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We explore the low-temperature thermodynamic properties and crossovers of a d-dimensional classical planar Heisenberg
ferromagnet in a longitudinal magnetic field close to its field-induced zero-temperature critical point by employing the two-time
Green’s function formalism in classical statistical mechanics. By means of a classical Callen-like method for the magnetization and
the Tyablikov-like decoupling procedure, we obtain, for any d, a low-temperature critical scenario which is quite similar to the
one found for the quantum counterpart. Remarkably, for d > 2 the discrimination between the two cases is found to be related
to the different values of the shift exponent which governs the behavior of the critical line in the vicinity of the zero-temperature
critical point. The observation of different values of the shift-exponent and of the related critical exponents along thermodynamic
paths within the typical V-shaped region in the phase diagram may be interpreted as a signature of emerging quantum critical
fluctuations.

1. Introduction

An intriguing aspect of quantum phase transitions (QPTs)
[1] is that quantum critical fluctuations may play a relevant
role also at finite temperature. This feature leads to a drastic
modification of the expected properties of many systems
within a wide region around their quantum critical point
(QCP) [1–6].

Remarkably, the renormalization group framework (RG)
[1, 7, 8] and Moriya’s self-consistent renormalized approach
[9, 10] have provided a well-defined scenario for this so-
called quantum criticality giving qualitative and also quan-
titative agreement with a lot of experimental findings [1–6].

However, recent experiments seem to suggest that these
theories fail in relevant practical situations (see [11–13] and
references therein). Although several alternatives have been
proposed to explain these unexpected behaviors, a com-
pletely convincing picture is still lacking. Hence, it becomes

crucial to provide nonambiguous criteria to determine
accurately the range of temperatures where the QCP fluctu-
ations survive against the thermal ones. On the ground of
a comparison between the exactly solvable one-dimensional
quantum transverse Ising model (QTIM) [1, 14–18] and
its classical version (CTIM) (not to be confused with the
standard Ising model) [19, 20], it was conjectured that [21],
at least in selected cases, at finite temperature, close to the
QCP, quantum critical fluctuations may not be so relevant
as commonly believed. The emerging idea was that, to single
out conventional quantum criticality, it is not sufficient to
observe a power-law behavior of the correlation length or
susceptibility decreasing temperature towards zero in the V-
shaped quantum critical region of the phase diagram [1];
rather, the accurate determination of the critical exponents
becomes the key ingredient to decide if we are in the
influence domain of the QCP or the physics is governed by
thermal fluctuations. Of course, to validate the previous
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conjecture, more realistic many-body systems should be
investigated, especially for dimensionalities where a finite-
temperature critical line ends in a zero-temperature critical
point.

A first step along this direction has been recently per-
formed by exploring the low-temperature properties of the
(d > 1)-dimensional CTIM [22]. On the ground of a suitable
Ginzburg-Landau-Wilson functional and a momentum-
shell RG approach around d = 4, this system is expected to
have the same properties of the QTIM above a certain tem-
perature.

Further insights will be provided in this paper where we
investigate the low-temperature properties of the classical
XXZ ferromagnetic model in presence of a longitudinal mag-
netic field when the longitudinal exchange interaction is
smaller than the transverse one. Its quantum analogue, also
called planar ferromagnet (PFM), has been extensively stud-
ied, in different physical contexts, using several methods. In
particular, the spin-1/2 PFM has attracted great attention
since, in the pioneering papers by Matsubara and Matsuda
[23, 24] on superfluidity in 4He, a quantum lattice gas of
hard-core bosons with long-range attractive interactions has
been proven to be just equivalent to the spin-1/2 PFM in a
longitudinal field (see also [25]). Remarkably, the Wilson RG
[26, 27], applied to a suitable functional representation of
the spin-1/2 PFM, capturing the essential low-temperature
physics, and the two-time Green’s function technique [28],
utilized to investigate the microscopic spin-S model, have
provided a reliable scenario of the global phase diagram and
crossovers in the vicinity of the QCP.

In the present work, we will study the corresponding d-
dimensional classical XXZ spin model (CPFM) with particu-
lar attention to a field-induced quantum-like critical scenario
for a direct comparison with the quantum counterpart. We
will use the two-time Green’s function method in classical
statistical mechanics [29], developed and tested in [30–
33], on microscopic classical spin model. This allows us
to perform in parallel the quantum [28] and the classical
analysis for any d, giving a transparent relation between
the CPFM and the spin-S QPFM, both exhibiting a zero-
temperature critical point. Hence, new insights on quantum
criticality, at least for a class of anisotropic magnetic systems,
will be provided.

The paper is organized as follows. In Section 2 we will
introduce the model and the equation of motion for the
appropriate two-time Green function in the context of the
classical Callen-like method [34] to calculate the magne-
tization within the Tyablikov decoupling procedure. The
equations for the transverse susceptibility and the critical line
will be presented in Section 3. The quantum-like scenario,
with the global phase diagram and crossovers, close to the
(T = 0)-critical point, will be analyzed in Section 4. In
Section 5, concluding remarks will be drawn. At the end, for
utility of reader, Appendix A is devoted to an outline of the
two-time Green’s function framework in classical statistical
mechanics and Appendix B presents a method, alternative to
the one employed in [22], to obtain the magnetization as the
solution of the Callen-like method.

2. Spin Model and Callen-Like Method

The d-dimensional classical XXZ Heisenberg model in a lon-
gitudinal magnetic field h ≥ 0 is described by the Hamilto-
nian:
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Here {S j ≡ (Sxj , S
y
j , S

z
j); j = 1, 2, . . . ,N} are classical spin-S

vectors on anN-sites hypercubic lattice with unitary spacing,
satisfying the identity S2

j = S+
j S
−
j + (Szj)

2 = S2 with S±j = Sxj ±
iS
y
j . Besides, the transverse (J⊥i j ) and longitudinal (J‖i j) ex-

change interactions (with J⊥ii = J‖ii = 0) between the spins at
sites i and j are assumed to be symmetric, positive, and short
ranged. As well known, it is perfectly legal in the classical
context to put S = 1. However, for a more transparent and
direct comparison with the quantum version [28], through
this paper we will consider arbitrary S.

Many magnetic materials can be described by the Hamil-
tonian (1) and different cases may take place depending on
the relative weight of the competing anisotropic exchange
interactions. Indeed, one has a uniaxial ferromagnet (FM)
if J‖i j > J⊥i j with the extreme limit J⊥i j = 0 (Ising model); we

recover the isotropic Heisenberg model when J⊥i j = J‖i j and

the PFM if J‖i j < J⊥i j whose extreme limit J‖i j = 0 is the XY
model in a transverse field (TXYM). In the following, we will
focus on the classical PFM which exhibits a field-driven zero-
temperature critical point as it happens in the quantum case.

The classical model (1) can be described in terms of the
2N canonical variables φ ≡ {φj} and Sz ≡ {Szj}, where φj is
the angle between the projection of the spin vector S j in the
xy-plane and the x-axis. The Poisson bracket of two generic
classical dynamical variables A = A(φ, Sz) and B = B(φ, Sz)
is then defined by

{A,B} =
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∂Szj
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It is easy to show that, with this prescription, the Poisson
brackets for the spin components are given by
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where εαβγ is the Levi-Civita tensor.
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Following the Callen procedure developed for the quan-
tum Heisenberg FM [35], we introduce now the retarded
two-time GF [29, 33] (see Appendix A):

Gij(t − t′) = θ(t − t′)
〈{
S+
i (t − t′), eaS

z
j S−j
}〉

=
〈〈
S+
i (t − t′); eaS

z
j S−j
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,
(4)

where θ(x) is the usual step function, a denotes the Callen-
like parameter, 〈· · · 〉 = Z−1

∏N
j=1

∫ 2π
0 dφj

∫ S
−S · · ·dSzj · · ·

exp{−βH(φ, Sz)} stands for the classical ensemble average,
β = 1/T is the inverse temperature, and X(t) = eiLtX , L =
i{H , . . .} is the Liouville operator. Here, eiLt acts as a classical
time-evolution operator which transforms the dynamical
variable X = X(0) ≡ X(φ(0), Sz(0)) at the initial time t = 0
into X(t) ≡ X(φ(t), Sz(t)) at the time t. The physics will be of
course obtained setting a = 0 at the end of the calculations.

The equation of motion (EM) for the GF (4) is given by
(with τ = t − t′)
dGij(τ)
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which, in the frequency-ω Fourier space, becomes

ωGij(ω) = i
〈{
S+
i , eaS

z
j S−j
}〉

+ i
〈〈{

S+
i (τ), H

}
; eaS

z
j S−j
〉〉

ω
,

(6)
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a simple algebra yields
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Notice that, for the magnetization per spin m = 〈Szi 〉, the
relevant exact relation is fulfilled:

m = 1
2
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Then, (6) becomes (again without approximations)
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The next step consists in performing an appropriate decou-
pling to close (12). Here we will use the classical version of the
Tyablikov decoupling (TD) which, for the quantum case, has
been proven [28] to give near-exact results close to the QCP.
This decoupling procedure consists in neglecting transverse
correlations in (12) so that one can assume that
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vector Fourier transform in the first Brillouin zone (1BZ)
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transforms in the k-space
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equation for Gk(ω) with solution

Gk(ω) = ψ(a)
ω − ωk

, (16)

where

ωk = h +m
[
J‖(0)− J⊥(k)

]
. (17)

This equation represents the dispersion relation, at Tyab-
likov-like decoupling (TD) level, of undamped oscillations
for the PFM, expressed as a function of k in terms of
the Fourier transform J⊥(k) of the transverse exchange
interaction J⊥i j . The key step is to determine the function ψ(a)
or Ω(a) and hence m = (1/2)ψ(0) = Ω′(0). For utility of
the reader, we outline here in after the classical version of
the Callen procedure used to solve this problem for isotropic
quantum [35] and classical [34] Heisenberg FMs and for
QPFM [28].

From the expression (16) forGk(ω) and the exact relation
betweenGk(ω) and the corresponding spectral densityΛk(ω)
(see Appendix A)

Λk(ω) = i[Gk(ω + iε)−Gk(ω − iε)]ε→ 0+ , (18)

one easily finds

Λk(ω) = 2πψ(a)δ(ω − ωk). (19)

Then, the spectral density Λi j(ω) corresponding to Gij(ω)
can be obtained via its Fourier transform:
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1
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Now, with these ingredients, we are in position to obtain the
correlation function 〈BA〉 = 〈eaSzj S−j S+

i 〉 related to the orig-

inal GF Gij(ω) = 〈〈A(τ);B〉〉ω = 〈〈S+
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From the classical spectral theorem (see Appendix A,
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is independent of the Callen parameter a.
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Then, combining (22) and (24), where ψ(a) is given by (8),
we obtain the following differential equation for Ω(a):

Ω′′(a) + 2
(

1
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)
Ω′(a)− S2Ω(a) = 0, (25)

to be solved with the initial condition Ω(0) = 1 and the
additional one Ω(a) = ∫ S

−S dSz f (Sz)eaS
z
, arising from the

ensemble-average definition of eaS
z
.

With these conditions we have obtained in [34] the
physical solution of (25):

Ω(a) = S/Φ

S/Φ + a

sinh(S/Φ + a)
sinh(S/Φ)

. (26)

This key result (26) represents the classical analogue of the
famous Callen formula for quantum spin-S models [35].
An alternative and very instructive method to obtain the
solution (26) is presented in Appendix B.

Taking into account the exact relation (10), (26) gives the
the remarkable expression:

m = S
[

coth
(
S

Φ

)
− Φ

S

]
= SL

(
S

Φ

)
, (27)

which is valid for any d, T , and h. Here, L(x) = coth x−1/x is
the well-known Langevin function andΦ is expressed by (23)
in terms of the dispersion relation ωk. If we use the TD, ωk is
given by (17) which is in turn a function of m. Hence, (27)
is a self-consistent equation for m and T . The longitudinal
magnetic field h and the anisotropy enter into the problem
via the function Φ.

Of course, in the spirit of the Callen method for
the calculation of m, it is possible to introduce more
elaborate decoupling procedures which preserve its validity.

For instance, we could adopt the Callen decoupling (CD)
[35], with its classical variant [34],
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which takes into account the transverse correlations to the
leading order and implies the dispersion relation:

ω(CD)
k = ω(TD)
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1
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i S
−
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〉
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However, in the present case, the TD and the CD (28) provide
essentially identical results close to the (T = 0)-critical point
where m is near the full polarized-state value S.

Given the magnetization m, the thermodynamics of our
CPFM will be derived using the general formalism of the
classical two-time Green functions (see Appendix A and
[33]).

3. Transverse Susceptibility and Critical Line

We have now all the elements to extract the physics of interest
setting a = 0 in the previous results and solving the set of
self-consistent equations:

σ = coth
(
S

Φ

)
− Φ

S
= L
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)
,
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∫
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ddk
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,

ωk(σ) = ω0(σ) + σS[J⊥(0)− J⊥(k)] ≥ 0,

(31)

where ω0(σ) = h + Sσ [J‖(0) − J⊥(0)]. Here we have
conveniently introduced the reduced magnetization per spin
σ = m/S, with 0 ≤ σ ≤ 1. Equations (31) will give σ as a
function of T and h and hence the GF (16), also at a = 0.

For our aim, the relevant quantity to be calculated is the
transverse GF:

G⊥(k,ω) =
〈〈
S+
i (τ); S−j

〉〉
k,ω
≡ Gk(ω)|a=0. (32)

This allows to determine the dynamical transverse suscepti-
bility for CPFM:

χ⊥(k,ω) = −G⊥(k,ω) ≡ −Gk(ω)|a=0, (33)

where, at the TD level,

G⊥(k,ω) = 2Sσ
ω − ωk(σ)

. (34)

In particular, the thermodynamic transverse susceptibility is
given by

χ⊥(T ,h)≡χ⊥(k=0,ω=0)= 2Sσ
ω0(σ)

= 2Sσ(T ,h)
h+Sσ[J‖(0)−J⊥(0)]

.

(35)



Advances in Condensed Matter Physics 5

Using (35) it is also possible to obtain the transverse cor-
relation length via the following relation [36]:

ξ2
⊥ = −

1
2
χ−1
⊥ (0, 0)

⎡
⎣
d2
(
χ⊥(k, 0)

)

dk2

⎤
⎦

k=0

, (36)

where χ⊥(k, 0) = 2Sσ/ωk . The longitudinal susceptibility
will be simply given by χ‖(T ,h) = S(∂σ(T ,h)/∂h). Of course,
the stability condition χ⊥ ≥ 0 requires that, in (35), the
inequality ω0(σ) = h + Sσ(T ,h)[J‖(0) − J⊥(0)] ≥ 0 must be
fulfilled. The equality is physically possible for h > 0 and σ >
0 only if J‖(0) < J⊥(0), which is the regime characterizing the
CPFM of interest to us.

Here in after we will focus on quantum-like criticality
related to the field-driven easy-plane ordering whose key
quantities are ω0 and χ⊥ and the related ones as functions
of T and h. However, in some relevant cases which may
have physical interest, we will calculate also the longitudinal
quantities σ(T ,h) and χ‖(T ,h). Other expressions can be
obtained by means of known thermodynamic relations [33].

We start exploring the main features of the CPFM phase
diagram in the (h,T)-plane. These results will be used as
a basis for next developments. At zero temperature with
h /= 0, (31) provides the solution σ = 1 for the reduced
magnetization, characterizing a fully polarized state. This
implies that the dispersion relation is given by ωk = ω0 +
S[J⊥(0) − J⊥(k)], where ω0 = h − S[J⊥(0) − J‖(0)] is the
frequency gap. Hence the transverse susceptibility, which has
physical meaning for h ≥ S[J⊥(0)− J‖(0)] > 0, becomes

χ⊥ = 2S
h− S[J⊥(0)− J‖(0)]

. (37)

Remarkably, (37) suggests that, despite the classical nature of
our anisotropic spin model, there exists, as in the quantum
case [26–28], a (T = 0)-critical point at the value hc =
S[J⊥(0) − J‖(0)] of the longitudinal magnetic field. Then,
crossing this point, decreasing h to hc, a field-induced
second-order (T = 0)-phase transition arises from a fully
polarized state with σ = 1 to a transverse-ordered phase.
However, the latter phase is unaccessible by the present
analysis due to the absence in the Hamiltonian (1) of an in-
plane symmetry breaking magnetic field.

From (37), with ω0 = h − hc ≥ 0, we have χ⊥ =
2S(h− hc)−1 as h → h+

c , defining the mean field exponent
γh = 1. (Through the paper we will use the indices h and
T to denote the horizontal (isothermal) and the vertical
trajectories approaching a critical point in the (h,T)-plane,
resp.)

For arbitrary temperature we can writeω0(σ) = h−σhc ≥
0 (so that ωk = (h − σhc) + Sσ[J⊥(0) − J⊥(k)]). Hence the
transverse susceptibility can be conveniently written as

χ⊥(T ,h) = 2Sσ(T ,h)
h− σ(T ,h)hc

, (38)

with h ≥ σ(T ,h)hc or σ(T ,h) ≤ h/hc for stability reasons.
Equation (38) establishes an interesting relation between the
transverse physics and the longitudinal one.

In the (h,T)-plane, where χ⊥ = ∞ (ω0(σ) = 0), the gen-
eral equation which determines the possible critical points is

h− σ(T ,h)hc = 0, (39)

or, in view of the equation for σ ,

h

hc
= L

(
S

Φc

)
. (40)

Here,

Φc = Φ
(
T ,h; σ = h

hc

)
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hc
h
Fd(−1), (41)

where ω(c)
k = ωk (σ = h/hc) = S(h/hc)J⊥(0)(1 − γ⊥k ) at the

critical points and

Fd(−1) =
∫
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ddk

(2π)d
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1− γ⊥k
) , (42)

with γ⊥k = J⊥(k)/J⊥(0) ≤ 1. More explicitly, (40) can be also
written as

h+Fd(−1)
T

J⊥(0)S2

h2
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h
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[(
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T

J⊥(0)S2
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h

)−1
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The quantity Fd(−1) is one of the so-called structure sums

Fd(n) = (1/N)
∑

k (1− γ⊥k )n
N→∞= ∫

1BZ(ddk/(2π)d)(1− γ⊥k )n

depending only on the lattice structure of the spin model.
Accurate numerical values of Fd(n) can be found in the
literature for different d and lattice structures [34, 35, 37].
Previous results suggest that, while a (T = 0)-CP with σ = 1
exists for any d, a critical line with 0 ≤ σ ≤ 1, ending in such
a point, may occur only for dimensionalities for which the
integral (42) converges.

If we consider short-range interactions and an hypercu-
bic lattice Jα(k) = 2Jα

∑d
ν=1 cos kν � Jα(0)−Jαk2 (α =⊥,‖) as

k → 0 with Jα(0) = 2dJα, from (42) it immediately follows
that for d ≤ 2 only the (T = 0)-CP exists, while for d > 2
a finite-temperature critical line, ending in the (T = 0)-CP
(hc,T = 0), occurs consistently with the Mermin-Wagner
theorem [38]. The same result has been obtained in the
quantum case [28].

For d > 2, the critical line equation (42) (or (43)) can
be solved numerically with respect to h or T providing the
representation hc(T) or Tc(h). Notice that, along the critical
line, the reduced magnetization σ(T ,hc(T)) = σ(T) is simply
given by σ(T) = hc(T)/hc when hc(T) is known. The critical
line in the plane (h,T) for d = 3 is plotted in Figure 1.

Starting from (40) or (43) we can easily derive the analyt-
ical expression of the zero-field critical temperature Tc (h =
0) ≡ Tc where σ = 0 irrespective of the specific structure of
γ⊥k in (37) (as in the case of short-range interactions for

which γ⊥k = J⊥(k)/J⊥(0) = (2J⊥/J⊥(0))
∑d

ν=1 cos kν =
(1/d)

∑d
ν=1 cos kν).

From the expansion coth x � 1/x + (1/3)x + O(x3), and
hence L(x) = coth x − 1/x � x/3 +O(x3), for x = S/Φc � 1,
(40) provides, for Φc → ∞ as h → 0 at finite T (see (41)),

Tc
J⊥(0)S2

= 1
3Fd(−1)

. (44)
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Figure 1: Critical line of the classical planar ferromagnet (CPFM)
with short-range interactions on a three-dimensional cubic lattice
(present work). Here Tc denotes the critical temperature at h = 0
and hc the critical magnetic field at T = 0. A comparison is shown
with the corresponding curves for the classical transverse Ising
model (CTIM), obtained by RG calculations, and for the spin-1/2
quantum planar ferromagnet (QPFM). The critical line for the spin-
S QPFM with long-range interactions in the classical limit S → ∞
has been also obtained at the Tyablikov decoupling level, and, as
expected, it coincides with the one calculated for the CPFM.

It is worth noting that for QPFM, within the TD it was
found that [28] TQPFM

c /J⊥(0)S(S + 1) = 1/3Fd(−1), which
reproduces, as expected, (44) in the classical limit for S → ∞.

For short-range interactions and an hypercubic lattice,
estimates for d > 2 can be obtained assuming 1−γ⊥k � k2/2d
as k → 0.

Now we explore the behavior of the critical line in the
low-temperature regime close to the (T = 0)-CP where
Φc � 1. With L(S/Φc) � 1−Φc/S + 2e−2S/Φc , (40) becomes

h

hc
� 1− Fd(−1)

T

J⊥(0)S2

hc
h

+O
(
e−(2/Fd(−1))(J⊥(0)S2/T)

)
.

(45)

Solving the equation with respect to h or T , we find

hc(T) � hc

{
1− Fd(−1)

T

J⊥(0)S2

+O
(
e−(2/Fd(−1))(J⊥(0)S2/T)

)}
, T −→ 0,

(46)

or

Tc(h) � J⊥S2

Fd(−1)hc
(hc − h)

+O
((
e−(2(Fd(−1))2hc)/(hc−h)

))
, h−→h−c .

(47)

Along this branch of the critical line we have also

σ(T) � 1− Fd(−1)
T

J⊥(0)S2
+O

(
e−(2/Fd(−1))(J⊥(0)S2/T)

)
. (48)

From the low-temperature representations (46) and (47) for
the critical line we can extract the shift exponent ψ = 1,
which determines the shape of the phase boundary close to
the (T = 0)-CP. It has to be stressed that the value of ψ
is independent of d, in contrast with the result (ψ = d/2)
known for the QPFM [27, 28].

4. Low-Temperature Critical Properties

In this section we study the low-temperature properties and
crossovers of our CPFM within the easy-plane-disordered
phase, close to the field-induced (T = 0)-CP where σ ≈ 1,
h � hc (nearly polarized state), and ω0(σ) = h − σhc is
very small. Under these conditions, in (31) Φ(σ)/S � 1;
therefore, the equation for σ becomes

σ � 1− Φ(σ)
S

+ 2e−(2S/Φ(σ)) . (49)

The quantity Φ(σ) ≡ Φ(ω0) near criticality can be suitably
estimated assuming, for the oscillation spectrumωk, the low-
k expression ωk � ω0 + SσJ⊥k2. This provides

Φ � d

2

(
T

ω0

)∫ 1

0
dx

xd/2−1

1 + (τ/ω0 )
, (50)

where τ ≈ SJ⊥Λ2
1BZ = (SJ⊥(0)/2d)Λ2

1BZ and Λ1BZ is a natural
wave-vector cut-off related to the first Brillouin zone and
determined by (1/N)

∑
k = 1 or (as N → ∞) Λ1BZ =

(d/Kd)1/d, with Kd = 21−dπ−d/2/Γ(d/2).
As a consequence, to the leading order in Φ, the self-

consistent equation for σ can be written as (except for
exponentially small terms)

σ � 1− 1
S

(
T

ω0(σ)

)
F
(

1,
d

2
;
d

2
+ 1;− τ

ω0(σ)

)
, (51)

where F(α,β; γ; z) is the hypergeometric function.
For our purposes, it is convenient to transform (51) for

the longitudinal physics into a self-consistent equation for
the oscillation gap ω0, strictly related to χ⊥ and hence to the
transverse physics.

Since σ = h/hc − ω0/hc, straightforward calculations
provide the following expression for (51) in terms of the
natural variable ω0/T :

ω0

T
= g

T
+
hc
Sτ

(
τ

ω0

)
F
(

1,
d

2
;
d

2
+ 1;− τ

ω0

)
. (52)

Here g = h − hc and ω0/T = 2Sσ/Tχ⊥ � 2S/Tχ⊥ ∝
(Tχ⊥)−1 ∝ (Tξ2⊥)−1. Notice that since χ⊥(k, 0) � 2Sσ/[ω0 +
σSJ⊥k2], from (37), one gets ξ⊥ � J⊥χ1/2⊥ .

Of course, once ω0 has been determined as a function
of (T ,h), one can directly calculate χ⊥(T ,h) and, using the
relation between ω0 and σ , it is possible to determine σ(T ,h)
and, therefore, the longitudinal physics near the polarized
state in the low-temperature critical regime.
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Adopting the asymptotic expansions of the hypergeomet-
ric function F(1, ν; ν + 1;−(1/z)) for z� 1,

F
(

1, ν; ν + 1;−1
z

)
≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

πν

sinπν
zν, ν < 1,

z ln
1
z

, ν = 1,

ν

ν− 1
z − πν

|sinπν|z
ν, 1 < ν < 2,

(53)

now, we can systematically explore the thermodynamics of
the CPFM close to the (T = 0)-CP for different values of the
dimensionality d of the system. Bearing this in mind, in strict
analogy with the quantum case [28, 39], in the following
subsections we will show the asymptotic solutions of (52)
in the classical ω0/T � 1 (⇔ Tξ2⊥ � 1 or Tχ⊥ � 1) and
quantum-like (ω0/T � 1 ⇔ Tξ2⊥ � 1 or Tχ⊥ � 1) regimes,
respectively, and the estimates of the related crossovers for
different values of d.

4.1. d < 2. Replacing the expansions (53) in the self-con-
sistent equation (52) for ω0, we get

ω0

T
� g

T
+

πd/2
sin(πd/2)

hc
Sτ

(
T

τ

)(d−2)/2(ω0

T

)(d−2)/2

, (54)

In the regime ω0/T � 1 (Tξ2⊥ � 1), classical regime in the
quantum critical scenario near the isolated (T = 0)-CP, (54)
admits a solution only for h < hc, which reads

ω0 �
[

πd/2
sin(πd/2)

hc
Sτd/2

]2/(2−d)( T

hc − h
)2/(2−d)

. (55)

Under the consistency condition T � (hc − h)2/d. Then, for
h < hc within the region T � (hc − h)2/d, in the (h,T)-plane,
the transverse and longitudinal susceptibilities are given by

χ⊥ � 2S
[

πd/2
sin(πd/2)

hc
Sτd/2

]−2/(2−d)( T

hc − h
)−2/(2−d)

,

χ‖ � S

hc

{
1−

[
πd/2

sin(πd/2)
hc
Sτd/2

]2/(2−d)( hc
hc − h

)2/(2−d)

×
(

T

hc − h
)2/(2−d)

}
,

(56)

where the reduced magnetization near polarization is imme-
diately given as σ(T ,h) � 1− ω0/hc.

It is worth noting that, for fixed h < hc and T → 0, the
transverse susceptibility diverges with the critical exponent
γT = 2/(2− d), while the longitudinal one remains finite.

In the regime ω0/T � 1 (Tξ2⊥ � 1), named here quan-
tum-like regime again in analogy with the corresponding
quantum scenario, different terms in (54) may enter in
competition and different asymptotic behaviors are expected
to occur close to the isolated (T = 0)-CP. For h < hc in
the region (hc − h)2/d � T � (hc − h)(4−d)/2, where 1 �
ω0/T � g/T , (54) provides, to the leading order, a solution

which is formally identical to (55) but now the condition
ω0/T � 1 should hold. The same occurs for the thermo-
dynamic quantities (56) and the related ones.

For h = hc, decreasing T along a vertical trajectory which
corresponds to the quantum critical one in the phase
diagram of the QPFM [28], (54) yields, with ω0(T ,hc) ≡
ω0c(T),

ω0c(T) � τ
[

πd/2
sin(πd/2)

hc
Sτ

]2/(4−d)(T
τ

)2/(4−d)

. (57)

Then, we get

χ⊥(T ,hc) � 2
(
S

τ

)[
πd/2

sin(πd/2)
hc
Sτ

]−2/(4−d)(T
τ

)−2/(4−d)

,

(58)

which defines the critical exponent γT = 2/(4−d), with 1/2 <
γT < 1. For the nearly polarized state (with σ(T ,h) � 1), a
simple algebra yields

σ(T ,hc) � 1− τ

hc

[
πd/2

sin(πd/2)
hc
τ

]2/(4−d)(T
τ

)2/(4−d)

, (59)

which increases towards unity decreasing T according to the
power-law ∼ TγT .

Now we consider the region which is more relevant from
the experimental point of view, namely, the V-shaped region
T � |h− hc|(4−d)/2, around the vertical trajectory h = hc (for
both h � hc and h � hc). Under this condition, from (54) a
straightforward algebra gives

ω0(T ,h) � ω0c(T)
{

1 +
2

4− d
h− hc
ω0c(T)

}
. (60)

This expression suggests that, within the V-shaped region,
the thermodynamics is essentially identical to the one along
the trajectory h = hc, except for a small correction ∼|h− hc|.

Finally, for h > hc and sufficiently far from the quantum-
like critical trajectory, within the region T � (h− hc)(4−d)/2,
we have

ω0(T ,h) � (h− hc)
{

1 +
πd/2

sin(πd/2)
hc
Sτd/2

T

(h− hc)(4−d)/2

}
.

(61)

This implies that

χ⊥(T ,h)�2S(h−hc)−1

{
1− πd/2

sin(πd/2)
hc
Sτd/2

T

(h−hc)(4−d)/2

}
,

(62)

which differs from the MF result χ⊥ � 2S(h− hc)−1,
found before at T = 0, for a small power-law correction
in temperature, in contrast with the exponentially small
correction which occurs in the quantum counterpart [28].
Besides, for the nearly polarized state, we obtain

σ(T ,h) � 1− πd/2
sin(πd/2)

1
Sτd/2

T

(h− hc)(2−d)/2 ,

χ‖(T ,h) � 2− d
2

πd/2
sin(πd/2)

1
τd/2

T

(h− hc)(4−d)/2 .

(63)
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Figure 2: Qualitative phase diagram of CPFM with short-range
interactions for d < 2, close to the zero-temperature critical point.
The line T1(h) marks the crossover between the regimes Tχ⊥ ∝
Tξ2

⊥ � 1 (regionC) and Tχ⊥ ∝ Tξ2
⊥ � 1 (regionQ ≡ (Q1,Q2,Q3))

increasing h. The lines T2(h) and T3(h), symmetric with respect to
the vertical line h = hc, signal the crossovers among the subregimes
Q1,Q2, and Q3. Finally, the heavy line OP represents the zero-
temperature-ordered phase.

In summary, the previous results suggest, for d < 2, a
very rich phase diagram around the isolated (T = 0)-
CP, qualitatively reported in Figure 2, where different low-T
regimes and crossover lines are presented. It appears divided
in two main regions (named in analogy with the quantum
case [28]): C, where ω0/T � 1 (Tχ⊥ ∝ Tξ2⊥ � 1), and Q ≡
(Q1,Q2,Q3), where ω0/T � 1 (Tξ2⊥ � 1). The line T1 �
(hc − h)2/d for h < hc signals the crossover between the
regimes C and Q; the lines T2(h) ∼ (hc − h)(4−d)/2 and
T3(h) ∼ (h− hc)(4−d)/2, symmetric to the vertical trajectory
h = hc, provide the signature of crossovers among three
distinct subregimes Q1, Q2, and Q3 with different asymptotic
behaviors of the thermodynamic quantities as functions of
T and h. We stress that, within the V-shaped region Q2,
delimited by the crossover lines T2(h) and T3(h), the T-
dependent behaviors are essentially identical to those along
the trajectory h = hc except for different a small power law
corrections ∼ |h− hc|. Besides, in the regime Q3, decreasing
T at fixed h > hc, the transverse susceptibility deviates from
the one at T = 0 except for a small power law correction
as a function of T and h − hc. The latter feature differs
crucially from the QPFM scenario where the correction to
the (T = 0)-behavior of χ⊥ is an exponentially small function
of T and h− hc [28, 39].

In any case, below two dimensions, the global phase dia-
gram and the crossovers of the CPFM and QPFM are quite
similar. This similarity represents a very interesting ingre-
dient for experimental studies in the sense specified in the
introductory section.

4.2. d = 2. For the two-dimensional CPFM, which also ex-
hibits only a (T = 0)-CP, a low-temperature scenario similar

to the one derived for d < 2 takes place. But now, logarithmic
corrections to the leading power-law behavior arise. This
peculiarity has been also found for the analogous quantum
system [28].

With the expansion (53), close to the (T = 0)-CP the
general self-consistent equation (52) reduces to

ω0

T
� g

T
+
hc
Sτ

ln
(
τ

ω0

)
. (64)

First, we consider the regime ω0/T � 1. If h ≥ hc, no
solution exists while, for h < hc, (64) provides

ω0 � τ exp
(
−Sτ
hc

hc − h
T

)
, (65)

which has to be compared with the corresponding result
achieved for the QPFM, ω0 � Te−(Sτ/hc)((hc−h)/T) [28]. Then,
for the transverse susceptibility we have the exponentially
divergent behavior χ⊥ � (2S/τ) exp[(Sτ/hc)((hc − h)/T)] as
T → 0 (corresponding to a critical exponent γT = ∞). For
the nearly polarized state we immediately find σ(T ,h) �
1 − (τ/hc) exp[−(Sτ/hc)((hc − h)/T)] and χ‖ � (S/hc){1 −
(Sτ/hc)(τ/T)e−(Sτ/hc)((hc−h)/T)}.

Let us consider now the regime ω0/T � 1. For h = hc,
(64) gives

ω0(T ,hc) � hcT

Sτ
ln

(
Sτ2

hcT

)
, (66)

and χ⊥(T ,hc) diverges as T−1ln−1(1/T) when T → 0. More-
over, around this vertical line for T � |h−hc|ln−1(1/|h−hc|),
we find

ω0(T ,h) �= hcT

Sτ
ln

(
Sτ2

hcT

){
1 +

Sτ

hcT

h− hc
ln(Sτ2/hcT)

}
, (67)

which signals the same leading behavior of ω0c(T) and
related thermodynamic quantities in the limit T → 0, except
for small corrections in h− hc.

Finally, for h > hc and T � (h− hc)ln−1(1/(h− hc)), the
frequency gap behaves as

ω0(T ,h) � (h− hc)
{

1− T

Sτ

hc
h− hc ln

(
τ

Shc

hc
h− hc

)}
, (68)

providing a thermodynamics very similar to the one found
for d < 2 except for logarithmic corrections in h − hc with
respect to the T = 0 MF results.

In conclusion, for the two-dimensional CPFM close to
(T = 0)-CP, we have a qualitative phase diagram which is
very similar to the one shown in Figure 2, presenting three
regions C, Q1, and Q2. In this case the sector corresponding
to previousQ1 is absent and the V-shaped region is delimited
by the lines T1,2(h) ∼ |h − hc|ln−1(1/|h − hc|) which, in
contrast to the ones shown in Figure 2, exhibit small loga-
rithmic corrections.

4.3. d > 2. For such dimensionalities the CPFM exhibits a
critical line ending in the (T = 0)-CP. To explore the low-
temperature critical properties it is convenient to rewrite (52)
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in terms of g(T) = h− hc(T) ≥ 0 (for the disordered phase).
We will focus on dimensionalities 2 < d < 4 (the case d ≥
4 is rather trivial although completely consistent with the
general theory of critical phenomena) for which, given the
expansions (53), (52) assumes the form

ω0

T
� g(T)

T
− πd/2
|sin(πd/2)|

(
hc
Sτ

)(
T

τ

)(d−2)/2(ω0

T

)(d−2)/2

,

(69)

where the right-hand side must be positive for stability rea-
sons.

In this paper we will present only explicit results related
to the transverse thermodynamics which plays a direct role
for our purposes. However, the relevant longitudinal quanti-
ties near the polarized state may be simply obtained from the
general relations σ = h/hc − ω0/hc and χ‖ = S(∂σ/∂h).

We start calculating the asymptotic solutions of (69)
where the critical region around the (T = 0)-CP in the
(h,T)-plane is approached in two ways: (i) along horizontal
trajectories, as h → h+

c (T) (with hc(T) � hc − (d/(d − 2))
(hc/S)(T/τ)) at fixed T (isothermal trajectories); and (ii)
along vertical trajectories, as T → T+

c (h) (with Tc(h) �
((d − 2)/d)(Sτ/hc)(hc − h)) at fixed h ≤ hc or T → 0 for
h > hc.

We first consider the regime ω0/T � 1 (Tξ2⊥ � 1). The
right-hand side of (69) suggests that two subregimesω0/T �
θ and ω0/T � θ should be investigated, with

θ = πd/2
|sin(πd/2)|

(
hc
Sτ

)(
T

τ

)(d−2)/2(ω0

T

)(d−2)/2

, (70)

where ω0/T � θ signals the crossover between them. For
isothermal trajectories, in the subregime ω0/T � θ, one
finds for ω0 the asymptotic solution

ω0(T ,h) � τ
[

πd/2
|sin(πd/2)|

hc
S

]−2/(d−2)(T
τ

)−2/(d−2)

× (h− hc(T))(d−2)/2,

(71)

which provides for transverse susceptibility χ⊥ ∼
(h− hc(T))−γh the nontrivial non-MF critical exponent
γh = 2/(d − 2). This spherical-model incorrect result is
typical of the Tyablikov-like decoupling also for the quan-
tum model at finite temperature [28, 39, 40].

When ω0/T � θ, (69) yields simply ω0 � h − hc(T)
which corresponds to the MF exponent γh = 1. The crossover
between the two previous regimes (ω0/T � θ) is indicated by
the Ginzburg-like line for horizontal trajectories:

hGi(T) � hc(T) + hc

[
1
S

πd/2
|sin(πd/2)|

]2/(4−d)

×
(
hc
τ

)(d−2)/(4−d)(T
τ

)2/(4−d)

.

(72)

Notice that hGi(T) → hc as T → 0; that is, the two lines
hc(T) and hGi(T) merge at the (T = 0)-CP.

For vertical trajectories at fixed h < hc (Tc(h) /= 0), setting
g(T) � (d/(d−2))(hc/Sτ)(T−Tc(h)) in (69), we easily obtain
the asymptotic solutions.

ω0�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ
[
d−2

2
|sin(πd/2)|
πd/2

]2/(d−2)(T−Tc(h)
Tc(h)

)2/(d−2)

,
ω0

T
�θ,

d

d−2
hc
S

(
Tc(h)
τ

)(
T−Tc(h)
Tc(h)

)
,

ω0

T
�θ.

(73)

All the macroscopic quantities of interest can be now
determined in the previous regimes for T → T+

c (h). In
particular, for χ⊥, we find the critical exponents γT ≡ γh =
2/(d − 2) for ω0/T � θ and γT = γh = 1 for ω0/T � θ.
The crossover between these two asymptotic sub-regimes for
h < hc occurs crossing the conventional Ginzburg-Landau
line (with ω0/T � θ):

TGi(h) � Tc(h) +
d − 2
d

τ
[

πd/2
|sin(πd/2)|

]2/(4−d)

×
(
hc
Sτ

)(d−2)/(4−d)(Tc(h)
τ

)2/(4−d)

.

(74)

Of course, also for vertical trajectories within the region of
the (h,T)-plane between the critical and Ginzburg lines, with
h < hc, the TD quantitatively fails.

Let us consider now the behavior of ω0, and hence of
χ⊥, along the line h = hc, decreasing T , which is of most
experimental interest in view of the problematics discussed
in Section 1.

Since in this case Tc(hc) = 0, one can immediately see
that, to leading order in T , a self-consistent solution of (69),
under the condition ω0/T = O (1), is given by

ω0c(T) � d

d − 2

(
hc
S

)(
T

τ

)
. (75)

This result is strictly connected with the shift exponent ψ =
1 and in drastic contrast with the corresponding relation
obtained for the QPFM [27, 39], which, due to the presence
of quantum fluctuations, shows that ψ = d/2. Equation (75)
predicts that χ⊥ ∼ T−1 as T → 0 along the vertical line h =
hc, providing the exponent γT = ψ = 1, in contrast with the
quantum result γT = ψ = d/2 for the QPFM [28, 39].

From (69), under condition h − hc � (d/(d −
2))(hc/S)(T/τ), we get

ω0(T ,h) � ω0c(T)
{

1 +
d − 2
d

(
Sτ

hc

)
(h− hc)

T

}
. (76)

This means that, within the V-shaped region delimited
by the critical line for h < hc and the symmetric one TX(h) �
((d − 2)/d)(Sτ/hc)(h − hc) for h > hc, the spectrum gap, the
transverse susceptibility, and other macroscopic quantities
behave essentially as along the line h = hc, except for
negligible corrections in h− hc.

Increasing h − hc > 0 and crossing the line TX(h),
a crossover to the regime ω0/T � 1 (Tξ2⊥ � 1) takes place
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C χ⊥ ∼ T−1
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χ⊥−1 ∼ (h− hc) +O(T)

hc h

Figure 3: Schematic low-temperature phase diagram and cross-
overs in the (h,T)-plane of the CPFM with 2 < d < 4. Here
C stands for classical critical behavior; Tc(h), TGi(h) and TX(h),
denote the critical, Ginzburg, and crossover lines; OP and DP
indicate the ordered and disordered phases, respectively. The critical
line behaves linearly with hc−h and the characteristic quantum-like
V-shaped region, with vertex in the (T = 0)-CP, is clearly evident.

and one easily finds that, for T � TX(h), the appropriate
solution of (69) sounds as

ω0(T ,h) � (h− hc) +
d

d − 2

(
hc
Sτ

)

× T
{

1− πd/2
|sin(πd/2)|

d − 2
d

(
h− hc
τ

)(d−2)/2
}
.

(77)

Therefore, χ−1⊥ (as ω0) behaves essentially as at T = 0 (χ⊥ �
(h− hc)−1), with small corrections in T .

Summarizing, for 2 < d < 4 the low-T global phase dia-
gram has the qualitative structure shown in Figure 3.

A relevant feature of the phase diagram for the CPFM is
that it appears qualitatively similar to the one found for the
QPFM using different approaches: RG [27] and two-time GF
method [34, 39]. However, for sufficiently low temperatures
along the vertical trajectory h = hc, the quantitative differ-
ence between the behaviors of the transverse susceptibility,
χ⊥∼T−1 of the CPFM and χ⊥∼T−d/2, may play a crucial role
to distinguish classical and quantum fluctuations in realistic
PFM-like systems.

In this framework, it is also worth noting that, as a sub-
product of the previous analysis, an identical qualitative
global phase diagram for the classical XY model (J‖ = 0) in a
transverse magnetic field occurs close to its (T = 0)-CP.

The same low-T V-shaped-like scenario has been recent-
ly obtained for the CTIM [22] by means of a Wilsonian RG
approach in d = 4− ε dimensions applied to an appropriate
Ginzburg-Landau functional representation. This scenario
seems to be a common feature of a variety of classical
anisotropic magnetic systems which exhibit a (T = 0)-CP
as in the quantum counterparts.

5. Concluding Remarks

In the present paper we have explored the low-temperature
properties of the d-dimensional classical planar ferromagnet
(CPFM), which exhibits a field-induced zero-temperature
critical point, by adopting the two-time Green’s function
framework in classical statistical mechanics.

It was shown that, close to the (T = 0)-CP, the phase
diagram and the critical scenario are qualitatively similar to
those found for the spin-S QPFM [28] for d > 2 where
a critical line exists. The quantitative differences between
the two systems, taking place within the V-shaped region
of the phase diagram as the (T = 0)-CP is approached
along vertical trajectories, might allow to understand when
classical and quantum fluctuations are active. These discrep-
ancies are related to the value of the shift exponent ψ which
characterizes the way in which the critical line ends at the
(T = 0)-CP as T → 0 for classical (ψ = 1) and quantum
(ψ = d/2) PFM. In view of our results, we argue that the
experimental investigation of the low-temperature criticality
of PFM-like systems along and near the line h = hc (quantum
critical trajectory for the QPFM) in the (h,T)-plane and, in
particular, precise measurements of the critical exponents for
the correlation function or the susceptibility may provide a
signature of the increase of the shift exponent from ψ = 1
to ψ = d/2 at a certain crossover temperature from the
CPFM regime to the quantum one. In particular, when
the quantum fluctuations become active, a dimensionality
dependence of the shift exponent and related ones should
emerge, in contrast with the classical region where ψ = 1
for any d > 2. This may be a useful guide to establish
where the thermal fluctuations dominate over the quantum
ones, and vice versa. Therefore, it should be of experimental
interest to estimate the crossover temperature below which
the quantum critical fluctuations are expected to govern the
physics close to the (T = 0)-CP. Of course, this requires
necessarily an appropriate study of quantum spin models
within their V-shaped region.

Useful insights into this problem may be provided by
a recent RG analysis [27] for spin-1/2 QPFM with short
range interactions, and by two-time GF approaches for spin-
1/2 [39] and spin-S [28] QPFM for short- and long-range
interactions. In these papers, an unexpected regime with
χ⊥ ∼ T−1 was found in the V-shaped region above a certain
temperature T∗ which, for 2 < d < 4, spin-1/2, and
short-range interactions at a TD level, reads [39] (using our
notations)

T∗ � τ
[

1
π
|sin(πd/2)|(Fd/2(0))(4−d)/2

]4/(d−2)2 (
τ

dhc

)2/(d−2)

,

(78)

where Fd/2(0) is the value at y = 0 of the function Fd/2(y) =∫∞
0 dx(x(d/2)−1/(ex+y − 1)). Below T∗, the quantum behavior
χ⊥ ∼ T−d/2 takes place, as expected from the paradigmatic
quantum critical scenario [1].

The present study for the CPFM clarified the physical
meaning of T∗. Our study corroborated the idea that,
decreasing T along the quantum critical trajectory, T∗

provides an estimate of the temperature which signals
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a crossover between the classical thermally activated regime,
with χ⊥ ∼ T−1 (ψ = 1), and the quantum one, with χ⊥ ∼
T−d/2 (ψ = d/2). This feature agrees with the RG predictions
for the same quantum spin model near and below four
dimensions [27].

It is worth mentioning that within our many-body
framework one can also extract the basic quantum-like
dynamics by variation of dimensionality. In particular, rel-
evant information can be easily obtained from the scaling
structure of the transverse dynamic susceptibility χ⊥(k,ω) =
−G⊥(k,ω) for small values of the arguments. Indeed, from
(33)-(34) close to the (T = 0)-CP we find

χ⊥(k,ω) � 2Sξ2
⊥
{[
SJ⊥(kξ⊥)2 + 1

]
− ωξ2

⊥
}−1

, (79)

where ξ⊥ � (SJ⊥)1/2(h− hc)−1/2 ∝ χ1/2⊥ defines the transverse
correlation length at zero temperature for h ≥ hc. Then,
comparing (79) with the general dynamic scaling relation
χ(k,ω) � ξ2−ηW(kξ,ωξz) we immediately get η = 0 and
z = 2 for the Fisher η and dynamic z critical exponents, and
W(x, y) = 2S[SJ⊥(x2 + 1)− y]−1.

In conclusion, our results are in agreement with the
statements made in [21] for the CTIM chain and in [28] for
d > 1. Our analysis suggests that reliable measurements of the
shift exponent (or related ones) close to the QCP of magnetic
systems with PFM symmetry may provide a signature of the
presence of quantum critical fluctuations. We believe also
that this feature is rather general and not limited to TIM-like
and PFM-like systems.

Appendices

A. An Outline of the Two-Time Green’s Function
Framework in Classical Statistical Mechanics

In this section, for utility of the reader, we briefly review
the basic ingredients of the two-time retarded (ν = r) and
advanced (ν = a) GF’s framework in classical statistical
mechanics in a form strictly parallel to the quantum
counterpart [40–44]. For two arbitrary dynamical variables
A and B, they are defined as [29]

G(ν)
AB(t, t′) = θν(t − t′)〈{A(t),B(t′)

}〉

≡ 〈〈A(t);B(t′)
〉〉

ν, (ν = r, a),
(A.1)

where θr(t− t′) = θ(t− t′), θa(t− t′) = −θ(t′ − t), θ(x) is the
usual step function, 〈· · · 〉 denotes an equilibrium ensemble
average, and {A,B} is the Poisson bracket of A and B.

In (A.1), the dynamical variables A and B depend on
time via the conjugate canonical coordinates (q(t), p(t)) ≡
(q1(t), . . . , qN (t); p1(t), . . . , pN (t)), (N is the number of
degrees of freedom of the classical system under study),
X(t) = eiLtX(0) with X = A,B, q, p, L = i{H , . . .} is the
Liouville operator, and H is the Hamiltonian of the system
and X(0) ≡ X(q(0), p(0)) at the initial time t = 0. Of course,
the time evolution of the generic dynamical variable X(t) is

governed by the well-known Liouville equation of motion
(EM):

dX(t)
dt

= {X(t), H}. (A.2)

One can easily prove that the two-time GFs (A.1) depends on
times t, t′only through the difference t − t′, that is

G(ν)
AB(t − t′) = 〈〈A(t − t′);B

〉〉
ν =

〈〈
A;B(t′ − t)〉〉ν, (A.3)

and the two-time correlation function FAB(t, t′) = FAB(t −
t′) = 〈A(t)B(t′)〉 = 〈A(τ)B〉 = 〈AB(−τ)〉, with τ = t − t′,
is related to the classical GFs (A.3) by the following relation
[29]:

G(ν)
AB(τ) = βθν(τ)

d

dτ
〈A(τ)B〉 = βθν(τ)〈{A(τ), H}B〉, (A.4)

where β = (KBT)−1, T is the temperature, and KB is the
Boltzmann constant (we assume KB = 1). In particular, we
have also

〈{A(τ),B}〉 = β
d

dτ
〈A(τ)B〉 = β〈{A(τ), H}B〉. (A.5)

For G(ν)
AB(τ) and FAB(τ) one can introduce the Fourier

transforms:

G(ν)
AB(τ) =

∫ +∞

−∞
dω

2π
G(ν)
AB(ω)e−iωτ ,

FAB(τ) =
∫ +∞

−∞
dω

2π
FAB(ω)e−iωτ ,

(A.6)

where G(ν)
AB(ω) = 〈〈A(τ);B〉〉ν,ω and FAB(ω) = 〈A(τ)B〉ω are

called the ν-GF of A and B in the ω-representation and the
classical spectral intensity of the time-dependent correlation
function FAB(τ), respectively, with f (ω) = ∫ +∞

−∞ dτeiωτ f (τ).
Then, using (A.4) and the integral representations

θ(τ) = i
∫ +∞

−∞
dx

2π
e−ixτ

x + iε
, ε −→ 0+;

δ(x) =
∫ +∞

−∞
dτ

2π
eixτ ,

(A.7)

for the step function and the Dirac δ-function, G(ν)
AB(ω) can

be expressed in terms of the corresponding spectral intensity
as

G(ν)
AB(ω) =

∫ +∞

−∞
dω′

2π
βω′FAB(ω′)

ω − ω′ + (−1)νiε
, ε −→ 0+, (A.8)

where the symbol (−1)ν means +1 if ν = r and −1 if
ν = a. It is interesting to compare (A.8) with the quantum
corresponding expression for two operatorsA and B [40–44]:

G(ν)
AB(ω) =

∫ +∞

−∞
dω′

2π

(
1 + ηe−β�ω′

)
FAB(ω′)

ω − ω′ + (−1)νiε
, ε −→ 0+,

(A.9)

where η = −1 and η = +1 by definition of quantum two-
time GFs with commutator or anticommutator, respectively,
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and � is the reduced Planck constant. Notice that formally, as
expected for internal consistency, the function C(ω) = βω or
Qη(ω) = (1 + ηe−β�ω)/� characterizes the classical or quan-
tum nature of the problem under study, respectively.

In analogy with the quantum case [45–47], we now intro-
duce the time-dependent classical spectral density (CSD) for
A and B [31, 37, 48, 49]:

ΛAB(τ) = i〈{A(τ),B}〉, (A.10)

with the Fourier transform:

ΛAB(ω) = i〈{A(τ),B}〉ω =
∫ +∞

−∞
dτeiωτΛAB(τ) = βωFAB(ω).

(A.11)

Hence, from (A.8), one immediately obtains the spectral
representation:

G(ν)
AB(ω) =

∫ +∞

−∞
dω′

2π
ΛAB(ω′)

ω − ω′ + (−1)νiε
, ε −→ 0+, (A.12)

for the two-time GFs (A.1) in terms of the corresponding
CSD ΛAB(ω) in the ω-representation. Also the dynamical
correlation function 〈A(τ)B〉 can be easily expressed in terms
of ΛAB(ω). From (A.5), (A.10), and (A.11), we obtain indeed
(classical spectral theorem)

〈A(τ)B〉 ≡ 〈BA(τ)〉 =
∫ +∞

−∞
dω

2π
ΛAB(ω)
βω

e−iωτ . (A.13)

From (A.10)–(A.13) some formally exact results can be easily
obtained. First, (A.10) and (A.11) yield

∫ +∞

−∞
dω

2π
ΛAB(ω) = i〈{A,B}〉. (A.14)

Besides, from (A.13), it follows

∫ +∞

−∞
dω

2π
ΛAB(ω)
βω

= 〈AB〉. (A.15)

The relations (A.14) and (A.15) constitute useful examples of
the so-called sum rules of the CSD, ΛAB(ω), which have great
relevance for physical consistency of practical calculations
and approximations. Combining now (A.12) and (A.14),
one can easily obtain another general result which plays an
important role for calculation of the GFs. As ω → ∞we have
indeed [33]

G(ν)
AB(ω) =

⎧
⎨
⎩

i〈{A,B}〉
ω

∼ ω−1, if 〈{A,B}〉 /= 0,

∼ ω−α (α ≥ 2), if 〈{A,B}〉 = 0,
(A.16)

which provide a relevant boundary condition for the ν-GFs.
Let us come back now to the relations (A.12) for classical

retarded and advanced GFs in the ω-representation. As
in the quantum counterpart [40–42], one can prove that
G(r)
AB(ω) andG(a)

AB(ω), analytically continued in theω-complex
plane, are analytical functions in the upper and lower half-
plane, respectively. Then, combining these two analytical

functions, one can construct a single function GAB(ω) =∫ +∞
−∞ dteiωtGAB(t) of complex ω such that

GAB(ω) =
{
G(r)
AB(ω), Imω > 0,

G(a)
AB(ω), Imω < 0.

(A.17)

Hence, (A.12) provides for GAB(ω) the spectral represen-
tation:

GAB(ω) =
∫ +∞

−∞
dω′
2π

ΛAB(ω′)
ω−ω′ . (A.18)

This function is analytical in the whole complexω-plane with
a cut along the real axis where singularities for GAB(ω) may
occur. It is worth noting that, in terms of ΛAB(ω), no formal

differences exist for the spectral representations of G(ν)
AB(ω)

and GAB(ω) in the classical and quantum context. Hence, all
the developments already known in the quantum framework
remain formally valid for the classical one. In particular, one
has the important exact relation

ΛAB(ω) = i[GAB(ω + iε)−GAB(ω − iε)], (A.19)

which expresses the CSD in terms of the related two-time
GFs in the ω-representation. This allows us to state also that
the cut for GAB(ω) along the real axis in ω-complex plane is
determined by (A.19) and its singularities are the points of
the real axis where the condition ΛAB(ω) /= 0 is satisfied. For
the spectral intensity of classical systems, (A.11) and (A.19)
yield

FAB(ω) = 〈A(τ)B〉ω = i
GAB(ω + iε)−GAB(ω − iε)

βω
. (A.20)

Of course, other known quantum relations are formally valid
for classical many-body theory. Besides, when ΛAB(ω) is real,
the classical Kramers-Kronig relations (classical dispersion

relations) between the real and imaginary parts of G(ν)
AB(ω)

are true:

Re G(ν)
AB(ω) = (−1)(ν)

π
℘
∫ +∞

−∞
dω′

ImG(ν)
AB(ω′)

ω′ − ω , (A.21)

where the symbol ℘ denotes the main part of the integral. We
have also

ΛAB(ω) = −2(−i)ν ImG(ν)
AB(ω), (A.22)

and, in particular,

ΛAB(ω) = −2 ImG(r)
AB(ω). (A.23)

Differentiating (A.3) with respect to τ = t−t′, with EM (A.2)
for dynamical variables and dθν(τ)/dτ = δ(τ), yields

d

dτ
〈〈A(τ);B〉〉ν = δ(τ)〈{A,B}〉 + 〈〈{A(τ), H};B〉〉ν,

(A.24)

which is the basic EM for the GF 〈〈A(τ);B〉〉ν. This, however,
is not a closed differential equation since in the right-hand
side of (A.24) a new higher-order ν-GF occurs involving
Poisson brackets of a greater number of dynamical variables.
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Then, one needs to consider a new EM for the two-time ν-GF
〈〈{A(τ), H};B〉〉ν. The τ-derivative of this function provides
an additional equation, formally identical to (A.24) with
A(τ) replaced by {A(τ), H}, the right-hand side of which
contains the new ν-GF 〈〈{{A(τ), H}, H};B〉〉ν. By iteration
of this procedure, we obtain the infinite chain of coupled
EMs for GFs of increasing order:
d

dτ

〈〈
Lm

HA(τ);B
〉〉

ν=δ(τ)
〈{

Lm
HA,B

}〉

+
〈〈

Lm+1
H A(τ);B

〉〉
ν

(m=0, 1, 2, . . .).

(A.25)

Here LH = iL = {. . . , H} and Lm
HA means L0

HA = A,
L1

HA = {A, H}, L2
HA = {{A, H}, H}, and so on. Notice

that the chain of EMs (A.25) is formally the same for different
types of GFs and hence one can eliminate the index ν when
the physical context is clear.

In the practical calculations it is more convenient to
work in the ω-Fourier space. With i

∫ +∞
−∞ dτeiωτ(df (τ)/dτ) =

ω f (ω), the chain of equations, in the ω-representation,
assumes the following form:

ω
〈〈

Lm
HA(τ);B

〉〉
ν,ω = i

〈{
Lm

HA,B
}〉

+i
〈〈

Lm+1
H A(τ);B

〉〉
ν,ω

(m=0, 1, 2, . . .),

(A.26)

which has to be solved with appropriate boundary conditions
(A.17). Since an exact solution is, of course, impossible, in
practical calculations one must resort to decoupling pro-
cedures, and hence to approximate methods, to reduce the
infinite chain of coupled equations to a finite closed one.
Unfortunately, systematic and controllable decouplings are
not easy to find and one must check for the reliability of a
given approximation for each specific problem, by compar-
ing the results with experiments, simulations, or other types
of approaches.

B. Callen-Like Approach for Magnetization:
A Classical Moment Problem

In this appendix we present an instructive method to solve
the differential equation (25) for Ω(a) via a classical moment
problem. The differential equation is the following:

Ω′′(a) + 2
(

1
Φ

+ a
)−1

Ω′(a)− S2Ω(a) = 0, (B.1)

for which the initial condition Ω(0) = 1 is valid by definition.
This is, of course, insufficient to find the physical solution
of (25) and one should add a supplementary condition to
be searched properly. Unfortunately, there is not classical
analogue of the operatorial identity ΠS

p=−S(Sz− p) = 0 which
is the key ingredient of the Callen approach for the quantum
HM [35]. In the following, we will show that, at our level of
approximation, the additional condition

Ω(a) =
∫ S

−S
dSz f (Sz)eaS

z
, (B.2)

which follows formally from the definition of the canonical
ensemble average of the dynamical variable eaS

z
, combined

with Ω(0) = 1, allows to determine Ω(a) as a classical
moment problem [50–53]. In view of the structure of the
differential equation (25) for Ω(a), it is convenient to define

f (Sz) = g(Sz)eS
z/Φ, (B.3)

so that, we can write

Ω(a) =
∫ S

−S
dSzg(Sz)e(1/Φ+a)Sz

= S
∫ 1

−1
dxg(Sx)eS(1/Φ+a)x.

(B.4)

Replacing this expression and its derivatives in (25), we have
for g(Sz) the following:

∫ 1

−1
dx
(
yx2 + 2x − y

)
g(Sx)eyx = 0, (B.5)

where y = S(1/Φ+a). Then, with eyx =∑∞
n=0(yn/n!)xn, (B.5)

provides

∞∑

n=0

yn

n!

[
y(In+2 − In) + 2In+1

] = 0, (B.6)

with

Ik =
∫ 1

−1
dxg(Sx)xk. (B.7)

It is now simple to show that the moments (B.7) of g(Sx) ≡
G(x) are determined by the recursion relations:

I1 = 0, . . . , In+1 = n

n + 2
In−1, n = 1, 2, . . . . (B.8)

These provide

Ik =
⎧
⎪⎨
⎪⎩

I0
k + 1

, k = 2n,

0, k = 2n + 1, n ≥ 0,
(B.9)

where, at this stage, the moment I0 is unknown. From (B.9),
it is immediate to see that the solution of the moment
problem for g(Sx) is given by g(Sx) = I0/2.

However, for the univocal determination of Ω(a) it is not
necessary to have the explicit form of g(Sx) = g(Sz) but
rather its moments (B.9). From the integral representation
(B.4), we have indeed

Ω(a) = S
∞∑

k=0

yk

k!

∫ 1

−1
dxg(Sx)xk

= SI0
y

∞∑

n=0

y2n+1

(2n + 1)!
= SI0

y
sinh y,

(B.10)

or, explicitly,

Ω(a) = SI0
sinh[S(1/Φ + a)]

S(1/Φ + a)
. (B.11)
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Finally, the boundary condition Ω(0) = 1 yields I0 = (1/Φ)
(1/ sinh(S/Φ)) so that we obtain the following solution:

Ω(a) = 1/Φ
1/Φ + a

sinh[S(1/Φ + a)]
sinh(S/Φ)

. (B.12)

This is the central result of this appendix which constitutes
the classical analogue [34] of the quantum Callen formula
[35]. It provides the required expression form, which is valid
for any d, T , and h.
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