessing techniques, and model
development. Section 4 presents the experimental results
and a discussion of various scenarios. Finally, Section 5
concludes our fndings and discusses future directions.

2. Related Works

Lip-reading applications utilize image processing, machine
learning, and deep learning to understand spoken words
through lip movements. An eigenlip model has been pro-
posed that calculates the Euclidean distance between the
upper and lower lips, along with the hidden Markov model
(HMM), for word prediction [18]. In addition, neural
network models have been developed for the classifcation of
laughter speech, using limited audiovisual mapping [19]. Lin
et al. achieved an accuracy rate of 80% in predicting vowel
utterances [20], while bidirectional long short-termmemory
(Bi-LSTM) models were used for visual speech recognition
[21]. However, distinguishing silent speech from whispered
speech remains a challenge. Te bidirectional gated re-
current unit (Bi-GRU) extracts features for audiovisual
recognition but struggles in noisy environments [22].
Convolutional neural networks (CNNs) with the pretrained
VGG-16 model [23] and LSTM combinations with a histo-
gram of oriented gradients and a support vector machine
(HOG+ SVM) have been proposed for spoken word
recognition [23].

Recent advancements in lip reading involve deep
learning algorithms, such as convolutional neural networks
(CNNs). Martinez et al. improved word-by-word lip reading
using multiscale temporal convolutional networks
(MSTCNs) [24]. Koumparoulis and Potamianos introduced
efcient networks for lip reading, achieving high accuracy
levels in the lip-reading in the wild (LRW) dataset [25].
Visual speech recognition (VSR) models have also been
developed, surpassing previous methods in accuracy [26].
However, these studies predominantly focus on English-
language datasets.

Language-specifc datasets are crucial for accurate lip
reading. Recent eforts include German, Mandarin, Turkish,
and Indonesian lip-reading systems. German lip-reading
system achieved an accuracy rate of 88% [27], while the
Mandarin system reached 61.18% accuracy using 3D-CNN
with DenseNet + LSTM model [28]. Atila and Sabaz de-
veloped a Turkish lip-reading system with a Bi-LSTMmodel
that achieves 85% accuracy for words and 91% for sentences
[29]. Indonesian lip-reading system, although limited to
only 50 sentences, reached an accuracy rate of 80% for
syllable classifcation using 3D-CNN and Bi-GRU
models [30].

Along with the related work, the lack of Indonesian
lip-reading datasets, especially for word and phrase levels,
encourages this study to be able to make datasets open
publicly available datasets for researchers.Te new dataset
consisted of 10 words and four phrases considering eight
diferent lip shapes. To improve the detection and clas-
sifcation accuracy, this study also proposed state-of-
the-art detection algorithms and deep learning models to
close the gap. Te MIRACL-VC1 dataset [7] with word
samples is also considered to test our algorithm frame-
work. In summary, this research has the following
contributions:

(1) Tis study presents the frst open-ended dataset for
lip reading called IndoLR with an Indonesian lan-
guage data sample consisting of several words and
phrases, considering eight diferent types of lip
shapes.

(2) Te MediaPipe Face Mesh [16] is used to obtain lip
ROI, which is then trained with the long-term re-
current convolutional network (LRCN) in the In-
donesian lip-reading dataset, which produces an
accuracy of more than 94% compared to the con-
volutional LSTM (Conv-LSTM) model.

(3) Te proposed framework has also been applied to an
available public dataset called MIRACL-VC1 [31],
achieving an accuracy of 90.67 and an F1 score of 91
with the best LRCN model in the word-labeled class.
Tis performance showed a good result compared to
previous studies.

A preprint has previously been published and has not yet
been peer-reviewed [32]. Te updated work used MediaPipe
Face Mesh to detect the lip and the LRCN architecture.
Subsequently, the proposed method was also evaluated in
the MIRACL-VC1 dataset [7] in this study.

3. Materials and Methods

In general, the proposed system is presented in Figure 1.
First, the data acquisition is carried out to collect the
isolated video data. Every video will be captured in a close-
up fashion (frontal). Second, lip detection is performed by
using MediaPipe Face Mesh [16]. Tird, the video is
preprocessed by extracting the videos into image frames
for the training process. Fourth, building the LRCNmodel
and training were conducted to recognize the utterance
visually.
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3.1. Data Acquisition. Tere are diferent types of human
lips, so it is necessary to have a reference for the types of lip
shapes common to humans. Reference to the shape of the lip
from [15] has been adapted as shown in Figure 2. From the
types of lip shapes, it is hoped that it can represent the overall
shape of the human lips. Five women and three men par-
ticipated in the production of these data. Each person
represents each type of suitable lip shape. Tese types of lips
are neutral, pointly neutral, thin, cupid’s bow, uni-lip,
beestung, smear, and glamour.

Each person speaks ten words and four phrases. Te ten
words are “maaf” (sorry), “tolong” (please), “permisi” (ex-
cuse me), “halo” (hello), “mulai” (start), “berhenti” (stop),
“lanjut” (next), “sakit” (hurt), “kembali” (back), and “awas”
(be careful). Meanwhile, the four phrases spoken are “terima
kasih” (thank you), “minta tolong” (please help), “saya minta
maaf” (I am sorry), and “saya minta tolong” (I am asking for
help). Tese words and phrases were chosen because In-
donesians often use them. Tese words and phrases were
chosen because they are often used in Indonesian language
communication and refect politeness.

Every word or phrase is recorded using a Logitech C525
camera with an 8-megapixel resolution and a standard PC to
process the recording. Te video captured is in MP4 format
with a resolution of 480p (640× 480) with a total frame rate of
30 FPS for the ten words and four phrases collected. Te
diferent settings were made due to the limitation of the
machine to process each video. For every word sample, it takes
30 videos per person. Tus, the total data collected for the
word dataset is 2400. In the phrases dataset only contains four
phrases category, then the additional samples are gathered to
50 videos for each person. Te total data collected for the
phrase dataset are 1600. All these collected video samples are
then called IndoLR (Indonesian lip-reading dataset).

Te study of lip-reading was developed not only in one
language. Each language has a diferent way of pronouncing
the other, leading to further variations. So, some countries

build their datasets, as shown in Table 1. Te dataset taken
from this investigation is also compared with another
available dataset. Compared to some publicly available (or
with limited access) datasets, IndoLR is the only publicly
available dataset with the most data in Indonesia. In the
research by Kurniawan and Suyanto [30], there are very few
data samples due to the focus of the classifcation on syl-
lables. In addition, the resolution provided in our dataset is
also quite large compared to other studies. Although the
number of data samples is not as large as in most recent
studies (LRW [10], LRS2 [33], LRS3-TED [11], GLips [13],
Turkish [29], CMLR [34], CN-CVS/Speech [35], and
OLKAVS [14]), this study considers the shape of the lip type
depicted in Figure 2. All speakers in IndoLR have sample
representations of the previously mentioned lip-type shapes,
with each type represented by one speaker.

In this study, the MIRACL-VC1 dataset [7] with word
samples is considered to test our algorithm framework.
MIRACL-VC1 is an openly available dataset with two
sample types: color and depth. In this study, the total
number of word data is 1500 utterances with word labels
such as begin, choose, connection, navigation, next, pre-
vious, start, stop, hello, and web. Several researchers have
also benchmarked the dataset to compare it with lip-reading
studies.

3.2. Detection and Preprocessing. Detecting the position of
the lip on the face of a person using computer technology is
not easy. Tis difculty occurs because the human lip is
a small part of the human face that is considered to resemble
the eyes and nose. Tere are many ways to detect faces, such
as traditional machine learning [36] and deep learning
[16, 37], which can detect human faces efectively. Tis study
tried to use one of the most efective methods, the Haar
cascade, HOG-SVM, or MediaPipe, to recognize the lip. In
early-stage experiments, using the Haar cascade method, the
intention was to detect the lip but sometimes not only that
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Figure 1: Proposed system.
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region but also small objects such as eyes, nose, and neck
folds. Haar cascades can recognize faces efectively, but small
things, such as the lip, are difcult to detect. Error detection
was also proven in the study by [38], where by using the Haar
cascade method, it was difcult to fnd and obtain ROI from
the eyes. However, when it is collected in the dataset, it will
cause noise.

Tere are other methods for detecting the lip more
accurately: King [36] and MediaPipe [16]. Tese two
methods can provide information on lip landmarks taken
from facial landmarks. Te Dlib uses the HOG-SVM al-
gorithm to provide 68 landmark points in the facial image.
In addition, the MediaPipe Face Mesh can estimate 468 3D
landmark points on the face. Moreover, MediaPipe per-
formance is better than Dlib when it detects local or small
features of the face, including the lip. MediaPipe is also faster
than Dlib in detecting the landmark of a facial image [39].
Moreover, in the study by Ishmam et al. [40], MediaPipe has
better performance than Dlib in the isolation of lip from
various face conditions such as angle, appearance, and
lighting. In this case, the MediaPipe Face Mesh was con-
sidered as a method to detect the lip region.

Te MediaPipe Face Mesh can track the lips and details
of the tongue, teeth, and gums. Te fnal image was cropped
only for the lip region because there are some noises such as
whiskers, chin, beaver, and nose which are close to the lip.
Tere are three steps to detect the lip. Te frst is collecting
the 40 landmark points from the 68 facial landmarks. Every
landmark point LPx,y has the x and y positions in 2D space.
It is associated with another landmark point to create the
line between the two points. Unfortunately, the detected
landmark points are not ordered and must be ordered.

Te second is fnding the coordinate points within the
dimension of the image. Te calculation of the relative
source point is RPsx,y � LPsx ∗ Imgwidth, LPsy ∗ Imgheight,
where the LPsx and LPsy are the landmark source point
as well as Imgwidth and Imgheight are the width and height
of the image, respectively. Subsequently, a similar calcula-
tion is also measured for the relative target point
RPtx,y � LPtx ∗ Imgwidth, LPty ∗ Imgheight. Tus, the routes
between the source and the target point can be stored to fnd
the edge of the lip. Te third step is to extract the region of
interest on the lip by creating a boundary box around the
border. Te boundary box can be calculated by using the

Neutral Pointly Neutral Thin Cupid's Bow

Uni-Lip Beestung Smear Glamour

Figure 2: Types of lip shape [20].

Table 1: Multilingual dataset compared to IndoLR.

Dataset Language Year Isolated Form
segment Speakers Classes Total

data Resolution Pose

MIRACL-VC1 [7] English 2014 v Words 15 10 1500 640× 480 Frontal
MIRACL-VC1 [7] English 2014 v Sentences 15 10 1500 640× 480 Frontal
OuluVS2 [12] English 2015 v Sentences 20 10 1000 720× 576 Frontal
LRW [10] English 2017 x Words >1000 500 400000 256× 256 −30∼30
LRS2 [33] English 2017 v Sentences >1000 17428 118116 160×160 −30∼30
LRS3-TED [11] English 2018 v Sentences >1000 70000 165000 224× 224 −90∼90
GLips [13] German 2022 x Words 100 500 250000 256× 256 Frontal
Turkish [29] Turkish 2022 v Words Unspecifed 111 39960 60× 35 (30–60 FPS) Frontal (10 rot)
Turkish [29] Turkish 2022 v Sentences Unspecifed 113 27120 60× 35 (30–60 FPS) Frontal (10 rot)
CMLR [34] Mandarin 2020 v Sentences 11 9 102076 64×128 Frontal
CN-CVS/Speech [35] Mandarin 2023 x Sentences 2529 ∼75 193,329 640× 480 Natural
OLKAVS [14] Korean 2023 v Sentences 1107 >100 250000 1920×1080 0,45,90
Indo [30] Indonesia 2020 v Sentences 10 5 50 Unspecifed Frontal
IndoLR Indonesia 2023 v Words 8 10 2400 640× 480 (30 FPS) Frontal
IndoLR Indonesia 2023 v Sentences 8 4 1600 640× 480 (30 FPS) Frontal
Iso, isolated; v, isolated; x, continuous.
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minimum and maximum indexes of the route to mask the
lip. Since it is spatially impossible for a lip region image to
produce the exact width and height dimensions, the gaps will
be flled with black color.

Te preprocessing is performed before the data enter as
input to the network. First, each frame image is resized to
80× 80. Second, the sequence length is determined. Te
sequence length determined for the word dataset is 30
frames, while for the phrase dataset, it is 40 frames. Te
image frames are not taken from frame index 0 but from the
middle. Clipping of frame images from the middle index in
isolated videos is carried out by considering the presence of
stillness at the beginning of the video and at the end of the
video, which can cause bias in the training process. If the
number of frames in a video is more than the sequence
length, then the silence at the beginning and end can be
eliminated so that the focus is on the situation where the lips
move to speak. Meanwhile, if the speaker speaks too fast, the
number of frames will be less than the sequence length,
resulting in a lack of image samples. Tis can be circum-
vented by adding an image that contains a fully black-
colored or a black-padded image. Applying black-padded
images as blank images preserves the temporal structure of
the original sequence of frames and prevents information
loss during training. It also ensures that all sequences are of
the same length, maintaining uniformity in sequence pro-
cessing. Tis straightforward process does not require
complex processing steps (which is possibly computationally
inefcient), making it accessible to operate in a fxed-length
sequence when trained later on. Figure 3 depicts an illus-
tration of the frames with the clipping sequence in the
middle. It is hoped that this strategy can focus more data on
the situation when the lips are speaking and will not be too
afected by the speed of speech. Tird, pixel frame nor-
malization is performed to reduce the computation. Nor-
malization produces a range of 0–1, dividing each value of
pixels by 255.

After the data were preprocessed, it was split into three
parts, training set, validation set, and test set for words and
phrases. Te compositions for each part are 80 :10 :10
percent. Every single class in the word or phrase datasets for
each part contains every person sample. Tis is necessary so
that the data can be distributed evenly.

3.3. Building the LRCN Model. Machine learning and deep
learning are suitable methods that can be used as modern
lip-reading techniques. In this study, the long-term re-
current convolutional network (LRCN) was used to train
data on lip reading in the Indonesian lip-reading dataset.
LRCN has been used successfully in action recognition,
where each frame-frame video sequence used as a network
input can be appropriately identifed with the output activity
associated with the video [17]. Related to this, we used LRCN
to recognize what words or phrases are spoken, obtained
from frame-to-frame sequence data from an uttered
speech video. In LRCN, CNN and LSTM layers are
combined in a single model. In this case, CNN will act as
a spatial feature extraction from the frame, which will then

be fed to the LSTM at each time step for temporal se-
quence modeling. Tus, direct training can be conducted
to study spatiotemporal features end-to-end by producing
a robust model.

Previously, the video data have been transformed into
a sequence of image frames containing the lip area by
cropping based on landmark detection using MediaPipe.
After that, the image frames will be preprocessed to be
a ready-to-train dataset. Every sequence of image samples
with it is labeled and then collected into the words and
phrases datasets. Te LRCN model aims to bring those
sequential inputs to static outputs that represent the word or
phrase label 〈x1, x2, x3, . . . , xT, y〉⟼y. Any data that have
gone through preprocessing at a specifc time frame xt will
be trained up to the length of the T frame of the time se-
quence, which is then considered as input. Te static output
is a single y label that contains the word class y ∈ R3 or the
sentence y ∈ R4.

Each input xt, trained in CNN with three convolution
layers, max pooling, dropout, and fatten, is wrapped by
a distributed temporal layer. Te isolation of each sequence
of video frames is passed through the feature transformation
ϕV(xt). Te details of the frst convolution layer have 16
feature maps with 3× 3 kernels and rectifed linear unit
(ReLU) activation functions [41, 42]. Te ReLU function
can produce nonlinear constraints on the input
max(0, fz(xt, W)), where fz(.) is a linear function resulting
from the input xt, and the weight parameter is W. Te frst
layer of the pool is the max pool with 2× 2, followed by
a dropout with a dropout rate of 0.25. Te second convo-
lution layer has 32 feature maps with confgurations and is
accompanied by the same pooling and dropout layers as the
frst. Likewise, for the third layer, it is also the same.Te only
diference is the number of feature maps in the third con-
volution layer, that is, 64. Subsequently, before entering the
LSTM layer, there is a fatten layer to convert the spatial
output values into vectors.

Ten, there is one layer of LSTM with a total of 16 cells.
Usually, in its general form, the LSTM model has a weight
parameter W by mapping the input xt and the previous
time-step hidden state ht−1 with two outputs, namely, the
nonlinear calculation output zt and the updated hidden state
ht. In Figure 1, the LSTM sequence learning will be carried
out by passing the ht−1 output to ht. We calculate the frst
hidden layer sequence h1 � fw(x1, 0), where h0 � 0 because
there is no previous hidden layer output. Ten, we calculate
the second hidden layer sequence h2 � fw(x2, h1) and so on,
so the hidden layer output at the current time step is
ht � fw(xt, ht−1). On LSTM to produce ht, it needs to
calculate the following:

it � σ Wxixt + Whiht−1 + bi( 􏼁, (1)

ft � σ Wxfxt + Whfht−1 + bf􏼐 􏼑, (2)

ot � σ Wxoxt + Whoht−1 + bo( 􏼁, (3)

gt � tan h Wxcxt + Whcht−1 + bc( 􏼁, (4)
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ct � ft ⊙ ct−1 + it ⊙gt, (5)

ht � ot ⊙ tan h ct( 􏼁. (6)

LSTM consists of an input gate it ∈ RN, forget gate
ft ∈ RN, output gate ot ∈ RN, input modulation gate
gt ∈ RN, and the memory cell ct ∈ RN, where N is the
hidden units. Te input gate, the forget gate, and the
output gate use the nonlinear sigmoid nonlinear function
σ(x) � (1 + e−x)−1. Meanwhile, in the modulation gate
input and updated hidden state calculations, there is a non-
linear function hyperbolic tangent tan h(x) � ex − e−x/
ex + e−x.Te ⊙ operator symbol is the elementwise product of
two vectors. Ten, the dropout was performed [43] to
minimize overftting gaps that may occur during training.
To classify the distribution of P(yt) in the output layer to
the desired label results (D ∈ R3 on word labels and
D ∈ R4 in phrase labels), many classes are classifed, and
the predicted distribution P(yt � d) uses the softmax
function as

P yt � d( 􏼁 � softmax 􏽢yt( 􏼁 �
exp 􏽢yt, d( 􏼁

􏽐d′ϵD exp 􏽢yt, d′( 􏼁
. (7)

Te number of units in the output layer corresponds to
the number of word and phrase labels in the two datasets.
Terefore, there will be two LRCN architectures that have
a diferent number of output layers. Te word dataset has
three units in the output layer, whereas the phrase dataset
has four. Te loss function used to evaluate this network is
the categorical cross entropy L with the calculation as
follows:

L � − 􏽘
M

i�1
􏽘

D

d�1
yid ∗ log P yit � d( 􏼁( 􏼁( 􏼁, (8)

whereM is the number of data samples and yid is the output
corresponding to the current data label. Adam optimizer
[44] updates the weight parameter that stores the classif-
cation pattern. Te standard neural network training cycle is
used to perform forward propagation, calculate the loss
function and backpropagation over time, and update the
weight parameters.

4. Results and Discussion

Te deep learning model used to test the IndoLR and
MIRACL-VC1 dataset is not only compared with LRCN but
also compared with convolutional LSTM (Conv-LSTM)
[45]. Table 2 shows the architectural details of the three
neural network models for the experimental scenarios. Te
three architectures are compared using the softmax acti-
vation function in the output layer and the Adam optimizer.
Te testing will be carried out on a test set that previously
went through the same data acquisition process as the
training set. Te machine used to carry out the training is
a consumer-grade CPU with an Intel I5 10th-gen processor
with an RTX 3060 Ti GPU and 32GB RAM.

Every video sample in the IndoLR dataset with the three
applied network architecture scenarios was trained in 100
epochs. Te hyperparameter settings for the overall exper-
iments are the learning rate of 0.0005 and the batch size of 4.
Since the training set is not large and there is a limitation on
the consumer-grade computer to perform the training

Selected Frame Index: ....

Actual Frame Index: 0  1  2 3  4  5  6 7 8 9 ....

 6 7 8 9 ....

.... 33 34

33 34

35 36 37 38 39

If no. of frames is more than the sequence length

Selected Frame Index: 0  1  2  3  4 .... .... 23 24 25 26 27 28 29 

Actual Frame Index: 0  1  2  3  4 .... .... 23 24

If no. of frames is less than the sequence length

Black
padded

Figure 3: Clipping of the middle frame to select the sequence of data.
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process, the batch size of 4 was chosen. In Conv-LSTM sce-
narios, max pooling 3D is added to reduce the complexity of the
model. Te number of convolutional layers in LRCN is limited
to up to three layers. Te consumer-grade GPU has 8–32GB
memory, but, in this case, it only used 8GB on RTX 3060 Ti.

In terms of time complexity, LRCN is based on the
operations performed in its convolutional and recurrent
layers during both training and inference. Convolutional
layers typically have a time complexity of
O(N2 ∗C2 ∗Xin ∗Xout), where N × N is the image di-
mension, C is the size of the convolutional kernel, Xin is the
number of input channels, and Xout is the number of output
channels [46]. In the recurrent layer using the LSTM, it has
a time complexity of O(T∗M2), where T is the number of
frame sequences in a video and M is the hidden state size.
LSTM uses the parameters associated with each gate op-
eration that typically include weight matrices of dimension
N × N (or M × 4M in the case of all gates combined).
During the computation of each gate, these weight ma-
trices are multiplied by the input or hidden state vectors,
resulting in a computational complexity proportional to
M2 for each gate operation. Consequently, the time
complexity of LRCN is dominated by the sequential
processing of frames through the convolutional layers
followed by the LSTM layers, resulting in a combined time
complexity of O(N2 ∗C2 ∗Xin ∗Xout + T∗M2).

Unlike LRCN, Conv-LSTM time complexity is de-
termined by the operations performed within its convolu-
tional and recurrent layers. At each time step, Conv-LSTM
involves convolutional operations followed by recurrent
operations. Te time complexity of the convolutional layers
in Conv-LSTM is the same as that of LRCN. Recurrent layers
within Conv-LSTM must be LSTM units with the time
complexity of O(M2). Te overall time complexity of Conv-
LSTM for processing a sequence of length T is represented as
O(T∗ (N2 ∗C2 ∗Xin ∗Xout + M2)). As both architectures
share similarities due to their integration of convolutional
and recurrent layers, Conv-LSTM focuses on capturing
spatial and temporal dependencies simultaneously within
each time step, while LRCN typically processes sequences
through separate convolutional and recurrent stages.
Terefore, the exact time complexity may vary depending on
factors, namely, the design of architecture, the character-
istics of data, and implementation details.

Of the three architectures, Conv-LSTM requires a longer
training time than the other two architectures. Conv-LSTM
uses a special architecture to combine CNN and LSTM in
recurrent steps. In LRCN, there is a TimeDistributed layer
performed on every time slice for a warped certain layer. No
recurrence process is going on in a TimeDistributed layer.
Overftting occurs in the word dataset with Conv-LSTM,
where there is a signifcant gap between the accuracy of the

Table 2: Neural network architecture.

Model
Detailed architecture

Words Phrase

Conv-LSTM

ConvLSTM2D (8) ConvLSTM2D (8)
MaxPooling3D () MaxPooling3D ()
ConvLSTM2D (16) ConvLSTM2D (16)
MaxPooling3D () MaxPooling3D ()

Flatten () Flatten ()
Dense (10) Dense (4)

LRCN-2Conv

TimeDistributed (Conv2D (16)) TimeDistributed (Conv2D (16))
TimeDistributed (MaxPooling2D ()) TimeDistributed (MaxPooling2D ())

TimeDistributed (Dropout ()) TimeDistributed (Dropout ())
TimeDistributed (Conv2D (32)) TimeDistributed (Conv2D (32))

TimeDistributed (MaxPooling2D ()) TimeDistributed (MaxPooling2D ())
TimeDistributed (Dropout ()) TimeDistributed (Dropout ())
TimeDistributed (Flatten ()) TimeDistributed (Flatten ())

LSTM (64) LSTM (64)
Dropout () Dropout ()
Dense (10) Dense (4)

LRCN-3Conv

TimeDistributed (Conv2D (16)) TimeDistributed (Conv2D (16))
TimeDistributed (MaxPooling2D ()) TimeDistributed (MaxPooling2D ())

TimeDistributed (Dropout ()) TimeDistributed (Dropout ())
TimeDistributed (Conv2D (32)) TimeDistributed (Conv2D (32))

TimeDistributed (MaxPooling2D ()) TimeDistributed (MaxPooling2D ())
TimeDistributed (Dropout ()) TimeDistributed (Dropout ())
TimeDistributed (Conv2D (64)) TimeDistributed (Conv2D (64))

TimeDistributed (MaxPooling2D ()) TimeDistributed (MaxPooling2D ())
TimeDistributed (Dropout ()) TimeDistributed (Dropout ())
TimeDistributed (Flatten ()) TimeDistributed (Flatten ())

LSTM (64) LSTM (64)
Dropout () Dropout ()
Dense (10) Dense (4)
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training data and the accuracy of the validation data, as
shown in Figure 4(a). Meanwhile, the two LRCN archi-
tectures, namely, LRCN-2Conv and LRCN-3Conv, look
more stable compared to Conv-LSTM. Tese models are
shown in Figure 4(b) for the LRCN-2Conv model and
Figure 4(c) for the LRCN-3Conv model. Furthermore, the
training and validation data accuracy gap of the LRCN-
3Conv model is smaller than that of the LRCN-2Conv
model. Te result shows that the accuracy of the LRCN-
3Conv model is more stable than that of the LRCN-2Conv
model.

Overftting also occurs in the phrase dataset starting at
the 10th epoch in the Conv-LSTM architecture. Tere is
a signifcant gap between the accuracy of the training data
and the validation data for the Conv-LSTM model shown in
Figure 5(a). Te gap between the accuracy of the training
data and the validation data in the LRCN model, namely,
LRCN-2Conv and LRCN-3Conv, appears to be more stable,
as shown in Figures 5(b) and 5(c). In general, the gap be-
tween the validation accuracy of the training set and the
validation set in the word dataset is better than the gap
between the accuracy of the training data and the validation
data in the phrase dataset, as shown in Figures 4 and 5.

When applied to the test set, the performance results of
the deep learning models are shown in Table 3. Te two
LRCN models produce higher accuracy than Conv-LSTM,
with a diference of 2.5–5% for the word dataset and
4.38–5.01% for the phrase dataset. LRCN achieved the
highest accuracy with three convolution layers in the word
and phrase datasets (LRCN-3Conv).Te training time of the
Conv-LSTM model is longer than that of the LRCN. It is
around 10 times longer. It is because of the involvement of
convolutional and recurrent operations at each time step
rather than passing the convolution operation frst and then
followed by the recurrent operation. It also afects the
recognition time for each video sample, where it needs
a longer time than LRCN even in real-time situations. Te
best accuracy was achieved by LRCN with three convolution
layers in both the word and phrase datasets better than
LRCN with two convolutional layers and Conv-LSTM.

Te receiver operating characteristic (ROC) and area
under the ROC curve (AUC) were provided to evaluate the
performance of the model. Due to the unknown cost of
misclassifcation and class distribution during the training
phase, this statistical metric is preferred. In this case, the
ROC and AUC are applied to the multiclass classifcation
problem. Terefore, the one-vs-rest (OvR) approach was
used to distinguish between one class and other classes. Te
evaluation of ROC and AUC for each model scenario is
presented in Figures 6 and 7 for the datasets of words and
phrases, respectively. In either the word or phrase dataset,
the model scenarios show a good performance of AUC,
which is close to 1. Tere are no classes in all scenarios near
0.5, which means poor separability between classes. How-
ever, the LRCN performs better on separability than Conv-
LSTM in both word and phrase datasets. After looking at the
AUC result of the LRCN-3Conv in a word dataset, there is an
interesting fnding that in LRCN-3Conv, the words “per-
misi” and “berhenti” are successfully distinguished, although

in the frst sequence of image frames, it has a similar vowel
sound of “p” and “b.” By conducting full training on the
word instead of per syllable, the algorithm focuses not only
on a certain frame but on the overall sequence of frames.

Te performance of the Conv-LSTM, LRCN-2Conv, and
LRCN-3Conv models was also evaluated using precision,
recall, and F1 score. Formulas to calculate precision, recall,
and F1 score are presented in equations (9)–(11). Finally,
precision, recall, and F1 score measurements are applied to
the word and phrase datasets. A test result that accurately
detects the existence of a condition is called a true positive
(TP). True negative (TN) is an alternative term for a test
result that correctly foretells the absence of a circumstance.
A test result that falsely suggests the presence of an attribute
is known as a false positive (FP). Te result of a test that
incorrectly implies that a particular circumstance is not
present is called a false negative (FN).

Recall �
TP

TP + FN
, (9)

Precision �
TP

TP + FP
, (10)

F1 score � 2 ·
precision∗ recall
precision + recall

. (11)

Precision is used to measure the level of accuracy be-
tween the actual value and the predicted value. Ten, recall
aims to calculate the ratio between TP and TP+ FN.
Meanwhile, the F1 score is used to calculate the average
precision and recall. Tese additional performance calcu-
lations ensure that the model has feasible accuracy and
sensitivity and are presented in Table 4 for the word dataset
and Table 5 for the phrase dataset.

Table 5 shows that the average F1 score values for the
LRCN-3Conv, LRCN-2Conv, and Conv-LSTM models are
91%, 95%, and 96%, respectively. Te LRCN-3Conv model
performs better than the LRCN-2Conv and Conv-LSTM
models. Based on the comparison of Tables 4 and 5, in
general, the model performs better on the phrase dataset
than on the word dataset. Te number of classes is taking
a role because, in the phrase dataset, only four classes are
compared with 10 classes in the word dataset.

Te algorithm method proposed in this study is also
applied to the MIRACL-VC1 public dataset only with the
word-labeled data. Te preprocessing stage and the LRCN
use the same approach as applied in IndoLR. Te MIR-
ACL-VC1 dataset has fewer images for each class, as it is
captured at 15 frames per second with a sequence length
range of 4–27 image frames. In the experiments carried out,
the length of the sequence frame determined is 12 frames.

ROC and AUC were also evaluated for each class in the
MIRACL-VC1 dataset with two diferent LRCN models as
shown in Figure 8. Tere is no signifcant diference be-
tween LRCN with two convolutional layers and LRCN
with three convolutional layers. However again, the in-
creased number of convolutional layers in LRCN has
better separability as proved by the better result of AUC in
most labels of classes. Te accuracy performance results
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Figure 5: Training accuracy result of the phrase dataset. (a) Conv-LSTM model. (b) LRCN-2Conv model. (c) LRCN-3Conv model.

Table 3: Performance results of IndoLR.

Model
Words

Rt (ms)
Phrase

Rt (ms)Val. acc.
(%)

Test acc.
(%) Tt (s) Val. acc.

(%)
Test acc.

(%) Tt (s)

Conv-LSTM 94.7 90.42 7996.6 ±88 95 90.62 9509.8 ±105
LRCN-2Conv 95.83 92.92 600.3 ±64 99.37 95.00 539.6 ±68
LRCN-3Conv 97.92 95.42 727.3 ±62 99.37 95.63 585.9 ±66
∗Tt, training time in seconds; Rt, average recognition time for each video sample in milliseconds.
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Figure 4: Results of the training accuracy of the word dataset. (a) Conv-LSTM model. (b) LRCN-2Conv model. (c) LRCN-3Conv model.
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Figure 6: Te ROC and AUC for each class in the word dataset. (a) Conv-LSTMmodel. (b) LRCN-2Conv model. (c) LRCN-3Conv model.
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obtained are also excellent compared to previous studies,
which can be seen in Table 6.

Te detection method with MediaPipe Face Mesh is
also the only one used to compare it with other studies.
Detection with this method proved to be more robust, as
it can more efectively and efciently localize the lips
compared to HOG + SVM and Dlib. Te consistency of
the results between accuracy and the F1 score is also not
far away. For the original dataset, MediaPipe + LRCN
with 3 CNN layers has superior results (87%) compared
to Inception V3 (86.6%) [48], CNN (52.9%) [48], VGG-
16+LSTM [47] (59%), 3D-CNN [51] (70.2), and 3D-
CNN+ LSTM [52] (85%).

Te MobileNet+LSTM and VGG-16+LSTM architectures
[50] have an accuracy of more than 90%, which exceeds this
study in the modifed MIRACL-VC1 dataset. Modifed means
that the MIRACL-VC1 dataset is producing a new dataset
which is similar to MIRACL-VC1. Tis is performed because
the original MIRACL-VC1 has a lot of noise, such as part of the
nose detected as a background, which can interfere with the
training process. However, the value of the F1 score in this
study, compared to the results of the MobileNet+LSTM F1
score, is 3% higher than the original MIRACL-VC1 [7]. Tis
achievement is also inseparable from using MediaPipe Face
Mesh to detect lips very well to avoid false information.
Moreover, LRCN with three convolutional layers also gave
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Figure 7:Te ROC and AUC for each class in the phrase dataset. (a) Conv-LSTMmodel. (b) LRCN-2Convmodel. (c) LRCN-3Convmodel.

Table 4: Results of the performance evaluation (precision, recall, and F1 score) on the word dataset.

Words
Conv-LSTM LRCN-2Conv LRCN-3Conv

Precision (%) Recall (%) F1 score (%) Precision (%) Recall (%) F1 score (%) Precision (%) Recall (%) F1 score (%)
Maaf 96 96 96 100 100 100 100 100 100
Tolong 85 96 90 88 96 92 96 96 96
Permisi 96 96 96 92 96 94 100 96 98
Halo 91 88 89 96 92 94 91 88 89
Mulai 89 71 79 100 83 91 96 92 94
Berhenti 89 100 94 96 96 96 96 100 98
Lanjut 95 75 84 90 79 84 88 92 90
Sakit 92 96 94 92 100 96 96 96 96
Kembali 88 92 90 96 92 94 96 96 96
Awas 85 96 90 82 96 88 96 100 98
Accuracy 90 93 95
Macro avg 91 90 90 93 93 93 95 95 95
Weighted avg 91 90 90 93 93 93 95 95 95

Table 5: Results of the performance evaluation (precision, recall, and F1 Score) on the phrase dataset.

Phrase
Conv-LSTM LRCN-2Conv LRCN-3Conv

Precision (%) Recall (%) F1score (%) Precision (%) Recall (%) F1score (%) Precision (%) Recall (%) F1score (%)
Terima kasih 98 100 99 100 97 99 100 97 99
Saya minta tolong 86 80 83 95 88 91 93 93 93
Saya minta maaf 88 90 89 97 97 97 97 97 97
Minta tolong 90 93 91 89 97 93 93 95 94
Accuracy 91 95 96
Macro avg 91 91 91 95 95 95 96 96 96
Weighted avg 91 91 91 95 95 95 96 96 96
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a signifcant result in accuracy. Terefore, the fndings of this
investigation can be accepted and used as a reference by looking
at previous studies. Te use of MediaPipe and LRCN is a po-
tentially robust detection algorithm to support the performance
of the neural network training model to detect lips correctly.

5. Conclusion

IndoLR has been successfully built for Indonesian lip-
reading benchmarking. In this study, the LRCN architec-
ture and MediaPipe Face Mesh have been proposed to
recognize lip reading. Te performance of the LRCN model
has been tested under various conditions. Testing has been
carried out on two types of test data, namely, the word and
phrase datasets. Te experimental results show that the
LRCNwith three convolutional models produces the highest
accuracy in the word dataset and the phrase dataset than the
LRCN with two convolutional layers and convolutional
LSTM. Adding more convolutional layers can improve the
performance of the algorithm.

Te average F1 score values of the LRCN-3Conv, LRCN-
2Conv, and Conv-LSTM models for the word dataset are
90%, 93%, and 95%, respectively. Meanwhile, the average F1
score values of the LRCN-3Conv, LRCN-2Conv, and Conv-
LSTMmodels for the phrase dataset are 91%, 95%, and 96%,
respectively. In addition, testing was also conducted on an
open dataset available called MIRACL-VC1 in word-labeled
classes. Te LRCN with three convolutional layers also
outperforms previous studies in the F1 score.Te fndings of

this study show that it is possible to use MediaPipe to get lip
ROI without any noise and implement LRCN in the frame-
to-frame data. Te types of lip shapes are also necessary,
which may not be considered in other research studies.

For future work, it will be more robust if the dataset is
enriched by involving more people with various lip types,
poses, angles, and lighting conditions. Te diversity of
datasets can support emerging classifcation algorithms such
as transformer or attention-based models because it has
a “data-hungry” behavior. Te larger data obtained can
provide a better model performance. Tis study also has
limitations, which are related to the efciency of the com-
putational time and memory used without losing the cor-
relation between every frame sequence of the sample video.
A more efective and efcient method is still needed, which
can make lip-reading recognition perform better in real-
world applications.

Data Availability

Te dataset in MP4 format used to support the fndings is
deposited in the Kaggle repository and is available at https://
www.kaggle.com/datasets/abasset/indolr. Te working source
code experiment is published at https://github.com/
sukasenyumm/IndoLR.
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Table 6: Comparison of the results of the proposed method with previous work in MIRACL-VC1.

Recognition methods Detection methods Dataset Accuracy (%) F1 score (%)
Fine-tune VGG-16 + LSTM [47] Dlib MIRACL-VC1 59 Unspecifed
Inception V3 [48] Dlib MIRACL-VC1 86.6 Unspecifed
CNN+Batch normalization [49] Haar cascade MIRACL-VC1 52.9 Unspecifed
MobileNet + LSTM [50] HOG+SVM Modifed MIRACL-VC1 94 84
VGG-16 + LSTM [50] HOG+SVM Modifed MIRACL-VC1 96 70
3D-CNN [51] Dlib MIRACL-VC1 70.2 Unspecifed
LSTM [52] Dlib MIRACL-VC1 66 66
3D-CNN+LSTM [52] Dlib MIRACL-VC1 85 Unspecifed
LRCN-2Conv MediaPipe MIRACL-VC1 81.33 81
LRCN-3Conv MediaPipe MIRACL-VC1 90.67 91
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Figure 8: Te ROC and AUC for each class in the MIRACL-VC1 dataset. (a) LRCN-2Conv model. (b) LRCN-3Conv model.
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