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When diverse decision makers are involved in the decision-making process, taking average of decision values might not refect an
accurate point of view. To overcome such a scenario, the circular Fermatean fuzzy (CFF) set, an advancement of the Fermatean
fuzzy (FF) set, and the interval-valued Fermatean fuzzy set (IVFFS) are introduced in this current study. Te proposed CFF set is
a circle with a centre as association value (AV) and nonassociation value (NAV) with a radius at most equal to

�
2

√
. It is built in

such a way that it covers all the decisionmakers’ opinion value through a circle. Due to its geometric structure, the CFF set resolves
ambiguity and risk more accurately and efectively than FF and IVFF. FF t-norm and t-conorm are used to investigate the
properties of CFF sets, subsequent to which the algebraic operations between them are defned. A couple of CFF distance measures
between CFF numbers are introduced and used in the selection of an electric autorickshaw along with the CFF weighted averaging
and geometric aggregation operators. Te overview and comparison analysis of the generated reports exemplifes the viability and
compatibility of the CFF set strategy for selecting the best choices.

1. Introduction

In 1965, Zadeh [1] pioneered the conception of the fuzzy set
(FS) by employing AV that takes a value stretching from 0 to
1 instead of a characteristic function that concurs with the
value of either 0 or 1 to address the consistency difculties in
real-life situations.

FS is capable of administering the AV. In reality, the
NAV should be brought into consideration in many addi-
tional circumstances, and that is not essential that the
amount of NAV remains the same as the AV reduced by one.
As a consequence of this, Atanossav [2] proposed the
intuitionistic fuzzy set (IFS) concept in 1986 that considers
both AV and NAV into account, in which the NAV is not

obtained from the AV and that culminates in the concept of
hesitation degree with the assumption that the sum of AV,
NAV, and hesitation degree is 1.

Despite the reality that IFS has been used in several areas,
there were challenges. In particular, the IFS lacks the ca-
pacity to handle such information when a decision maker
provides it, but the total amount of AV and NAV is higher
than 1. With regard to this, Yager and Abbasov [3] put
forwarded the Pythagorean fuzzy set (PFS) theory in 2013 by
means of manipulating IFS’s perspective. PFS provides the
additional feature that the sum of squares of AV, NAV, and
hesitation degree is 1, which extends the acceptance range.

Te FF set proposed by Senapati and Yager [4] has
comparatively extensive range of acceptance to IFS and PFS
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by taking AV and NAV with the condition that the sum of
cubes of AV, NAV, and hesitation degree is 1.

Te highly progressive advancement in FS is the circular
IFS, which Atanassov [5] created in 2020. In contrast to IFS,
a CIFS illustrates every component as a circle with a centre
and radius.Tese sets are those in which every component of
the universe has an AV and an NAV as the centre of a circle
around them, and that circle has a radius in [0,

�
2

√
] such that

the sum of the values of AV and NAV within this circle is at
most equal to 1. A circular Pythagorean fuzzy set (CPFS)
introduced by Bozyigit et al. [6] is described by a circle with
a centre as AV and NAV, with the sum of their squares
between 0 and 1 and radius in [0, 1]. Alsattar et al. [7] have
used CPFS for decision-making.

As an extension of FFS and IVFS, the circular Fermatean
fuzzy (CFF) set is introduced in this study. CFF sets are
circles with a centre at the AV and NAV, with the sum of
their cubes between 0 and 1 and of radius in [0,

�
2

√
].

Compared to the FFS structure, a CFF set component is
represented by a confgurable circle with a radius of not
more than

�
2

√
and a centre made up of AV and NAV. So, the

CFF set structure is demonstrated in a two-dimensional
space as a high-order ambiguous set where the components
of a given fnite universe of discourse take the AV and NAV
enclosing in a circle. As an outcome, more informed de-
cisions can be established by decision makers by assessing
things in greater size and in willing regions.

Particular forms of t-norm and t-conorm have been
studied by Deschrijver et al. [8] and Klement et al. [9]. Te
aggregation process facilitates the conversion of a list of
items, all associated with the same set, into a single repre-
sentation of that set. Grabisch et al. [10] have written about
aggregation functions in the Encyclopedia of Mathematics
and its Applications, while Beliakov et al. [11] introduced
averaging operators for Atanassov’s IFS. Xu and Yager [12],
Wang and Liu [13], and Xu and Da [14] have studied
geometric aggregation operators. Garg and Arora [15] and
Xia et al. [16] have researched aggregation operators in
Archimedean t-norm and t-conorm.

A structured approach for valuing options with competing
criteria and selecting the most efective plan of action is known
as multiple criteria decision analysis (MCDA). While MCDM
shares similarities with cost-beneft analysis, it considers ad-
ditional factors beyond just cost. MCDM is an approach that
fnds applications in a broad range of domains.

Kirisci [17] and Sahoo [18] introduced the SMs of the FF
set. Atanassov and Evgeniy [19] introduced four distances of
CIFS, Chen [20] has given evolved distance measures for
CIFS, Hayat et al. [21] introduced group-based IFS AOs, and
Yager [22] has discussed fuzzy measures.

Based on spherical fuzzy soft TOPSIS [23], IVFF TOPSIS
[24], quasirung orthopair FS [25], 3, 4-quasirung FS [26],
IVFF Dombi aggregation operators [27], FF Bonferroni
mean [28], IVFFS [29], FF weighted averaging and geo-
metric operators [30], IF Einstein hybrid AO [31], interval-
valued picture fuzzy geometric Bonferroni mean AOs [32],
logarithmic AOs [33], generalized IFAOs [21], q-rung
orthopair fuzzy Choquet integral [34], and generalized IF
AO [35] MCDM have been discussed.

Te following are our objective and purposes:

(i) All currently available approaches employ the single
averaged information, even when there are nu-
merous decision makers. Te opinion of the de-
cision maker is converted to a circle using our
recommended CFF set.

(ii) Te CFF set is an efective tool to deal with un-
certainty because of its special geometric structure.
Te CFF set identifes the range of opinions that
a decision maker is allowed to have in order for the
ranking of options remains unchanged.

(iii) Te values can be aggregated easily by employing
the CFF weighted averaging and geometric aggre-
gation operator.

(iv) CFFCDM and CFFEDM are the efective tools to
rank the alternatives, and they can be extended to
other DM in the future work.

Te following outcomes are illustrated in this study:

(i) Te CFF sets are introduced, and their character-
istics are investigated.

(ii) CFF aggregation operator and distance measures
are defned using FF t-norm and t-conorm.

(iii) Te suggested methods are applied in the selection
of the best electric autorickshaw.

(iv) Te sustainability and validity are examined
through visualisation and comparison analysis with
the existing methods.

Order of the remaining content is as follows: pre-
liminaries are given in Section 2. In Section 3, the CFF set is
introduced as well as the connections between them, and its
characteristics are explored. Section 4 deals with CFF AOs
and DMs. In Section 5, the proposed AOs and DMs are used
for aMCDMon an electric autorickshaw. Section 6 winds up
with a conclusion.

Te acronyms used in the current research are listed as
follows (see Table 1).

2. Preliminaries

Tis section conveys some of the essential concepts utilised
in this study.

Defnition 1 (see [4]). “A set F � x, αF(x),􏼊􏼈

βF(x)〉: x ∈ X} in the universe of discourse X is called
Fermatean fuzzy (FF) set if 0≤ (αF(x))3 + (βF(x))3 ≤ 1,
where αF(x): X⟶ [0,1], βF(x): X⟶ [0, 1], and π ���������������������

1 − (αF(x))3 − (βF(x))3
3

􏽱

are the degree of AV, NAV, and
the degree of indeterminacy of x in F. Te components of
the FF set are taken as the FF number (FFN), and it is
represented by F � (αF, βF) whose complement is
Fc � (βF, αF).”

Te terminology of triangular norm and triangular
conormwas originally put forwarded by Schweizer and Sklar
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[36] by elaborating on Menger’s [37] notion of the proba-
bilistic metric spaces who originally introduced the terms t-
norm and t-conorm. Such concepts fulfl the signifcant parts
in decision-making and statistics.

Defnition 2 (see [9, 36]). A t-norm is a function T: [0,1] ×

[0,1]⟶ [0,1] that satisfes the following conditions:

(1) T(a, 1) � a for all a ∈ [0,1]

(2) T(a, b) � T(b, a) for all a, b ∈ [0,1]

(3) T(a, T(b, c)) � T(T(a, b), c) for all a, b, c ∈ [0,1]

(4) T(a, b)≤T(a′, b′) whenever a≤ a′ and b≤ b′ for all
a, b′, b, b′ ∈ [0,1]

Defnition 3 (see [9, 36]). A t-conorm is a function
S: [0,1] × [0,1]⟶ [0,1] that satisfes the following
conditions:

(1) S(a, 0) � a for all a ∈ [0,1]

(2) S(a, b) � S(b, a) for all a, b ∈ [0,1]

(3) S(a, S(b, c)) � S(S(a, b), c) for all a, b, c ∈ [0,1]

(4) S(a, b)≤ S(a′, b′) whenever a≤ a′ and b≤ b′ for all
a, a′, b, b′ ∈ [0,1]

Defnition 4 (see [9, 36]). A strictly decreasing function
g: [0,1]⟶ [0,∞] with g(1) � 0 is called the additive

generator of a t-norm T if we have T(x, y) � g− 1(g(x) +

g(y)) for all (x, y) ∈ [0,1] × [0,1].

Defnition 5 (see [9, 36]). Te additive generator of a dual t-
conorm can therefore be found using the fuzzy complement
notion.

(1) N(0) � 1 and N(1) � 0
(2) N(α)≥N(β) whenever α≤ β for all α, β ∈ [0,1]

(3) Continuity
(4) N(N(α)) � α for all α ∈ [0,1]

Te function N: [0,1]⟶ [0,1] defned by
N(x) � (1 − xk)1/k, where k ∈ (0,∞) is a fuzzy comple-
ment. When k � 3, N becomes the Fermatean fuzzy com-
plement N(x) �

�����
1 − x33

√
. “T is an Archimedean t-norm if

and only if T(x, x)<x for all x ∈ (0,1), and S is an
Archimedean t-conorm if and only if S(x, x)> x for all
x ∈ (0,1).

Defnition 6 (see [9, 36]). In [0,1], let T be a t-norm and S be
a t-conorm. If T(x, y) � N(S(N(x), N(y))) and
S(x, y) � N(T(N(x), N(y))), then T and S are referred as
dual with respect to the fuzzy complement N.

Remark 7 (see [9, 36]). Let T be a t-norm on [0, 1].Ten, the
dual t-conorm S with respect to the Fermatean fuzzy
complement N is as follows:

Table 1: List of acronyms.

Acronyms Expansion
AV Association value
NAV Nonassociation value
FS Fuzzy set
IFS Intuitionistic fuzzy set
PFS Pythagorean fuzzy set
IVFFS Interval-valued Fermatean fuzzy set
FF Fermatean fuzzy
FFN Fermatean fuzzy number
CIFS Circular intuitionistic fuzzy set
CPFS Circular Pythagorean fuzzy set
CFF Circular Fermatean fuzzy
CFFN Circular Fermatean fuzzy number
MCDM Multicriteria decision-making
DE Decision experts
AO Aggregation operator
DM Distance measure
FFDM Fermatean fuzzy decision matrix
NFFDM Normalised Fermatean fuzzy decision matrix
NCFFDM Normalised circular Fermatean fuzzy decision matrix
ACFFDM Aggregated circular Fermatean fuzzy decision matrix
CFFWA Circular Fermatean fuzzy weighted averaging aggregation operator
CFFWG Circular Fermatean fuzzy weighted geometric aggregation operator
CFFCDM Circular Fermatean fuzzy cosine distance measure
CFFEDM Circular Fermatean fuzzy Euclidean distance measure
FFWA Fermatean fuzzy weighted averaging aggregation operator
FFWG Fermatean fuzzy weighted geometric aggregation operator
FFCDM Fermatean fuzzy cosine distance measure
FFEDM Fermatean fuzzy Euclidean distance measure
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S(x, y) �
������
1 − T

33
􏽰 �����

1 − x
33

􏽱

,

�����

1 − y
33

􏽱

􏼠 􏼡. (1)

3. Circular Fermatean Fuzzy Sets

Tis section addresses some of the basic features of CFF sets
employed in this work.

Defnition 8. A circular Fermatean fuzzy (CFF) set cF

stated as cF � ι, μcF(ι), ]cF(ι); ρ􏼊 􏼋: ι ∈ I􏼈 􏼉 in the the space
of discussion I is a circle with centre at AV and NAV
μcF(ι), ]cF(ι): I⟶ [0,1] and of radius ρ ∈ [0,

�
2

√
]

such that 0≤ (μcF(ι))3 + (]cF(ι))3 ≤ 1. πcF(ι)

�

��������������������

1 − μcF(ι))3 − (]cF(ι))33
􏽱

is the value of the in-
determinacy ι in cF.

Te component of the CFF set is called the circular
Fermatean fuzzy number (CFFN), and it is indicated in the
form of cF � (μcF, ]cF; ρcF).

Remark 9. All FFS can be viewed as a CFF set because each
FFS possesses the structure cF � ι, μcF(ι),􏼊􏼈

]cF(ι); 0〉 ι ∈ I} � F. Tat is, every FFS is a CFF set with
radius 0.

Defnition 10. Let cF � ι, μcF(ι), ]cF(ι); ρcF􏼊 􏼋: ι ∈ I􏼈 􏼉

and cG � ι, μcG(ι), ]cG(ι); ρcG􏼊 􏼋: ι ∈ I􏼈 􏼉 be two CFF sets in
I. Ten,

(1) cF ⊂ cG if ρcF < ρcG and μcF(ι)< μcG(ι),
]cF(ι)> ]cG(ι)∀ι ∈ I.

(2) cF � cG if ρcF � ρcG and μcF(ι) � μcG(ι),
]cF(ι) � ]cG(ι)∀ι ∈ I.

(3) Te complement cFc � ι, ]cF(ι), μcF(ι);􏼊􏼈

ρcF〉: ι ∈ I}.
(4) In the context of minimum andmaximum, we defne

(i) cF ⋃
min

cG � ι, max μcF(ι), μcG(ι)( 􏼁, min ]cF(ι), ]cG(ι)( 􏼁; min ρcF, ρcG( 􏼁􏼊 􏼋: ι ∈ I􏼈 􏼉,

(ii) cF ⋃
max

cG � ι, max μcF(ι), μcG(ι)( 􏼁, min ]cF(ι), ]cG(ι)( 􏼁; max ρcF, ρcG( 􏼁􏼊 􏼋: ι ∈ I􏼈 􏼉,

(iii) cF 􏽜
min

cG � ι, min μcF(ι), μcG(ι)( 􏼁, max ]cF(ι), ]cG(ι)( 􏼁; min ρcF, ρcG( 􏼁􏼊 􏼋: ι ∈ I􏼈 􏼉,

(iv) cF 􏽜
max

cG � ι, min μcF(ι), μcG(ι)( 􏼁, maι ]cF(ι), ]cG(ι)( 􏼁; max ρcF, ρcG( 􏼁􏼊 􏼋: ι ∈ I􏼈 􏼉.

(2)

(5) De Morgan’s law is as follows:

(i) cF ⋃
min

cG􏼠 􏼡

c

� cF
c
􏽜
min

cG
c
,

(ii) cF ⋃
max

cG􏼠 􏼡

c

� cF
c
􏽜
max

cG
c
,

(iii) cF 􏽜
min

cG⎛⎝ ⎞⎠

c

� cF
c⋃
min

cG
c
,

(iv) cF 􏽜
max

cG⎛⎝ ⎞⎠

c

� cF
c ⋃
max

cG
c
.

(3)

Proposition 11. Let Fi � μfi,1
, ]fi,1

􏼜 􏼝, μfi,2
, ]fi,2

􏼜 􏼝, . . . ,􏼚

μfi,ki

, ]fi,ki
􏼜 􏼝} be the collection of FFNs. Ten,

cFi � ιi, μcF(ιi), ]cF(ιi); ρcFi􏼊 􏼋: ιi ∈ I􏼈 􏼉 are CFF sets,
where

μcF ιi( 􏼁, ]cF ιi( 􏼁􏼊 􏼋 �

�������

􏽐
ki

j�1μ
3
fi,j

ki

3

􏽶
􏽴

,

�������

􏽐
ki

j�1]
3
fi,j

ki

3

􏽶
􏽴

􏼪 􏼫 and

ρcFi
� min max

1≤j≤ki

������������������������������

μcF ιi( 􏼁 − μfi,j
􏼒 􏼓

2
+ ]cF ιi( 􏼁 − ]fi,j

􏼒 􏼓
2

􏽳

,
�
2

√⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(4)

Proof. Consider
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0≤ μ3cF ιi( 􏼁 + ]3cF ιi( 􏼁 �
􏽐

ki

j�1μ
3
fi,j

ki

+
􏽐

ki

j�1]
3
fi,j

ki

�
􏽐

ki

j�1μ
3
fi,j

+ 􏽐
ki

j�1]
3
fi,j

ki

≤
􏽐

ki

j�11
ki

� 1,

(5)

and meanwhile, 0≤ ρcFi
≤

�
2

√
,∀i. Consequently,

cF � ι, μcFi
(ιi), ]cF(ιi); ρcFi

􏽄 􏽅: ιi ∈ I􏽮 􏽯 is a CFF set. □

Example 1. By Proposition 11, for the collection of FFNs
F1 � 0.6,0.4〈 〉, 0.7,0.2〈 〉, 0.7,0.1〈 〉, 0.8,0.1〈 〉{ },

F2 � 0.1,0.2〈 〉, 0.1,0.3〈 〉, 0.1,0.4〈 〉, 0.2,0.4〈 〉{ }, and F3 �

0.33,0.96〈 〉, 0.3,0.92〈 〉, 0.25,0.89〈 〉, 0.4,0.7〈 〉{ }, the corre-
sponding CFF sets are cFi � 0.71,0.26; 0.19〈 〉,{

0.14,0.34; 0.15〈 〉 0.33,0.88; 0.19〈 〉}.

Te transformation from FF sets to CFF sets, discussed
in Example 1, is visualised in Figure 1.

Defnition 12. cf1 � μcf1
, ]cf1

; ρcf1
􏽄 􏽅, cf2 � μcf2

, ]cf2
;􏽄

ρcf2
〉, and cf � μcf, ]cf; ρcf􏽄 􏽅 be CFFNs and ψ > 0. Let us

assume the continuous Archimedean t-norms
m, a: [0,1]⟶ [0,∞) are the additive generators for
T&Q, respectively. Also, the continuous Archimedean t-
conorms n, b: [0,1]⟶ [0,∞) taken as n(x) � m(

�����
1 − x33

√
)

and b(x) � a(
�����
1 − x33

√
) are the additive generators for S and

P, respectively:

(i) cf1 ⊕ Qcf2 � S μcf1
, μcf2

􏼐 􏼑, T ]cf1
, ]cf2

􏼐 􏼑, Q ρcf1
, ρcf2

􏼐 􏼑􏽄 􏽅

� n
− 1

n μcf1
􏼐 􏼑 + n μcf2

􏼐 􏼑􏼐 􏼑, m
− 1

m ]cf1
􏼐 􏼑 + m ]cf2

􏼐 􏼑􏼐 􏼑, a
− 1

a ρcf1
􏼐 􏼑 + a ρcf2

􏼐 􏼑􏼐 􏼑􏽄 􏽅,

(ii) cf1 ⊕ Pcf2 � S μcf1
, μcf2

􏼐 􏼑, T ]cf1
, ]cf2

􏼐 􏼑, P ρcf1
, ρcf2

􏼐 􏼑􏽄 􏽅

� n
− 1

n μcf1
􏼐 􏼑 + n μcf2

􏼐 􏼑􏼐 􏼑, m
− 1

m ]cf1
􏼐 􏼑 + m ]cf2

􏼐 􏼑􏼐 􏼑, b
− 1

b ρcf1
􏼐 􏼑 + b ρcf2

􏼐 􏼑􏼐 􏼑􏽄 􏽅,

(iii) cf1 ⊗ Qcf2 � T μcf1
, μcf2

􏼐 􏼑, S ]cf1
, ]cf2

􏼐 􏼑, Q ρcf1
, ρcf2

􏼐 􏼑􏽄 􏽅

� m
− 1

m μcf1
􏼐 􏼑 + m μcf2

􏼐 􏼑􏼐 􏼑, n
− 1

n ]cf1
􏼐 􏼑 + n ]cf2

􏼐 􏼑􏼐 􏼑, a
− 1

a ρcf1
􏼐 􏼑 + a ρcf2

􏼐 􏼑􏼐 􏼑􏽄 􏽅,

(iv) cf1 ⊗ Pcf2 � T μcf1
, μcf2

􏼐 􏼑, S ]cf1
, ]cf2

􏼐 􏼑, P ρcf1
, ρcf2

􏼐 􏼑􏽄 􏽅

� m
− 1

m μcf1
􏼐 􏼑 + m μcf2

􏼐 􏼑􏼐 􏼑, n
− 1

n ]cf1
􏼐 􏼑 + n ]cf2

􏼐 􏼑􏼐 􏼑, b
− 1

b ρcf1
􏼐 􏼑 + b ρcf2

􏼐 􏼑􏼐 􏼑􏽄 􏽅,

(v)ψQcf � n
− 1 ψn μcf􏼐 􏼑􏼐 􏼑, m

− 1 ψm ]cf􏼐 􏼑􏼐 􏼑, a
− 1 ψa ρcf􏼐 􏼑􏼐 􏼑􏽄 􏽅,

(vi)ψPcf � n
− 1 ψn μcf􏼐 􏼑􏼐 􏼑, m

− 1 ψm ]cf􏼐 􏼑􏼐 􏼑, b
− 1 ψb ρcf􏼐 􏼑􏼐 􏼑􏽄 􏽅,

(vii) cf
ψQ � m

− 1 ψm μcf􏼐 􏼑􏼐 􏼑, n
− 1 ψn ]cf􏼐 􏼑􏼐 􏼑, a

− 1 ψa ρcf􏼐 􏼑􏼐 􏼑􏽄 􏽅,

(viii) cf
ψP � m

− 1 ψm μcf􏼐 􏼑􏼐 􏼑, n
− 1 ψn ]cf􏼐 􏼑􏼐 􏼑, b

− 1 ψb ρcf􏼐 􏼑􏼐 􏼑􏽄 􏽅.

(6)

Te preceding operators own the following features:

(i) cf1 ⊕ Qcf2 � cf2 ⊕ Qcf1

(ii) cf1 ⊗ Qcf2 � cf2 ⊗ Qcf1

(iii) (cf1 ⊕ Qcf2)⊕ Qcf3 � cf1 ⊕ Q(cf2 ⊕ Qcf3)

(iv) (cf1 ⊗ Qcf2)⊗ Qcf3 � cf1 ⊗ Q(cf2 ⊗ Qcf3)

(v) ψQ(cf1 ⊕ Qcf2) � ψQcf1 ⊕ QψQcf2

(vi) (ψQ + cQ)cf � ψQcf⊕ QcQcf

(vii) (cf1 ⊗ Qcf2)
ψQ � cf

ψQ

1 ⊗ Qcf
ψQ

2

(viii) cfψQ ⊗ QcfcQ � cfψQ+cQ

Proof

(i) and (ii) are simple to prove.
(iii) We acquire
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cf1 ⊕ Qcf2􏼐 􏼑⊕ Qcf3 � n
− 1

n μcf1
􏼐 􏼑 + n μcf2

􏼐 􏼑􏼐 􏼑, m
− 1

m ]cf1
􏼐 􏼑 + m ]cf2

􏼐 􏼑􏼐 􏼑; a
− 1

a ρcf1
􏼐 􏼑 + a ρcf2

􏼐 􏼑􏼐 􏼑􏽄 􏽅⊕ Q μcf3
, ]cf3

; ρcf3
􏽄 􏽅

� n
− 1

n μcf1
􏼐 􏼑 + n μcf2

􏼐 􏼑 + n μcf3
􏼐 􏼑􏼐 􏼑, m

− 1
m ]cf1

􏼐 􏼑 + m ]cf2
􏼐 􏼑 + m ]cf3

􏼐 􏼑􏼐 􏼑; a
− 1

a ρcf1
􏼐 􏼑 + a ρcf2

􏼐 􏼑 + a ρcf3
􏼐 􏼑􏼐 􏼑􏽄 􏽅

� n
− 1

n μcf1
􏼐 􏼑 + n n

− 1
n μcf2

􏼐 􏼑 + n μcf3
􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑, m

− 1
m ]cf1

􏼐 􏼑 + m m
− 1

m ]cf2
􏼐 􏼑 + m ]cf3

􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑;􏽄

a
− 1

a ρcf1
􏼐 􏼑 + a a

− 1
a ρcf2

􏼐 􏼑 + a ρcf3
􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏽅

� μcf1
, ]cf1

; ρcf1
􏽄 􏽅⊕ Q n

− 1
n μcf2

􏼐 􏼑 + n μcf3
􏼐 􏼑􏼐 􏼑, m

− 1
m ]cf2

􏼐 􏼑 + m ]cf3
􏼐 􏼑􏼐 􏼑; a

− 1
a ρcf2

􏼐 􏼑 + a ρcf3
􏼐 􏼑􏼐 􏼑􏽄 􏽅

� cf1 ⊕ Q cf2 ⊕ Qcf3􏼐 􏼑.

(7)

(iv) Consider

cf1 ⊗ Qcf2􏼐 􏼑⊗ Qcf3 � m
− 1

m μcf1
􏼐 􏼑 + m μcf2

􏼐 􏼑􏼐 􏼑, n
− 1

n ]cf1
􏼐 􏼑 + n ]cf2

􏼐 􏼑􏼐 􏼑; a
− 1

a ρcf1
􏼐 􏼑 + a ρcf2

􏼐 􏼑􏼐 􏼑􏽄 􏽅⊗ Q μcf3
, ]cf3

; ρcf3
􏽄 􏽅

� m
− 1

m μcf1
􏼐 􏼑 + m μcf2

􏼐 􏼑 + m μcf3
􏼐 􏼑􏼐 􏼑, n

− 1
n ]cf1

􏼐 􏼑 + n ]cf2
􏼐 􏼑 + n ]cf3

􏼐 􏼑􏼐 􏼑; a
− 1

a ρcf1
􏼐 􏼑 + a ρcf2

􏼐 􏼑 + a ρcf3
􏼐 􏼑􏼐 􏼑􏽄 􏽅

� m
− 1

m μcf1
􏼐 􏼑 + m m

− 1
m μcf2

􏼐 􏼑 + m μcf3
􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑, n

− 1
n ]cf1
􏼐 􏼑 + n n

− 1
n ]cf2

􏼐 􏼑 + n ]cf3
􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑;􏽄

a
− 1

a ρcf1
􏼐 􏼑 + a a

− 1
a ρcf2

􏼐 􏼑 + a ρcf3
􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏽅

� μcf1
, ]cf1

; ρcf1
􏽄 􏽅⊗ Q m

− 1
􏽄 m μcf2

􏼐 􏼑 + m μcf3
􏼐 􏼑􏼐 􏼑, n

− 1
n ]cf2
􏼐 􏼑 + n ]cf3

􏼐 􏼑􏼐 􏼑; a
− 1

a ρcf2
􏼐 􏼑 + a ρcf3

􏼐 􏼑􏼐 􏼑􏽅

� cf1 ⊗ Q cf2 ⊗ Qcf3􏼐 􏼑.

(8)

(v) We obtain
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Figure 1: Representation of FFN and CFFN.
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ψQ cf1 ⊕ Qcf2􏼐 􏼑 � ψ n
− 1

n μcf1
􏼐 􏼑 + n μcf2

􏼐 􏼑􏼐 􏼑, m
− 1

m ]cf1
􏼐 􏼑 + m ]cf2

􏼐 􏼑􏼐 􏼑; a
− 1

a ρcf1
􏼐 􏼑 + a ρcf2

􏼐 􏼑􏼐 􏼑􏽄 􏽅

� n
− 1 ψn μcf1

􏼐 􏼑 + ψn μcf2
􏼐 􏼑􏼐 􏼑, m

− 1 ψm ]cf1
􏼐 􏼑 + ψm ]cf2

􏼐 􏼑􏼐 􏼑; a
− 1 ψa ρcf1

􏼐 􏼑 + ψa ρcf2
􏼐 􏼑􏼐 􏼑􏽄 􏽅

� n
− 1

n n
− 1 ψn μcf1

􏼐 􏼑􏼐 􏼑􏼐 􏼑 + n n
− 1 ψn μcf2

􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑, m
− 1

m m
− 1 ψm ]cf1

􏼐 􏼑􏼐 􏼑􏼐 􏼑 + m m
− 1 ψm ]cf2

􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑;􏽄

a
− 1

a a
− 1 ψa ρcf1

􏼐 􏼑􏼐 􏼑􏼐 􏼑 + a a
− 1 ψa ρcf2

􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏽅

� n
− 1

􏽄 n μψcf1
􏼐 􏼑 + n μψcf2

􏼐 􏼑􏼐 􏼑, m
− 1

m ]ψcf1
􏼐 􏼑 + m ]ψcf2

􏼐 􏼑􏼐 􏼑; a
− 1

a ρψcf1
􏼐 􏼑 + a ρψcf2

􏼐 􏼑􏼐 􏼑􏽅

� ψQcf1 ⊕ QψQcf2.

(9)

(vi) It is clear that

ψQ + cQ􏼐 􏼑cf � n
− 1

(ψ + c)n μcf􏼐 􏼑􏼐 􏼑, m
− 1

(ψ + c)m ]cf􏼐 􏼑􏼐 􏼑; a
− 1

(ψ + c)a ρcf􏼐 􏼑􏼐 􏼑􏽄 􏽅

� n
− 1 ψn μcf􏼐 􏼑 + cn μcf􏼐 􏼑􏼐 􏼑, m

− 1 ψm ]cf􏼐 􏼑 + cm ]cf􏼐 􏼑􏼐 􏼑; a
− 1 ψa ρcf􏼐 􏼑 + ca ρcf􏼐 􏼑􏼐 􏼑􏼐 􏼑􏽄 􏽅

� n
− 1

n n
− 1 ψn μcf􏼐 􏼑􏼐 􏼑􏼐 􏼑 + n n

− 1
cn μcf􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑, m

− 1
m m

− 1 ψm ]cf􏼐 􏼑􏼐 􏼑􏼐 􏼑 + m m
− 1

cm ]cf􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑;􏽄

a
− 1

a a
− 1 ψa ρcf􏼐 􏼑􏼐 􏼑􏼐 􏼑 + a a

− 1
ca ρcf􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏽅

� ψQcf⊕ QcQcf.

(10)

(vii) We have

cf1 ⊗ Qcf2􏼐 􏼑
ψQ

� m
− 1 ψm μcf1 ⊗ Qcf2

􏼒 􏼓􏼒 􏼓, n
− 1 ψn ]cf1 ⊗ Qcf2

􏼒 􏼓􏼒 􏼓; a
− 1 ψa ρcf1 ⊗ Qcf2

􏼒 􏼓􏼒 􏼓􏼜 􏼝

� m
− 1 ψm m

− 1
m μcf1

􏼐 􏼑 + m μcf2
􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑, n

− 1 ψn n
− 1

n ]cf1
􏼐 􏼑 + n ]cf2

􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑; a
− 1 ψa a

− 1
a ρcf1

􏼐 􏼑 + a ρcf2
􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏽄 􏽅

� m
− 1

m μcf1
ψQ􏼐 􏼑 + m μcf2

ψQ􏼐 􏼑􏼐 􏼑, n
− 1

n ]cf1
ψQ􏼐 􏼑 + n ]cf2

ψQ􏼐 􏼑􏼐 􏼑; a
− 1

a ρcf1
ψQ􏼐 􏼑 + a ρcf2

ψQ􏼐 􏼑􏼐 􏼑􏽄 􏽅

� cf1
ψQ ⊗ Qcf2

ψQ .

(11)

(viii) We have

cf
ψQ+cQ � m

− 1
(ψ + c)m μcf􏼐 􏼑􏼐 􏼑, n

− 1
(ψ + c)n ]cf􏼐 􏼑􏼐 􏼑; a

− 1
(ψ + c)a ρcf􏼐 􏼑􏼐 􏼑􏽄 􏽅

� m
− 1 ψm μcf􏼐 􏼑 + cm μcf􏼐 􏼑􏼐 􏼑, n

− 1 ψn ]cf􏼐 􏼑 + cn ]cf􏼐 􏼑􏼐 􏼑; a
− 1 ψa ρcf􏼐 􏼑 + ca ρcf􏼐 􏼑􏼐 􏼑􏽄 􏽅

� m
− 1

m m
− 1 ψm μcf􏼐 􏼑􏼐 􏼑􏼐 􏼑 + m m

− 1
cm μcf􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑, n n

− 1 ψn ]cf􏼐 􏼑􏼐 􏼑􏼐 􏼑 + n n
− 1

cm ]cf􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑;􏽄

a
− 1

a a
− 1 ψa ρcf􏼐 􏼑􏼐 􏼑􏼐 􏼑 + a a

− 1
ca ρcf􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏽅

� m
− 1

m μcfψ􏼐 􏼑 + m μcfc􏼐 􏼑􏼐 􏼑, n
− 1

n ]cfψ􏼐 􏼑 + m ]cfc􏼐 􏼑􏼐 􏼑; a
− 1

a ρcfψ􏼐 􏼑 + a ρcfc􏼐 􏼑􏼐 􏼑􏽄 􏽅

� cf
ψQ ⊗ Qcf

cQ .

(12)

□
4. Circular Fermatean Fuzzy Aggregation
Operator and Distance Measures

Te aggregation’s role in data consolidation, especially in
decision-making circumstances, is to serve as an

overview of the data before taking the fnal step. Tis
section discusses the CFF weighted averaging and geo-
metric aggregation operators. We also generate the CFF
cosine and the Euclidean distance measure between
CFFNs.
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Defnition 13. If cω � (cω1, cω2, . . . cωκ) is the weight vector
of the CFFNs, cfi � μcfi

, ]cfi
; ρcfi

,􏽄 􏽅, i � 1,2,3, ..κ with
cωi > 0 and 􏽐

k
i�1cωi � 1, then the circular Fermatean fuzzy

weighted averaging aggregation operators according to
Archimedean t-norm and t-conorm denoted by
ATS − CFFWAQ and ATS − CFFWAP are defned as
follows:

ATS − CFFWAQ cf1, cf2, . . . cfκ( 􏼁 � a
κ

i�1
Q cωicfi( 􏼁,

ATS − CFFWAP cf1, cf2, . . . cfκ( 􏼁 � a
κ

i�1
P cωicfi( 􏼁.

(13)

Theorem 1 . Te aggregated values CFFWAQ and CFFWAP

of the collection of CFFNs fi � μcfi
, ]cfi

; ρcfi
􏽄 􏽅, i � 1,2,3, ..κ

with cωi > 0 and 􏽐
k
i�1cωi � 1 are also CFFNs and are of the

following form:

ATS − CFFWAQ cf1, cf2, . . . cfκ( 􏼁 � n
− 1

􏽘

κ

i�1
cωin μcfi

􏼐 􏼑⎛⎝ ⎞⎠, m
− 1

􏽘

κ

i�1
cωim ]cfi

􏼐 􏼑⎛⎝ ⎞⎠; a
− 1

􏽘

κ

i�1
cωia ρcfi

􏼐 􏼑⎛⎝ ⎞⎠􏼪 􏼫, (14)

ATS − CFFWAP cf1, cf2, . . . cfκ( 􏼁 � n
− 1

􏽘

κ

i�1
cωin μcfi

􏼐 􏼑⎛⎝ ⎞⎠, m
− 1

􏽘

κ

i�1
cωim ]cfi

􏼐 􏼑⎛⎝ ⎞⎠; b
− 1

􏽘

κ

i�1
cωia ρcfi

􏼐 􏼑⎛⎝ ⎞⎠􏼪 􏼫. (15)

Proof. From Proposition 11, ATS − CFFWAQ and ATS −

CFFWAP are CFFNs. We prove equation (14) through
mathematical induction.

For κ � 2,

a
2

i�1
Q cωicfi( 􏼁 � cω1cf1 ⊕ Qcω2cf2

� n
− 1

cω1n μcf1
􏼐 􏼑􏼐 􏼑, m

− 1
cω1m ]cf1

􏼐 􏼑􏼐 􏼑; a
− 1

cω1a ρcf1
􏼐 􏼑􏼐 􏼑􏽄 􏽅⊕ n

− 1
cω2n μcf2

􏼐 􏼑􏼐 􏼑, m
− 1

cω2m ]cf2
􏼐 􏼑􏼐 􏼑; a

− 1
cω2a ρcf2

􏼐 􏼑􏼐 􏼑􏽄 􏽅

� n
− 1

cω1n μcf1
􏼐 􏼑 + cω2n μcf2

􏼐 􏼑􏼐 􏼑, m
− 1

cω1m ]cf1
􏼐 􏼑 + cω2m ]cf2

􏼐 􏼑􏼐 􏼑; a
− 1

cω1a ρcf1
􏼐 􏼑 + cω2a ρcf2

􏼐 􏼑􏼐 􏼑􏽄 􏽅

� n
− 1

􏽘

2

i�1
cωin μcfi

􏼐 􏼑⎛⎝ ⎞⎠, m
− 1

􏽘

2

i�1
cωim ]cfi

􏼐 􏼑⎛⎝ ⎞⎠; a
− 1

􏽘

2

i�1
cωia ρcfi

􏼐 􏼑⎛⎝ ⎞⎠􏼪 􏼫.

(16)

Let us assume the result is true for κ � n

a
n

i�1
Q cωicfi( 􏼁 � n

− 1
􏽘

n

i�1
cωin μcfi

􏼐 􏼑⎛⎝ ⎞⎠, m
− 1

􏽘

n

i�1
cωim ]cfi

􏼐 􏼑⎛⎝ ⎞⎠; a
− 1

􏽘

n

i�1
cωia ρcfi

􏼐 􏼑⎛⎝ ⎞⎠􏼪 􏼫. (17)

Ten, for κ � n + 1, we have the following expression:
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a
n+1

i�1
Q cωicfi( 􏼁 � a

n

i�1
Q cωicfi( 􏼁⊕ Q cω(n+1)cfn+1􏼐 􏼑

� n
− 1

􏽘

n

i�1
cωin μcfi

􏼐 􏼑⎛⎝ ⎞⎠, m
− 1

􏽘

n

i�1
cωim ]cfi

􏼐 􏼑⎛⎝ ⎞⎠;􏼪

a
− 1

􏽘

n

i�1
cωia ρcfi

􏼐 􏼑⎛⎝ ⎞⎠􏼫⊕ Q n
− 1

cω(n+1)n μcfn+1
􏼐 􏼑􏼐 􏼑, m

− 1
cω(n+1)m ]cfn+1

􏼐 􏼑􏼐 􏼑; a
− 1

cω(n+1)a ρcfn+1
􏼐 􏼑􏼐 􏼑􏽄 􏽅

� n
− 1

􏽘

n

i�1
cωin μcfi

􏼐 􏼑 + cω(n+1)n μcfn+1
􏼐 􏼑⎛⎝ ⎞⎠, m

− 1
􏽘

n

i�1
cωim ]cfi

􏼐 􏼑 + cω(n+1)m μcfn+1
􏼐 􏼑⎛⎝ ⎞⎠;􏼪

a
− 1

􏽘

n

i�1
cωia ρcfi

􏼐 􏼑 + cω(n+1)a ρcfn+1
􏼐 􏼑⎛⎝ ⎞⎠􏼫

� n
− 1

􏽘

n+1

i�1
cωin μcfi

􏼐 􏼑⎛⎝ ⎞⎠, m
− 1

􏽘

n+1

i�1
cωim ]cfi

􏼐 􏼑⎛⎝ ⎞⎠; a
− 1

􏽘

n+1

i�1
cωia ρcfi

􏼐 􏼑⎛⎝ ⎞⎠􏼪 􏼫.

(18)

Tus, equation (14) is valid for κ � n + 1. Hence,
equation (14) holds for every κ. In the same way, we can
prove equation (15). □

Defnition 15. If cω � (cω1, cω2, . . . cωκ) is the weight vector
of the CFFNs cfi � μcfi

, ]cfi
; ρcfi

,􏽄 􏽅, i � 1,2,3, ..κ with
cωi > 0 and 􏽐

k
i�1cωi � 1, then circular Fermatean fuzzy

weighted geometric aggregation operators according to
Archimedean t-norm and t-conorm denoted by CFFWGQ

and CFFWGP are defned as follows:

ATS − CFFWGQ cf1, cf2, . . . cfκ( 􏼁 � b
κ

i�1
Q cωicfi( 􏼁,

ATS − CFFWAP cf1, cf2, . . . cfκ( 􏼁 � b
κ

i�1
P cωicfi( 􏼁.

(19)

Theorem 16. Te aggregated values ATS − CFFWGQ and
ATS − CFFWGP of the collection of CFFNs
cfi � μcfi

, ]cfi
; ρcfi

􏽄 􏽅, i � 1,2,3, ..κ with cωi > 0 and
􏽐

k
i�1cωi � 1 are also CFFNs and are of the following form:

ATS − CFFWGQ cf1, cf2, . . . cfκ( 􏼁 � m
− 1

􏽘

k

i�1
cωim μcfi

􏼐 􏼑⎛⎝ ⎞⎠, n
− 1

􏽘

k

i�1
cωin ]cfi

􏼐 􏼑⎛⎝ ⎞⎠; a
− 1

􏽘

k

i�1
cωia ρcfi

􏼐 􏼑⎛⎝ ⎞⎠􏼪 􏼫, (20)

ATS − CFFWGP cf1, cf2, . . . cfκ( 􏼁 � m
− 1

􏽘

k

i�1
cωim μcfi

􏼐 􏼑⎛⎝ ⎞⎠, n
− 1

􏽘

k

i�1
cωin ]cfi

􏼐 􏼑⎛⎝ ⎞⎠; b
− 1

􏽘

k

i�1
cωib ρcfi

􏼐 􏼑⎛⎝ ⎞⎠􏼪 􏼫. (21)

Proof. Te proof is similar to Teorem 14. □

Remark 17. If n, m, a, b: [0,1]⟶ [0,∞) are defned as
m(x) � − log x3, n(x) � − log(1 − x3), a(x) � − logx3, and

b(x) � − log(1 − x3), then m− 1(x) �
���
e− x3

√
, n− 1(x) �������

1 − e− x3
√

, a− 1(x) �
���
e− x3

√
, and b− 1(x) �

������
1 − e− x3

√
. From

equations (14), (15), (20), and (21), we obtain the following
expressions:
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CFFWAQ cf1, cf2, . . . cfκ( 􏼁 �

����������������

1 − 􏽙
κ

i�1
1 − μ3cfi

􏼐 􏼑
cωi3

􏽶
􏽴

, 􏽙
κ

i�1
]cωi

cfi
, 􏽙

κ

i�1
ρcωi

cfi
􏼪 􏼫,

CFFWAP cf1, cf2, . . . cfκ( 􏼁 �

����������������

1 − 􏽙

κ

i�1
1 − μ3cfi

􏼐 􏼑
cωi3

􏽶
􏽴

, 􏽙
κ

i�1
]cωi

cfi
,

����������������

1 − 􏽙

κ

i�1
1 − ρ3cfi

􏼐 􏼑
cωi3

􏽶
􏽴

􏼪 􏼫,

CFFWGQ cf1, cf2, . . . cfκ( 􏼁 � 􏽙
k

i�1
μcωi

cfi
,

����������������

1 − 􏽙
κ

i�1
1 − ]3cfi

􏼐 􏼑
cωi3

􏽶
􏽴

, 􏽙
κ

i�1
ρcωi

cfi
􏼪 􏼫,

CFFWGP cf1, cf2, . . . cfκ( 􏼁 � 􏽙

k

i�1
μcωi

cfi
,

����������������

1 − 􏽙

κ

i�1
1 − ]3cfi

􏼐 􏼑
cωi3

􏽶
􏽴

,

����������������

1 − 􏽙
κ

i�1
1 − ρ3cfi

􏼐 􏼑
cωi3

􏽶
􏽴

􏼪 􏼫.

(22)

Defnition 18. Let cF � μcF, ]cF; ρcF􏼊 􏼋 and
cG � μcG, ]cG; ρcG􏼊 􏼋 be two CFFNs. Te circular Fermatean
fuzzy cosine distance measure (CFFCDM) and the circular

Fermatean fuzzy Euclidean distance measure (CFFEDM)
between cF and cG are defned as follows:

CFFCDM(cF, cG) � 1 −
1
2

μ3cFμ
3
cG + ]3cF]

3
cG��������

μ6cF + ]6cF
3

􏽱 ��������

μ6cG + ]6cG
3

􏽱 + 1 −
ρcF − ρcG

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
2

√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (23)

CFFEDM(cF, cG) �
1
2

ρcF − ρcG

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
2

√ +

��������������������������
1
2

μ3cF − ]3cF􏼐 􏼑
2

+ μ3cG − ]3cG􏼐 􏼑
2

􏼔 􏼕

􏽲

􏼠 􏼡. (24)

Theorem 19. If cF � μcF, ]cF; ρcF􏼊 􏼋 and cG � μcG,􏼊

]cG; ρcG〉 are CFFNs, then all of the subsequent traits hold:

(i) 0≤CFFCDM(cF, cG)≤ 1
(ii) CFFCDM(cF, cG) � CFFCDM(cG, cF)

(iii) CFFCDM(cF, cG) � 0 if cF � cG

Te above theorem is also true for CFFEDM.

5. Multicriteria Decision-Making Using
Circular Fermatean Fuzzy Aggregation
Operators and Distance Measures

We use our suggested AOs andDMs inMCDM in the phases
that are as follows:

Step 1: Te choices cA1, cA2, . . . , cAm􏼈 􏼉 and essential
criteria cC1, cC2, . . . , cCn􏼈 􏼉 with weights
cω1, cω2, . . . , cωm􏼈 􏼉 that are nonnegative with all their
sum 1 and decision experts DE1, DE2, . . . , DEk􏼈 􏼉 who
are representatives in associated sectors are identifed
for the establishment of a decision-making framework.
Step 2: Making reference to the scale shown in Table 2,
the FF decision matrix (FFDM) in terms of FFNs ex-
ecuted up of FF linguistic terms pertaining to the DEs’
perspectives is brought out.
Step 3: Te cost criteria FFNs are replaced by their
complement to get the normalised FFDM (NFFDM).
Step 4: With the advent of Proposition 11, a normalised
CFFDM is generated from NFFDM.

Step 5: Te values of the alternatives against each
criteria are aggregated by using the formula stated in
Remark 17.
Step 6: Te distance measures established in Defnition
18 are adopted for assessing how closure are the ag-
gregated values to the ideal solution 1,0; 1〈 〉.
Step 7:Te distances compiled in step 6 are sorted from
minimal to high. Te alternative with the closest dis-
tance gets frst rank, followed by the choice with the
next closest distance, and so on.

Te MCDM fow is outlined in the fowchart shown in
Figure 2.

5.1. Selection of Electric Autorickshaw in the Circular Fer-
matean Fuzzy Environment. Numerous everyday journeys
are carried out on three-wheelers throughout Asia. Te
autorickshaw resembles a motorcycle in the front and has
seating or cargo space for a group of people in the back.
Rickshaws exist in a variety of forms, from fully enclosed
boxes to more open versions topped with a simple shade
canopy. Tey are descended from hand-pulled carts via
a bicycle-based variation. Tey are often operated like taxis,
with drivers who transport people and items from one lo-
cation to another for a fee. Tey are designed for low speeds
and urban situations. A conventional four-wheeler needs
more power than a rickshaw does. Compared to an auto-
mobile, the electrifcation retrofts are quick and un-
complicated. In developing nations like India, three-wheeler
autorickshaws play a signifcant role in the public transit
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system since they ofer afordable and practical mobility.Te
use of electric autorickshaws will cut pollution greatly and be
more afordable. In addition, compared to gas-powered cars,
electric autorickshaws for public transportation signifcantly
boost the country’s economy by using power networks. Te
key feature of an E-autorickshaw is an electric motor, which
together with batteries, replaces the internal combustion
engine. Due to the swift progress of power electronics to-
gether with control technologies, electric vehicles (EVs) can
presently exploit a wide variety of electric motor types [38].
One must primarily take into account performance, oper-
ating circumstances, efciency, relative cost, and a number
of other considerations when selecting the best motor for an
E-autorickshaw. For electrically powered vehicles, such as
three-wheeled autorickshaws, to cover short-range driving
cycles, eminent-power density, less-weight, and inexpensive
motors must be envisioned in terms of reliability and f-
nancial sustainability in the Indian environment.Te central
objective of this inquiry is to assess the diverse motors’
functioning characteristics with the goal to decide which
ones are most suited for the widespread use of battery-
powered autorickshaws in India’s transportation network. A
three-wheeled autorickshaw powered by electricity costs
approximately 1.12 lakhs to 2.80 lakhs in India with wider
wheels and hydraulic suspension allowing for a maximum
ground clearance of 220mm. Te seating capacity ranges
from three passengers and a driver to fve passengers and
a driver. You can instantly track range, speed, position, and

other statistics using the cloud-based NEMO (next-
generation mobility) platform. Lithium-ion and lead-acid
batteries are widely used [39, 40]. Te motor has a range of
1.14 to 1.60 horsepower. It produces no emissions andmakes
no noise. Battery charging cycles might last anywhere from 4
to 10 hours. Six three-wheeled electric autorickshaws (cA1,
cA2, cA3, cA4, cA5, and cA6) were reviewed by three experts
(DE1, DE2, and DE3) using fve criteria, namely, cost (cC1),
driving range (cC2), battery type and capacity (cC3),
maintenance and charging time (cC4), and seating capacity
(cC5) with a criterion weight vector (0.2,0.4,0.1,0.1,0.2). Te
decision-making assistance of experts has been gathered and
documented using FF phrases, as depicted in Table 3.

Te FFDM, which is tabulated in Table 4, is constructed
from Table 3 utilising the FFNs specifed in Table 2.

By using the complement of the cost criteria, FFDM is
normalised. Since cost of the vehicle (cC1) and charging time
andmaintenance (cC4) are nonbenefcial criteria, we swap out
the AV and NAV to get the NFFDM tabulated in Table 5.

Te NCFFDM in Table 6 is computed using Proposition 11
in Table 5. It enables us to estimate the decision makers’
opinions regarding the alternative in comparison to the specifc
criteria as the region of a circle whose centre is at the AV
and NAV.

Using the formula mentioned as follows, each alternative
is aggregated with all its criteria along with a criterion weight,
and the results are summarised in an aggregated circular
Fermatean fuzzy matrix (ACFFDM) in Table 7:

CFFWAQ cf1, cf2, cf3, cf4( 􏼁 �

����������������

1 − 􏽙

4

i�1
1 − μ3cf i

􏼐 􏼑
cωi

3

􏽶
􏽴

, 􏽙
4

i�1
]cωi

cf i
, 􏽙

4

i�1
ρcωi

cf i
􏼪 􏼫,

CFFWAP cf1, cf2, cf3, cf4( 􏼁 �

����������������

1 − 􏽙

4

i�1
1 − μ3cf i

􏼐 􏼑
cωi

3

􏽶
􏽴

, 􏽙
4

i�1
]cωi

cf i
,

����������������

1 − 􏽙

4

i�1
1 − ρ3cf i

􏼐 􏼑
cωi

3

􏽶
􏽴

􏼪 􏼫,

CFFWGQ cf1, cf2, cf3, cf4( 􏼁 � 􏽙
4

i�1
μcωi

cf i
,

���������������

1 − 􏽙
4

i�1
1 − ]3cf i

􏼐 􏼑
cωi

3

􏽶
􏽴

, 􏽙
4

i�1
ρcωi

cf i
􏼪 􏼫,

CFFWGP cf1, cf2, cf3, cf4( 􏼁 � 􏽙
4

i�1
μcωi

cf i
,

���������������

1 − 􏽙
4

i�1
1 − ]3cf i

􏼐 􏼑
cωi

3

􏽶
􏽴

,

����������������

1 − 􏽙
4

i�1
1 − ρ3cf i

􏼐 􏼑
cωi

3

􏽶
􏽴

􏼪 􏼫.

(25)

Table 2: FFNs for linguistic terms.

Linguistic terms Acronym FFN
Extremely good EG (1, 0)
Very very good VVG (0.95, 0.37)
Very good VG (0.85, 0.39)
Good G (0.76, 0.37)
Medium good MG (0.64, 0.49)
Medium M (0.56, 0.57)
Medium bad MB (0.43, 0.69)
Bad B (0.38, 0.77)
Very bad VB (0.28, 0.89)
Very very bad VVB (0.19, 0.99)
Extremely bad EB (0, 1)
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CFFCDM and CFFEDM between the aggregated values
and the ideal solution 1,0; 1〈 〉 are obtained by formulas
stated in equations (23) and (24) and are tabulated in Table 8.
Te options are also graded according to which of the ag-
gregated value is closest to the ideal solution. To ensure the
consistency of the proposed set, we compare the results with

the existing methods FFWA, FFWG, FFWPA, and FFWPG
via FFCDM and FFEDM. Te ranks by using various
methods are tabulated in Table 9.

Except for CFFEDM via CFFWAQ, all the remaining
aggregated values corresponding to both distance measures
indicate that the alternative cA2 is closer to the ideal
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Figure 2: Flowchart of the MCDM.
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Table 3: Fermatean fuzzy linguistic decision matrix.

Decision experts Alternatives
FF linguistic term for the criteria

cC1 cC2 cC3 cC4 cC5

DE1

cA1 G M B VVB MB
cA2 MG EB VVG VG VB
cA3 VVG G VVB EB MG
cA4 VVB B VG VB M
cA5 EG MB EG VVG G
cA6 M VB MG VG B

DE2

cA1 M VVG MB G B
cA2 EB VG VB MG VVG
cA3 G EB MG VVG VVB
cA4 B VB M VVB VG
cA5 MB VVG G EG EG
cA6 VB VG B M MG

DE3

cA1 MB B M G VVB
cA2 VB VVG EB MG VG
cA3 MG VVB G VVG EB
cA4 M VG B VVB VB
cA5 G EG MB EG VVG
cA6 B MG VB M VG

Table 4: FFDM.

DE Alternatives cC1 cC2 cC3 cC4 cC5

DE1

cA1 (0.76, 0.37) (0.56, 0.57) (0.38, 0.77) (0.19, 0.99) (0.43, 0.69)
cA2 (0.64, 0.49) (0, 1) (0.95, 0.37) (0.85, 0.39) (0.28, 0.89)
cA3 (0.95, 0.37) (0.76, 0.37) (0.19, 0.99) (0, 1) (0.64, 0.49)
cA4 (0.19, 0.99) (0.38, 0.77) (0.85, 0.39) (0.28, 0.89) (0.56, 0.57)
cA5 (1, 0) (0.43, 0.69) (1, 0) (0.95, 0.37) (0.76, 0.37)
cA6 (0.56, 0.57) (0.28, 0.89) (0.64, 0.49) (0.85, 0.39) (0.38, 0.77)

DE2

cA1 (0.56, 0.57) (0.19, 0.99) (0.43, 0.69) (0.76, 0.37) (0.38, 0.77)
cA2 (0, 1) (0.85, 0.39) (0.28, 0.89) (0.64, 0.49) (0.95, 0.37)
cA3 (0.76, 0.37) (0, 1) (0.64, 0.49) (0.95, 0.37) (0.19, 0.99)
cA4 (0.38, 0.77) (0.28, 0.89) (0.56, 0.57) (0.19, 0.99) (0.85, 0.39)
cA5 (0.43, 0.69) (0.95, 0.37) (0.76, 0.37) (1, 0) (1, 0)
cA6 (0.28, 0.89) (0.85, 0.39) (0.38, 0.77) (0.56, 0.57) (0.64, 0.49)

DE3

cA1 (0.43, 0.69) (0.38, 0.77) (0.56, 0.57) (0.76, 0.37) (0.19, 0.99)
cA2 (0.28, 0.89) (0.95, 0.37) (0, 1) (0.64, 0.49) (0.85, 0.39)
cA3 (0.64, 0.49) (0.19, 0.99) (0.76, 0.37) (0.95, 0.37) (0, 1)
cA4 (0.56, 0.57) (0.85, 0.39) (0.38, 0.77) (0.19, 0.99) (0.28, 0.89)
cA5 (0.76, 0.37) (1, 0) (0.43, 0.69) (1, 0) (0.95, 0.37)
cA6 (0.38, 0.77) (0.64, 0.49) (0.28, 0.89) (0.56, 0.57) (0.85, 0.39)

Table 5: NFFDM.

DE Alternatives cC1 cC2 cC3 cC4 cC5

DE1

cA1 (0.37, 0.76) (0.56, 0.57) (0.38, 0.77) (0.99, 0.19) (0.69, 0.43)
cA2 (0.49, 0.64) (0, 1) (0.95, 0.37) (0.39, 0.85) (0.89, 0.28)
cA3 (0.37, 0.95) (0.76, 0.37) (0.19, 0.99) (1, 0) (0.49, 0.64)
cA4 (0.99, 0.19) (0.38, 0.77) (0.85, 0.39) (0.89, 0.28) (0.57, 0.56)
cA5 (0, 1) (0.43, 0.69) (1, 0) (0.37, 0.95) (0.37, 0.76)
cA6 (0.57, 0.56) (0.28, 0.89) (0.64, 0.49) (0.39, 0.85) (0.77, 0.38)
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solution. As a result, cA2 will be the best option of electronic
autorickshaw pertaining to proposed AOs and DMs in the
CFF set environment.

5.2. Visualisation of Results and Comparison Analysis. In
order to check for accuracy, we compare and display the
aggregated values as charts in this subsection. Figure 3
showcases the connections between all of the aggregated values.

Various CFFCDM and CFFEDM are demonstrated in
Figure 4.

Figure 5 exhibits the association between CFFWAP with
CFFWGP and CFFWAQ with CFFWGQ.

Te ranks obtained by CFFCDM and CFFEDM are
displayed in Figure 6 as follows.

From the results, we obtain the ranking
cA2 > cA5 > cA4 > cA6 > cA3 > cA1, and also, we can see that
the results are consistent with the suggested methods.

Table 6: NCFFDM.

Alternatives cC1 cC2 cC3 cC4 cC5
cA1 (0.57, 0.61; 0.25) (0.43, 0.81; 0.30) (0.47, 0.69; 0.15) (0.71, 0.67; 0.55) (0.36, 0.84; 0.23)
cA2 (0.85, 0.46; 0.48) (0.79, 0.72; 0.84) (0.66, 0.84; 0.68) (0.46, 0.72; 0.14) (0.79, 0.65; 0.57)
cA3 (0.42, 0.80; 0.18) (0.53, 0.88; 0.56) (0.62, 0.72; 0.50) (0.72, 0.83; 0.88) (0.45, 0.89; 0.46)
cA4 (0.81, 0.43; 0.30) (0.61, 0.74; 0.42) (0.66, 0.62; 0.32) (0.96, 0.23; 0.09) (0.65, 0.68; 0.42)
cA5 (0.50, 0.80; 0.54) (0.86, 0.50; 0.52) (0.80, 0.50; 0.54) (0.26, 0.98; 0.26) (0.91, 0.32; 0.33)
cA6 (0.77, 0.44; 0.23) (0.67, 0.66; 0.45) (0.48, 0.75; 0.31) (0.52, 0.69; 0.21) (0.68, 0.60; 0.34)

Table 5: Continued.

DE Alternatives cC1 cC2 cC3 cC4 cC5

DE2

cA1 (0.57, 0.56) (0.19, 0.99) (0.43, 0.69) (0.37, 0.76) (0.77, 0.38)
cA2 (1, 0) (0.85, 0.39) (0.28, 0.89) (0.49, 0.64) (0.37, 0.95)
cA3 (0.37, 0.76) (0, 1) (0.64, 0.49) (0.37, 0.95) (0.99, 0.19)
cA4 (0.77, 0.38) (0.28, 0.89) (0.56, 0.57) (0.99, 0.19) (0.39, 0.85)
cA5 (0.69, 0.43) (0.95, 0.37) (0.76, 0.37) (0, 1) (0, 1)
cA6 (0.89, 0.28) (0.85, 0.39) (0.38, 0.77) (0.57, 0.56) (0.49, 0.64)

DE3

cA1 (0.69, 0.43) (0.38, 0.77) (0.56, 0.57) (0.37, 0.76) (0.99, 0.19)
cA2 (0.89, 0.28) (0.95, 0.37) (0, 1) (0.49, 0.64) (0.39, 0.85)
cA3 (0.49, 0.64) (0.19, 0.99) (0.76, 0.37) (0.37, 0.95) (1, 0)
cA4 (0.57, 0.56) (0.85, 0.39) (0.38, 0.77) (0.99, 0.19) (0.89, 0.28)
cA5 (0.37, 0.76) (1, 0) (0.43, 0.69) (0, 1) (0.37, 0.95)
cA6 (0.77, 0.38) (0.64, 0.49) (0.28, 0.89) (0.57, 0.56) (0.39, 0.85)

Table 7: ACFFDM.

Alternatives CFFWAQ CFFWAP CFFWGQ CFFWGP

cA1 (0.51, 0.74; 0.27) (0.51, 0.74; 0.33) (0.47, 0.77; 0.27) (0.47, 0.77; 0.33)
cA2 (0.78, 0.65; 0.57) (0.78, 0.65; 0.72) (0.75, 0.69; 0.57) (0.75, 0.69; 0.72)
cA3 (0.54, 0.84; 0.44) (0.54, 0.84; 0.59) (0.51, 0.85; 0.44) (0.51, 0.85; 0.59)
cA4 (0.76, 0.57; 0.33) (0.76, 0.57; 0.38) (0.69, 0.65; 0.33) (0.69, 0.65; 0.38)
cA5 (0.82, 0.54; 0.45) (0.82, 0.54; 0.49) (0.69, 0.74; 0.45) (0.69, 0.74; 0.49)
cA6 (0.67, 0.61; 0.33) (0.67, 0.61; 0.37) (0.65, 0.64; 0.33) (0.65, 0.64; 0.37)

Table 8: CFFCDM and CFFEDM.

Distance measures Aggregation operators cA1 cA2 cA3 cA4 cA5 cA6

CFFCDM

CFFWAQ 0.64424 0.29431 0.58872 0.38019 0.29947 0.44474
CFFWAP 0.62492 0.24777 0.53840 0.36178 0.28197 0.43097
CFFWGQ 0.67386 0.33570 0.60643 0.45052 0.44240 0.47217
CFFWGP 0.65455 0.28416 0.55610 0.43211 0.42940 0.45840

CFFEDM

CFFWAQ 0.59835 0.36282 0.56236 0.44875 0.36243 0.49423
CFFWAP 0.57904 0.31128 0.51203 0.43034 0.34944 0.48047
CFFWGQ 0.61433 0.38979 0.57348 0.49529 0.47268 0.50780
CFFWGP 0.59502 0.33825 0.52315 0.47688 0.45969 0.49403
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Table 9: Ranking of alternatives by proposed methods and existing methods.

Distance measures Aggregation operators Ranks

CFFCDM

CFFWAQ cA2 > cA5 > cA4 > cA6 > cA3 > cA1
CFFWAP cA2 > cA5 > cA4 > cA6 > cA3 > cA1
CFFWGQ cA2 > cA5 > cA4 > cA6 > cA3 > cA1
CFFWGP cA2 > cA5 > cA4 > cA6 > cA3 > cA1

CFFEDM

CFFWAQ cA5 > cA2 > cA4 > cA6 > cA3 > cA1
CFFWAP cA2 > cA5 > cA4 > cA6 > cA3 > cA1
CFFWGQ cA2 > cA5 > cA4 > cA6 > cA3 > cA1
CFFWGP cA2 > cA5 > cA4 > cA6 > cA3 > cA1

Ranking by existing methods

FFCDM

FFWA cA5 > cA2 > cA4 > cA6 > cA3 > cA1
FFWG cA2 > cA5 > cA4 > cA6 > cA3 > cA1
FFWPA cA2 > cA5 > cA4 > cA6 > cA3 > cA1
FFWPG cA2 > cA5 > cA4 > cA6 > cA3 > cA1

FFEDM

FFWA cA5 > cA2 > cA4 > cA6 > cA3 > cA1
FFWG cA2 > cA5 > cA4 > cA6 > cA3 > cA1
FFWPA cA2 > cA5 > cA4 > cA6 > cA3 > cA1
FFWPG cA2 > cA5 > cA4 > cA6 > cA3 > cA1
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Figure 3: Graphical representation of aggregated CFFNs.
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Figure 4: Comparison of CFF cosine and CFF Euclidean measures.
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While this approach ofers a number of benefts, it also
has limitations. Te circle’s radius will grow signifcantly,
and its centre will stray from its true value if there is
a signifcant diference in one of the decision makers. It can
be overcome by eliminating such diverse values.

6. Conclusion and Future Work

Te circular Fermatean fuzzy set has been put forwarded in
this paper. Te main objective of a CFF set is its circular
framework. Te CFF set is a circle with centre AV and NAV
with radius not greater than

�
2

√
. So, the CFF set in two

dimensions can deal high-order imprecise data by wrapping
in a circle. Te algebraic operations and their properties
among CFF sets are explored. By implementing the FF t-
norm and t-conorm, CFF weighted and geometric opera-
tions are provided in the claimed CFF set environment.
CFFCDM and CFFEDM are further discussed for the
purpose of computing the distance between the aggregated
value and the ideal solution. Proposed AOs and DMs serve
as tools to choose electric autorickshaw based on multiple
considerations. Visualisation and comparison ensure the
reliability of the proposed AOs and DMs.

In the FFS and IVFFS settings, the input data are a point
and an interval that are in one dimension, whereas in the
CFF set environment, the input data are a circle in two
dimensions. Due to its extensive range compared to FFS and
IVFFS, CFF sets are extremely advantageous in managing

uncertainty. As an instance, it can be applied far more ef-
fectively in pattern classifcation, deep learning, machine
learning, and other areas such as medical diagnostics.

Future research will be focused on the study of various
possible t-norm and t-conorm operators for aggregation of
CFF sets. Also, diferent distance and similarity metrics can
be defned and will be applied between the clusters con-
sisting of FFS by converting them to the CFF set in com-
putational image analysis and medical treatment. Also,
circular representation can be applied in the generalized
fuzzy set like quasirung orthopair fuzzy set and for its
specifc values q� 1 and q� 4. Te aggregation operators of
developed sets will be used on group decision-making.
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