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Two micromagnetic tools to study the spin dynamics are reviewed. Both approaches are based upon the so-called dynamical
matrix method, a hybrid micromagnetic framework used to investigate the spin-wave normal modes of confined magnetic systems.
The approach which was formulated first is the Hamiltonian-based dynamical matrix method. This method, used to investigate
dynamic magnetic properties of conservative systems, was originally developed for studying spin excitations in isolated magnetic
nanoparticles and it has been recently generalized to study the dynamics of periodic magnetic nanoparticles. The other one, the
Lagrangian-based dynamical matrix method, was formulated as an extension of the previous one in order to include also dissipative
effects. Such dissipative phenomena are associated not only to intrinsic but also to extrinsic damping caused by injection of a spin
current in the form of spin-transfer torque. This method is very accurate in identifying spin modes that become unstable under
the action of a spin current. The analytical development of the system of the linearized equations of motion leads to a complex
generalized Hermitian eigenvalue problem in the Hamiltonian dynamical matrix method and to a non-Hermitian one in the
Lagrangian approach. In both cases, such systems have to be solved numerically.

1. Introduction

In these last years, great attention has been given to the study
of magnetization dynamics in laterally confined magnetic
systems. It is well know that spin excitations are quantized
due to the lateral confinement. The oscillations are the so-
called normal modes, which represent a pattern of motion
given by all the parts of the system oscillating sinusoidally
with the same frequency and with the same phase relation.
In this last decade, analytical models have given important
contributions to understand the frequency spectrum of
normal modes for different ground-state magnetizations [1–
11]. However, some limitations due to the assumptions made
for the determination of the equilibrium state, the boundary
conditions, and the calculation of the energy contributions
to normal modes dynamics are still present.

On the other hand, a lot of efforts have been devoted to
develop micromagnetic codes having the aim of calculating

very precisely different ground states of nanometric particles
[12]. Due to their accuracy, the developed micromagnetic
methods have contributed to give additional information
about the spin dynamics. The first micromagnetic calcula-
tions were typically based upon codes developed to calculate
in the first place the ground state of a given magnetic particle.
Then the time evolution of the average magnetization of a
particle could be obtained and, from a subsequent postpro-
cessing of these data (mainly using the Fourier transform of
the magnetization), information could be extracted about
mode frequencies and spatial profiles [13]. In the simplest
application of the method, the limit of these calculations was
the observation of modes with nonzero magnetization only.
More recently, a micromagnetic method was extended to
the detailed calculation of eigenfrequencies and eigenvectors
under the effect of an oscillatory in-plane small magnetic
field [14]. Another recent micromagnetic method was also
developed to study the quantized spin excitations in laterally
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confined systems [15]. This is the so-called Hamiltonian-
based dynamical matrix method (HDMM).

The HDMM was first formulated for isolated magnetic
nanoelements and then it has been generalized to the case of
interacting nanoelements [16]. It is the prototype of finite-
difference methods and represents an eigenvalue/eigenvector
problem. The scope of this method is to find the frequencies
and profiles of the spin modes which are associated to the
eigenvalues and the eigenvectors, respectively, of a dynamical
matrix. It can be considered the analogous of the dynamical
matrix formalism used to find atomic vibrations (phonons)
in crystalline solids. The dynamical matrix contains the
second derivatives of the density energy coming from a
second order expansion of the density energy around the
equilibrium. This method was already used to study the
spin excitations in magnetic multilayers with ferro- or anti-
ferromagnetic coupling [17, 18]. Due to the translational
invariance, the number of independent dynamic variables
was reduced to twice the number of the layers. The calcu-
lated second derivatives are evaluated at equilibrium. The
eigenvalue/eigenvector problem can be set as a complex
generalized Hermitian eigenvalue problem. The method
presents several advantages: a single calculation yields the
frequencies and eigenvectors of all modes of any symmetry, it
is applicable to a particle of any shape (within the nanometric
range), and the computation time is affordable. This means
that by means of this micromagnetic approach, it is possible
to determine, after a single iteration, the frequencies and the
profiles of all spin-modes, independently of the ground-state
magnetization (e.g., vortex state, vortex in the presence of an
external magnetic field, onion state, quasi-saturated state).
The main restriction of the method is its applicability to
confined magnetic systems whose spin dynamics is assumed
purely precessional with no dissipative effects. Of course,
this is true only in a first approximation, since in real
magnetic systems the intrinsic damping process plays an
important rule. In order to select the representative modes
of the spectrum and to compare them with the ones
observed by means of the experimental techniques, the
differential scattering cross-section has to be evaluated both
for noninteracting and interacting magnetic particles.

The first applications of the HDMM were on chains of
dipolarly interacting rectangular dots representing a one-
dimensional array [19] and of two-dimensional (2D) arrays
formed by circular nanometric disks [20]. Very recently, this
method was applied to study the collective mode dynamics
in arrays of holes embedded into a thin ferromagnetic
film. This calculation was done by including in the energy
density computation also the exchange interaction between
micromagnetic cells belonging to two adjacent primitive cells
[21].

In order to overcome the above-mentioned restrictions
of the HDMM, Consolo et al. formulated very recently
the so-called Lagrangian-based dynamical matrix method
(LDMM) [22]. Such a method explicitly takes into account
the intrinsic “positive” Gilbert damping and the current-
induced spin-transfer-torque “negative” dissipation. Since
the magnetic system so obtained is no more conservative,
a Lagrangian formalism is necessary. Unlike the HDMM,
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Figure 1: Reference frame used in the theory.

the LDMM cannot be cast as a classical (nongeneralized)
eigenvalue/eigenvector problem, but it has to be formulated
as a complex generalized non-Hermitian eigenvalue prob-
lem. The first application of the method was done on a
magnetic nanopillar stack of circular cross-section subject to
an external magnetic field directed a few degree away from
the normal to the plane [22]. The analysis was then extended
to the case of external magnetic fields of variable intensity
and orientation with respect to the plane of the nanopillar
[23].

It is important to notice that both formalisms have been
developed up to now in the linear approximation, namely,
considering small angular deviations of the magnetization
from equilibrium so that each spin excitation is a normal
mode of the system.

The reference frame used in the micromagnetic calcu-
lations performed both by means of HDMM and LDMM
is illustrated in Figure 1. The z-axis is along the normal to
the particle and the x-y plane lies on the particle plane.
According to this reference frame, the configuration of the

vector �M, representative of the magnetic dipole momentum,
is identified through the polar angles, θ and φ, and the
intrinsic rotation ψ. As it will appear clear in the section
devoted to the Lagrangian approach, this latter angle does
not enter in the equation of motion, being the corresponding
Lagrange equation associated to a first integral of the motion
(the conservation of the angular momentum). So that, as it
is expected, because the modulus of the magnetization vector
is preserved in time, the dynamics can be described through
two degrees of freedom only (typically θ and φ).

If we assume that the magnetization vector �M is placed
along the generic direction given by the unitary vector ê′3, it
can be expressed in Cartesian coordinates by

�M(t) =Ms
(
sin θ(t) cosφ(t), sin θ(t) sinφ(t), cos θ(t)

)
,

(1)
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being Ms the saturation magnetization value (the modulus
of the magnetization vector) and the time dependence of the
angles θ and φ expressed as

θ(t) = Θ + δθ(t),

φ(t) = Φ + δφ(t).
(2)

In (2), we indicate by (Θ, Φ) the static (equilibrium)
orientation of the magnetization obtained by solving the

stationary problem ( �̇M = 0) for whatever effective field
and magnetization distributions. Instead, δθ(t) and δφ(t) are
the small polar and azimuthal deviations from equilibrium,
respectively.

In the micromagnetic calculations, the magnetic system
is subdivided into rectangular cells. Each micromagnetic cell
is identified by a single index k( j) that varies from 1 to
N , where N denotes the number of cells. Hence, Mk is the
magnetization in the kth cell and �ri j = �ri − �r j is the in-plane
distance between the ith cell and the jth cell. The index has
been assigned so that the first line of the rectangular matrix
(X × Y) corresponds to k = 1, . . . ,Y and the second line
to k = Y + 1, . . . , 2Y , and so on and so forth. X(Y) is the
number of cells along x(y), while Z is the number of cells
along z for a sample of thickness equal to d. We define for

each cell the reduced magnetization �mk = �Mk/Ms. Hence, in
a polar reference frame for each cell

�mk(t) = (sin θk(t) cosφk(t), sin θk(t) sinφk(t), cos θk(t)
)
,
(3)

where φk is the azimuthal angle and θk is the polar angle of
the magnetization. The total energy density of the system,
obtained by dividing the total energy by the volume of the
cell, is a function of φk and θk :E = E(θk,φk) where k varies
from 1 to N .

In the following sections we describe in detail the
two micromagnetic methods. We do not illustrate the
applications of these methods to magnetic nanoparticles,
because this aspect is not the purpose of this paper. We give a
summary of the paper. In Section 2, we outline the formalism
at the basis of the HDMM. First, we introduce the different
contributions to the energy density and then we derive the
system of linear and homogeneous equations of motion for
the isolated particle from the Hamilton equations. Finally,
we present the generalization of the HDMM to the case of
interacting elements. In Section 3, the formalism at the basis
of the LDMM is presented. First, the Lagrangian equations
for a macrospin system are derived. Then a generalization is
given by considering N interacting momenta in an isolated
magnetic element.

2. HDMM

This section deals with the review of the HDMM formalism.
As stated above, the HDMM is a micromagnetic approach
that can be applied only to fully conservative systems
which are supposed to have, in a first approximation, a
purely (undamped) precessional motion of the magneti-
zation about the effective field. It is a finite-difference

micromagnetic method developed in the linear regime of
spin dynamics by considering small deviations from the
equilibrium magnetization. In the first subsection, the dif-
ferent contributions of the energy density entering into the
dynamical matrix are calculated and the equations of motion
for an isolated magnetic element are cast in the form of
a linear and homogeneous system that can be solved as a
complex generalized Hermitian eigenvalue problem. In the
last subsection, it is shown the generalization of the HDMM
to interacting magnetic nanoparticles by including into the
dynamical matrix the Bloch condition.

2.1. Energy Density. First, we give the explicit expressions
of the different interactions entering into the total micro-
magnetic energy density E of a given confined magnetic
system simulated by using the HDMM: Zeeman energy, ex-
change energy, demagnetizing energy, and anisotropy energy,
respectively [24]. The energy density is defined as E = Ẽ/V

where Ẽ is the energy of the system and V its volume. In the

presence of an external magnetic field �H , the Zeeman energy
density can be written in the form

Eext = −μ0Ms �H ·
N∑
k=1

�mi, (4)

being μ0 the vacuum permeability. In micromagnetic theory,
the exchange energy can be expressed as a volume integral of
the form

Ẽexch = A
∫

part

3∑
j=1

(
�∇mj

)2
dV , (5)

where the subscript “part” denotes the volume of a general
magnetic particle, A is the exchange stiffness constant, and
�∇ is the gradient applied to a given component of the
magnetization. In this case the exchange contribution is
independent of z. Using the first-neighbours model, the
exchange energy density can be written as follows:

Eexch = A
N∑
k=1

4∑
n=1

1− �mk · �mn

a2
kn

, (6)

where the variable akn is the distance between the centers
of two adjacent cells of index k and n, respectively, k varies
over all micromagnetic cells, and the sum over n ranges
over the neighbours of the k-th cell. If the micromagnetic
cells k are situated at the edges, one must impose boundary
conditions. The cells on the edges interact with an external
row of cells that have the same fixed magnetization, in this
case the corresponding term in the sum must be weighted
twice.

In order to calculate the demagnetizing energy density,
we have followed the method of the demagnetizing tensor.
In the following, we use also the term dipolar in place
of the term demagnetizing, because the higher-order terms
of the expansion vanish in the practical cases examined.
Generally, within the framework of the demagnetizing tensor
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method, the demagnetizing energy density can be written as
follows:

Edmg = 1
2
μ0

∑
k j

�Mk ·N �M j

= μ0
M2

s

2

∑
k j

(
mxk,myk,mzk

)
×
⎛⎜⎝Nxx Nxy Nxz

Nyx Nyy Nyz

Nzx Nzy Nzz

⎞⎟⎠
⎛⎜⎝mxj

my j

mz j

⎞⎟⎠.
(7)

This equation includes the self-energy and Nαβ = Nαβ(�rk j)
with α,β = x, y, z are the elements of demagnetizing tensor.
Each component of the demagnetizing tensor is related
to the interaction between two rectangular surfaces S and
S′. Under the assumption made for the calculation of the
demagnetizing field for uniform magnetization, by using a
version of Gauss’s theorem, the demagnetizing tensor can be
written as

N
(
�rk j
)
= 1
V

∫
Sk
d�S
∫
S′j

d�S′∣∣�r −�r′∣∣ , (8)

where V = l2c d is the volume of the micromagnetic cell with
lc the cell size and d is the cell height. Because of the four-
fold C4 symmetry and since �rk j ≡ (x, y, z), all components
can be expressed only as a function of Nxx(x, y, z) and
Nxy(x, y, z) components with suitable permutations of the
variables x, y, z.

The magnetocrystalline uniaxial anisotropy can be
labeled with the symbol Eani. It is an energy density function,
for a given micromagnetic cell, of the angle αk between the
magnetization of the single cell �mk and the easy axis of
generic direction given by the unit vector û. We write

Eani =
N∑
k=1

K (1)sin2αk =
N∑
k=1

K (1)(1− cos2αk
)

=
N∑
k=1

K (1)
[

1− (�mk · û
)2
]

,

(9)

where K (1) is the first-order anisotropy uniaxial coefficient.
As the dynamical matrix components are expressed in

terms of the second derivatives of the energy density, it is
necessary to calculate them from the above expressions. First,
we calculate the second derivatives of the magnetization with
respect to the polar and azimuthal angles of the given micro-
magnetic cell that represent the degrees of freedom of the
system. Indeed, the second derivatives of the magnetization
appear in the final expressions of the second derivatives of
the energy density. In particular

∂2�mk

∂δφ2
k

= (− sin θk cosφk,− sin θk sinφk, 0
)
,

∂2�mk

∂δφk∂δθk
= (− cos θk sinφk, cos θk cosφk, 0

)
,

∂2�mk

∂δθ2
k

= (− sin θk cosφk,− sin θk sinφk,− cos θk
)
.

(10)

The second derivatives of the energy density are calculated
at equilibrium. For the sake of simplicity, in the following,
the derivatives are calculated with respect to δθk and δθl
implying that one or two of the two generic variables could
be also δφ.

The second derivative of Zeeman energy density becomes

∂2Eext

∂δθk∂δθl
=
⎧⎪⎨⎪⎩−μ0Ms �H · ∂2�mk

∂δθk∂δθl
l = k

0 l /= k.
(11)

As outlined previously, for the calculation of the ex-
change contribution, the nearest-neighbour model is taken
into account. It is useful to give also the expression of the
first derivative due to some important manipulations that
have to be performed. The first derivative with respect to
δθk includes in the sum a term in which i = k and thus
n /= k and also the other terms with n = k and with i
one of the nearest neighbours. Thanks to a proper change
of indices in the second term, the following equation is
obtained:

∂Eexch

∂δθk
= −A

4∑
n=1

1
a2
kn

∂�mk

∂δθk
· �mn − A

4∑
n=1

1
a2
kn

�mn · ∂�mk

∂δθk

= −2A
4∑

n=1

1
a2
kn

∂�mk

∂δθk
· �mn,

(12)

where the sum over n is made up over the nearest-neighbour
micromagnetic cells of the k-th cell. In the special case of
the adopted first neighbours model, the second derivatives
are

∂2Eexch

∂δθk∂δθl

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2A
4∑

n=1

1
a2
kn

∂2�mk

∂δθk∂δθl
· �mn l = k

−2A
1
a2
kl

∂�mk

∂δθk
· ∂�ml

∂δθl
l, k: nearest-neighbour

0
k /= l and

not nearest-neighbour.
(13)

We now pass to the calculation of the derivatives of the
demagnetizing energy density. Due to their rather compli-
cated form, we give in the following the expression not only
of the second derivatives of the demagnetizing energy density
but also of the first derivatives with respect to the generic
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variable δθi. The first derivative of the demagnetizing energy
density (7) is

∂Edmg

∂δθi
= μ0M

2
s

⎡⎣1
2

∑
k /= i
�mk ·N(k, i)

∂�mi

∂δθi
+

1
2

∑
j /= i

∂�mi

∂δθi

·N(k, i) �mj +
1
2

∂

∂δθi

(
�mi · N̂(i, i) �mi

)⎤⎦

= μ0M
2
s

N∑
k=1
k /= i

�mk ·N(k, i)
∂�mi

∂δθi
+ �mi ·N(i, i)

∂�mi

∂δθi
.

(14)

In the sum, the contribution of the terms with the same index
k = j = i has been separated; moreover, we have taken
into account that the tensor N fulfils N(k, i) = N(i, k) and
is symmetric (Nαβ = Nβα).

Thanks to the previous consideration, it is possible to
write

∂�mk

∂δθk
·N(k, i)�mi = �mi ·N(k, i)

∂�mk

∂δθk
, (15)

and therefore,

∂

∂δθi

(
�mi ·N(i, i)�mi

)
= ∂�mi

∂δθi
·N(i, i)�mi + �mi ·N(i, i)

∂�mi

∂δθi

= 2�mi ·N(i, i)
∂�mi

∂δθi
.

(16)

The second derivative must take into account the two cases:
i /= l, i = l( j = i), namely,

∂2Edmg

∂δθl∂δθi
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M2
s

⎛⎝ N∑
k=1

�mk ·N(k, l)
∂2�ml

∂δθl∂δθi

+
∂�ml

∂δθl
·N(k, l)

∂�mi

∂δθi

) l = i

Ms
2 ∂�ml

∂δθl
·N(k, l)

∂�mi

∂δθi
l /= i.

(17)

The k = i term resulting from the derivative of the second
term (in the expression of the first derivative given above)
has been included in the sum over k.

The last step is the calculation of the term associated with
the anisotropy energy density. The second derivative of the
anisotropy energy density can be written as

∂2Eani

∂δφ j∂δθk

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2K (1)

[(
∂�mk

∂δφ j
· û
)
·
(
∂�mk

∂δθk
· û
)

+
(
�mk · û

)

·
(

∂2�mk

∂δφ j∂δθk
· û
)]

for δθ, δφ k = j

−2K (1)

⎡⎣( ∂�mk

∂δφk
· û
)2

+
(
�mk · û

) · ( ∂2�mk

∂δφk
2 · û

)⎤⎦
for δφ, δφ or δθ, δθ k = j

0 k /= j.

(18)

2.2. Equations of Motion for an Isolated Magnetic Particle.
The derivatives calculated previously are included into the
dynamic equations. Indeed, the equations of motion can be
cast into a linear and homogeneous system in which the
second derivatives of the energy density calculated at equi-
librium appear explicitly. It is well know that the equation
of motion for a magnetic spin system which undergoes a
purely precessional motion is the Landau-Lifshitz equation
[25], expressed as a torque equation involving the effective
field and the magnetization itself. Since our aim is to find
the energy density in a conservative system, we derive the
equations of motion from the Hamilton equations.

2.2.1. HDMM for a Macrospin System. The equation of
motion for the magnetic systems under investigation will be
derived by following semiclassical approach. Also, the model
will be first derived by considering the so-called macrospin
approximation, where the material is thought as uniformly
magnetized and represented by a single dipole momentum.

As known from classical mechanics, in the presence
of fixed constraints and conservative sources, the system
Hamiltonian H coincides with the total mechanical energy
Ẽ, namely, H ≡ Ẽ = T − U , where T is the kinetic
energy and U is the potential expressed as the opposite of
the potential energy V . By defining the Lagrangian variables
of the problem with qn, where n = 1, 2, . . . is the number of
degrees of freedom corresponding to the dynamic variables,
and the corresponding conjugate momenta with pn, the
Hamilton equations in the 2n canonical variables (qn, pn)
take the form [15]

∂qn
∂t

= ∂H

∂pn
,

∂pn
∂t

= −∂H
∂qn

.

(19)

The direction of the magnetic dipole moment of thekth cell
is given by (3). For the specific case, the dynamic variables
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referred to the k-cell are the small deviations from equilib-
rium of the azimuthal and polar angles given by

q1 = δφ, q2 = δθ, (20)

where 1 (2) labels the first (second) variable.
To determine the conjugate momenta, the expression of

the angular momentum is needed. We recall the relation

between the angular momentum �lΩ and the magnetic mo-
mentum �μ by referring to a a rigid body with a fixed point Ω
(see Figure 1), namely,

�lΩ = 1
γ
�μ = vcMs

γ
�m, (21)

where γ is the gyromagnetic ratio and vc the volume of the
magnetic moment to the case. Indeed, since q1 represents a
rotation about the z-axis of the magnetic dipole, its conjugate
momentum p1 corresponds to the z component of the
variation of the angular momentum, namely,

p1 = δlz = vcMs

γ
δmz = −vcMs

γ
sin θδθ, (22a)

where �m = (sin θ cosφ, sin θ sinφ, cos θ) is the unit magne-
tization vector, normalized to the saturation magnetization
Ms. Following an analogous argument, the other momentum
p2 can be determined. Indeed, q2 is a rotation of the dipole
moment about an axis of unitary vector φ̂′ = − sinφ ê1 +
cosφê2 in the x-y plane at an angle φ̂′ = φ + π/2 from
the x-axis. Therefore, p2 corresponds to the projection of
the variation of the angular momentum along the φ̂′ vector,
namely,

p2 = δ�lΩ · φ̂′ = vcMs

γ

(
δ�m · φ̂′

)

= −vcMs

γ

(
∂�m
∂φ

δφ +
∂�m
∂θ

δθ

)
· φ̂′

= vcMs

γ
sin θδφ.

(22b)

By substituting (20), (22a), and (22b) into the first
Hamilton equation (cf. (19)), the following system of
equations is obtained:

˙δφ = − γ

vcMs sin θ
Hδθ ,

δ̇θ = γ

vcMs sin θ
Hδφ,

(23)

where the dot notation stands for the time derivative and, at
the right-hand side, the first derivatives of the energy with
respect to the mechanical variables appear. By introducing
the energy density E = Ẽ/V (keeping in mind that H = Ẽ)
and expanding it in a power Taylor expansion around the
equilibrium up to the second order, it yields

E = E0 +
1
2

[
Eφφ

(
δφ
)2 + 2Eφθδφδθ + Eθθ(δθ)2

]
, (24)

where E0 is the constant zero-order term that is inessential,
the first-order terms vanish at equilibrium, and Eαβ represent
the second derivatives calculated at equilibrium (Eαβ =
∂2E/∂δα∂δβ with α,β = φ, θ). By using (23) and (24), we
obtain

˙δφ = − γ

Ms sin θ

[
Eθφδφ + Eθθδθ

]
,

δ̇θ = γ

Ms sin θ

[
Eφφδφ + Eφθδθ

]
.

(25)

By inserting the time dependence in the form eiωt, where ω
is the angular frequency of the given collective mode, the
system of equations of motion reads

− Eθφ
sin θ

δφ − Eθθ
sin θ

δθ − λ̃δφ = 0,

Eφφ
sin θ

δφ +
Eφθ

sin θ
δθ − λ̃δθ = 0.

(26)

The linear and homogeneous system of equations expressed
in (26) can be written as an eigenvalue problem

C�v = λ̃ �v, (27)

with λ̃ = i(Ms/γ)ω the complex eigenvalues of the problem,

C =

⎡⎢⎢⎢⎣
− Eθφ

sin θ
− Eθθ

sin θ

Eφφ
sin θ

Eφθ
sin θ

⎤⎥⎥⎥⎦, (28)

being C a real, but not symmetric, matrix and �v = (δφ, δθ)T .
However, the system of motion equations (26) can be

also recast as a complex generalized Hermitian eigenvalue
problem

A�v = λ B�v, (29)

where B is a Hessian matrix expressed by the second deriva-
tives of the energy density at equilibrium. In particular

B =
[
Eφφ Eφθ
Eθφ Eθθ

]
,

A =
[

0 i sin θ
−i sin θ 0

]
.

(30)

It should be noticed that the matrix A is Hermitian, whereas
B is real and symmetric, so that all the corresponding
eigenvalues λ = γ/Msω are real quantities.

2.2.2. HDMM for an Isolated System Composed by N Inter-
acting Magnetic Momenta. Equation (24) can be generalized
to the case of N interacting magnetic momenta (where each
momentum is identified with a micromagnetic cell) taking
the form

E=E0 +
1
2

N∑
n=1

N∑
l=1

[
Eφnφl δφnδφl+2Eφnθl δφnδθl+Eθnθl δθnδθl

]
.

(31)
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In (31), the total energy density is given by E = Eext + Eexch +
Edmg +Eani where the different contributions are expressed in
(4), (6), (7), and (9), respectively. By substituting (31) into
(23), we get

˙δφk = − γ

Ms sin θk

N∑
l=1

[
Eθkφl δφl + Eθkθl δθl

]
,

˙δθk = γ

Ms sin θk

N∑
l=1

[
Eφkφl δφl + Eφkθl δθl

]
.

(32)

By introducing the time dependence in the form eiωt, the
system of equations of motion is composed by the following
2N linear and homogeneous equations for k = 1 · · ·N :

N∑
l=1

(
− Eθkφl

sin θk

)
δφl +

N∑
l=1

(
− Eθkθl

sin θk

)
δθl − λ̃δφk = 0,

N∑
l=1

(
Eφkφl
sin θk

)
δφl +

N∑
l=1

(
Eφkθl
sin θk

)
δθl − λ̃δθk = 0.

(33)

The unknown factors δφl, δθl represent the eigenvectors of
the problem and are expressed by the small angular deviation
from the equilibrium position of the azimuthal (φl) and
polar (θl) angles in the lth micromagnetic cell. The system
above has a solution only if the determinant is zero. By
suitable exchanges of rows (columns), the linear and homo-
geneous system of equations expressed in (33) can be written
as an eigenvalue problem in analogy with the case of a
macrospin system

C�v = λ̃ �v. (34)

In (34), �v is the set of the unknown factors representing the
eigenvectors of the problem that take the form

�v = (δφ1, δθ1, δφ2, δθ2, . . . , δφN , δθN
)T
. (35)

C is the matrix whose elements are expressed as

C2k−1,2l−1 = −
Eθkφl
sin θk

C2k−1,2l = − Eθkθl
sin θk

C2k,2l−1 =
Eφkφl
sin θk

C2k,2l =
Eφkθl
sin θk

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
k = 1 · · ·N , l = 1 · · ·N. (36)

Analogously to the case of a macrospin system, the matrix
C is real but not symmetric, also in this case the eigenvalues
(and not only the eigenvectors) are complex. This matrix can
be indeed seen as composed by two submatrices 2×2 for each
pair of values (k, l). In the diagonal submatrices (k = l) the
following relation is verified:

C2k−1,2k−1 = −C2k,2k. (37)

For the elements of two different submatrices (k, l) and (l, k),
that are not diagonal (k /= l), the following symmetries hold:

sin θkC2k−1,2l−1 = − sin θlC2l,2k,

sin θkC2k−1,2l = sin θlC2l−1,2k,

sin θkC2k,2l−1 = sin θlC2l,2k−1,

sin θkC2k,2l = − sin θlC2l−1,2k−1.

(38)

As for the macrospin approximation, the equation of motion
can be recast as a complex generalized Hermitian eigenvalue
problem

A �v = λ B �v, (39)

where B is a Hessian matrix expressed by the second deriva-
tives of the energy density at equilibrium. B is given by

B2k−1,2l−1 = Eφkφl
B2k−1,2l = Eφkθl
B2k,2l−1 = Eθkφl
B2k,2l = Eθkθl

⎫⎪⎪⎪⎬⎪⎪⎪⎭k = 1 · · ·N , l = 1 · · ·N , (40)

where the matrix B is, again, real and symmetric. Moreover,
since the static magnetization corresponds to a minimum of
the energy and the matrix B is its Hessian, the matrix B is
also positive defined. Instead, the matrix A has the following
form:

A =

⎡⎢⎢⎢⎢⎢⎣
0 i sin θ1 0 0 · · ·

−i sin θ1 0 0 0 · · ·
0 0 0 i sin θ2 · · ·
0 0 −i sin θ2 0 · · ·
· · · · · ·

⎤⎥⎥⎥⎥⎥⎦. (41)

The matrix A is Hermitian. This allows us to solve the system
as a complex generalized Hermitian eigenvalue problem
which admits only real eigenvalues. To further reduce the
computational time, it is possible to evaluate only some
eigenvalues and eigenvectors that are in a specific range.

Once the eigenvectors �v are obtained, the dynamic
magnetization δ�mk in the kth micromagnetic cell expressed
in Cartesian coordinates and in unit of MS is given by

δ�mk=
(− sin θk sinφkδφk + cos θk cosφkδθk,

sin θk cosφkδφk + cos θk sinφkδθk,− sin θkδθk
)
.

(42)

For each solution of the eigenvalue problem, the collection
of all δ�mk defines the mode profile. It must be remarked that
δ�mk is a complex vector, because δθk, δφk are, in general,
complex.

2.3. Equations of Motion for Interacting Magnetic Particles.
Let us suppose to have a 2D periodic array of interacting
nanodots characterized by the primitive vectors �a1 and �a2;
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for example, for the specific case of a rectangular lattice their
values are

�a1 = λxx̂, �a2 = λy ŷ, (43)

where λx and λy represent the periodicity along x-axis and
y-axis, respectively. The primitive vectors of the reciprocal

lattice are �b1 and �b2

�b1 = 2π

(
�a2 × �a1

)× �a2(
�a1 × �a2

)2 ,

�b2 = 2π

(
�a1 × �a2

)× �a2(
�a1 × �a2

)2 .

(44)

For the special case of a rectangular lattice the vectors become

�b1 = 2π
λx
x̂,

�b2 = 2π
λy

ŷ.

(45)

Due to the analogy with the Bloch wave (analogy, not equal-
ity, because the wave function has not a physical meaning,
contrarily to the magnetization), it is possible to write the
following periodicity rule valid for the dynamic magnetiza-
tion:

δ�m
(
�r + �R

)
= ei

�K·�Rδ�m
(
�r
)
, (46)

where �R is a vector of the particle lattice given by

�R = i1�a1 + i2�a2 i1, i2 ∈ Z, i1, i2 = −Ni

2
· · · Ni

2
− 1,

(47)

and �r can be confined into the first primitive cell centered in
the first dot. The Bloch vector takes the following values:

�K = n1

N1

�b1 +
n2

N2

�b2, ni ∈ Z, ni = −Ni

2
· · · Ni

2
− 1.

(48)

N1,N2 ∈ N indicate the number of primitive cells n in
direction �a1 and �a2, respectively. In this scheme, both N1

and N2 are taken as even numbers. In order to confirm the
hypothesis on the dynamic magnetization N1,N2 must be
very large.

If the magnetizations of different primitive cells and the
different micromagnetic cells were independent, that is no
periodicity rule were present, then one would have a dynamic
system with variables θk�R and φk�R, where the k index changes

inside the magnetic particle and �R can assume the values
indicated in (47). In this case, the linear and homogeneous
system of 2N equations of motion is

∑
l,�R′

(
−Eθk�Rφl�R′

sin θk�R

)
δφl�R′ +

∑
l,�R′

⎛⎝− Eθk�Rθl�R′
sin θ jk�R

⎞⎠δθl�R′ − λδφk�R = 0,

∑
l,�R′

(
Eφk�Rφl�R′
sin θk�R

)
δφl�R′ +

∑
l,�R′

(
Eφk�Rθl�R′
sin θk�R

)
δθl�R′ − λδθk�R = 0,

(49)

where k = 1 · · ·N and the sums over l and �R′ are on the
same values. Instead, thanks to the Bloch condition expressed

in (46), one can consider the equations only at �R = 0; more-
over, taking into account the same condition, the variables

appearing for �R′ /= 0 can be replaced by using the same

condition. Now, when rewriting the system, the index �R is
omitted when it has value equal to 0 or it is irrelevant.
Owing to these considerations, the system given in (49) can
be rewritten in the form [16]

N∑
l=1

⎛⎝−∑�R′ Eθkφl�R′ e
i�K·�R′

sin θk

⎞⎠δφl +
N∑
l=1

⎛⎝−∑�R′ Eθkθl�R′ e
i�K·�R′

sin θk

⎞⎠δθl
− λ̃δφk = 0,

N∑
l=1

⎛⎝∑�R′ Eφkφl�R′ e
i�K·�R′

sin θk

⎞⎠δφl +
N∑
l=1

⎛⎝∑�R′ Eφkθl�R′ e
i�K·�R′

sin θk

⎞⎠δθl
− λ̃δθk = 0.

(50)

Equation (50) is similar to (33) by making the following re-
placement:

Eαkβl −→
∑
�R′
ei
�K·�R′Eαk0βl�R′ , (51)

and recalling that now the energy is referred to the whole
system of particles. Like for the case of the isolated magnetic
particle, also for the case of interacting magnetic particles the
system of linear and homogeneous equations given in (50)
can be written as an eigenvalue problem which in turn can be
cast as a complex generalized Hermitian eigenvalue problem.

The symmetry for the matrix elements that was valid for

a single primitive cell now is not respected except for �K = 0

or �K = �G/2 with �G a translational reciprocal vector:∑
�R′
ei
�K·�R′Eαk�0βl�R′ =

∑
�R′
ei
�K·�R′Eβl�R′αk�0 =

∑
�R′
ei
�K·�R′Eβl �0αk−�R′

=
∑
�R′
e−i�K·�R

′′
Eβl �0αk�R′′

/=
∑
�R′
ei
�K·�R′Eβl �0αk�R′ ,

�K /=�0, �K /=
�G
2

,

(52)

with �R′′ = −�R′. The primitive cell has at the centre a single
dot that occupies only a part of it. The interdot exchange
coupling is zero. Thanks to the last consideration and to the
fact that derivatives of Zeeman, exchange, anisotropy, energy
density are referred only to the cell of the first variable (αk�0)
with αk�R = θk�R,φk�R or at most to the nearest neighbour,

all terms of the sum in (51) with �R′ /= 0 are zero. Hence,
for these energy density terms, the equations are the same
as those of the single particle case and the same occurs for
their corresponding derivatives appearing in the equations of
motion. The only energy density term that differs from the
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one obtained for the isolated element is the demagnetizing
energy density. For a system of interacting nanoparticles, the
demagnetizing energy density can be written as

Edmg = 1
2
μ0

∑
�R,�R′,k,k′

�mk

(
�R
)
N
(
�R, �R′, k, k′

)
�mk′

(
�R′
)
. (53)

Due to its rather complex expression, it is useful to give the
derivation also of the first derivative of Edmg like for the case
of the isolated nanoelement.

In order to calculate the first derivative, the properties of
the demagnetizing tensor must be considered

〈v|N|ω〉 = 〈ω∣∣N+
∣∣v〉∗ = 〈ω∣∣N+

∣∣v〉
= 〈ω∣∣Nt

∣∣v〉 = 〈ω|N|v〉, (54a)

since N is real and symmetric and

N
(
�R, �R′, k, k′

)
= N

(
�R′ − �R +�rk′ −�rk

)
= N

(
−�R′ + �R−�rk′ +�rk

)
= N

(
�R′, �R, k′, k

)
,

(54b)

thanks to the inversion symmetry. Hence, the first derivative
of the energy is

∂Edmg

∂δαk
(
�0
)

= μ0
M2

s

2

⎡⎢⎢⎢⎢⎣
∑
�R′k′

(�R′,k′) /= (�0,k)

�mk′
(
�R′
)
·N

(
�R′,�0, k′, k

) ∂�mk

(
�0
)

∂δαk
(
�0
)

+
∑
�R′k′

(�R′,k′) /= (�0,k)

∂�mk

(
�0
)

∂δαk
(
�0
) ·N(�0, �R′, k′, k

)
�mk′

(
�R′
)

+
∂

∂δαk
(
�0
)(�mk

(
�0
)
·N

(
�0,�0, k, k

)
�mk

(
�0
))
⎤⎥⎥⎥⎥⎥⎦

= μ0M
2
s

⎡⎢⎢⎢⎢⎣
∑
�R′k′

(�R′,k′) /= (�0,k)

�mk′
(
�R′
)
·N

(
�R′,�0, k′, k

) ∂�mk

(
�0
)

∂δαk
(
�0
)

+ �mk

(
�0
)
·N

(
�0,�0, k, k

) ∂�mk

(
�0
)

∂δαk
(
�0
)
⎤⎥⎥⎥⎥⎥⎦.

(55)

The second derivative takes the form

∂2Edmg

∂δαk
(
�0
)
∂δβk

(
�R
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ0M
2
S

⎡⎢⎣∑
�R′k′
�mk′

(
�R′
)
·N

(
�R′,�0, k′, k

)

×
∂2�mk

(
�0
)

∂δαk
(
�0
)
∂δβk

(
�0
)

+
∂�mk

(
�0
)

∂δβk
(
�0
)

·N
(
�0,�0, k, k

) ∂�mk

(
�0
)

∂δαk
(
�0
)
⎤⎦

�R=�0, l=k

μ0M2
s

∂�ml

(
�0
)

∂δβl
(
�0
) ·N(�R,�0, l, k

) ∂�mk

(
�0
)

∂δαk
(
�0
) (

�R, l
)
/=
(
�0, k

)
.

(56)

In the sum it is included the case in which (�R′, k′) = (�0, k)
that is generated from the derivative of the second term in
the expression of the first derivative given above. Now it is
possible to calculate the terms that enter into the system of
(50), starting with the one corresponding to l = k

∑
�R

ei
�K·�REαk�0βl�R =

∑
�R

ei
�K·�REαk�0βk�R

= μ0M
2
s

⎡⎢⎣∑
�R′k′
�mk′

(
�0
)
·N

(
�R′,�0, k′, k

)

×
∂2�mk

(
�0
)

∂δαk
(
�0
)
∂δβk

(
�0
) +

∂�mk

(
�0
)

∂δβk
(
�0
)

·N
(
�0,�0, k, k

) ∂�mk

(
�0
)

∂δαk
(
�0
)
⎤⎦

+ μ0M
2
s

∑
�R /=�0

ei
�K·�R ∂�mk

(
�0
)

∂δβk
(
�0
)

·N
(
�R,�0, k, k

) ∂�mk

(
�0
)

∂δαk
(
�0
)

= μ0M
2
s

∑
�R

⎡⎣∑
k′
�mk′

(
�0
)
·N

(
�R,�0, k′, k

)

×
∂2�mk

(
�0
)

∂δαk
(
�0
)
∂δβk

(
�0
)
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+ ei
�K·�R ∂�mk

(
�0
)

∂δβk
(
�0
)

·N
(
�R,�0, k, k

) ∂�mk

(
�0
)

∂δαk
(
�0
)
⎤⎦.

(57a)

Equation (57a) is obtained by taking into account (46), by

including the term corresponding to �R = 0 into the sum

performed over �R /= 0 and by considering that both the
static magnetization and the dynamic magnetization do not

depend on �R. Indeed, second derivatives are calculated at

equilibrium and the exponential ei�K·�R appears on both the
numerator and the denominator of the derivative.

When l /= k, the term turns out to be∑
�R

ei
�K·�REαk�0βl�R

= μ0M
2
s

⎡⎢⎣∑
�R

ei
�K·�R ∂�ml

(
�0
)

∂δβl
(
�0
) ·N(�R,�0, l, k

) ∂�mk

(
�0
)

∂δαk
(
�0
)
⎤⎥⎦.
(57b)

Due to the properties of the demagnetizing tensor, the
symmetry ∑

�R′
ei
�K·�R′Eαk�0βl�R′ =

∑
�R′
ei
�K·�R′Eαl�0βk�R′ , (58)

is fulfilled when l = k, but it is not fulfilled when l /= k.
The formalism previously developed for interacting

particles can be extended to a system of 2D antidots (ADs).
In this case, it is necessary to add the exchange interaction
between primitive cells [21]. In extended magnetic system
like AD arrays, in addition to the usual nearest-neighbours
exchange interaction between micromagnetic cells, the
exchange contribution across the nearest-neighbours micro-
magnetic cells belonging to adjacent surface primitive cells
must be taken into account. Hence, we recall the exchange
energy density of (6)

Eexch = A
∑
k

∑
n

(
1− �mk · �mn

)
a2
kn

. (59)

Here, the first sum runs over all the micromagnetic cells
of the primitive cell and the second sum runs over the
nearest neighbours of the kth micromagnetic cell. When
the kth micromagnetic cell is on one of the edges (vertices)
of the given primitive cell, the interaction with one (two)
micromagnetic cell(s) belonging to the correct nearest
primitive cell must be added.

3. LDMM

This section is devoted to the review of the LDMM approach
through which we derive the generalized Lagrange equation

−

+

I

Free layer

Spacer

Pinned layer

Metal

Metal

Figure 2: A schematic of a spin-valve nanopillar device.

in the presence of two dissipative effects arising from the
“positive” intrinsic damping and the “negative” one induced
by the current-driven spin-transfer torque [22]. As for the
Hamiltonian approach, we limit our study to the dynamics
taking place in the linear and autonomous regime.

3.1. Description of the Magnetic System and Equation of
Motion. The magnetic systems in which such competing
phenomena take place are generally referred to as spin-valve
nanopillars. These are heterostructures composed by two
ferromagnetic layers, having generally different thicknesses,
separated by a nonmagnetic (metallic or insulating) spacer,
which is used to decouple the exchange interactions between
them. The thinner magnetic layer is generally referred to as
“Free Layer” (FL), whereas the thicker one is called “Fixed
Layer” or “Pinned Layer” (PL). By means of an external
voltage source and metallic contacts applied at the top and
bottom of the structure, a current flow traverses the structure
along the normal-to-plane direction (see Figure 2).

In this kind of device, conservative effects arise from the
previously mentioned classical micromagnetic contributions
(exchange, demagnetizing, magnetocrystalline anisotropy,
and Zeeman fields) together with the Ampere (or Oersted)
field due to the current flow. This latter contribution,
however, will be neglected for simplicity. In fact, the main
goal of this section is to describe why and how a Lagrangian
approach needs to be take into account when noncon-
servative forces act in the system. The inclusion of more
sophisticated effects, such as the Ampere field, will become
relevant when this approach will be further generalized to
describe the dynamics occurring in the nonlinear regime of
spin-wave generation.

Let us now briefly recall the governing equation of
motion. When no dissipative contributions are taken into
account, a persistent precessional motion of the magnetiza-

tion vector �M takes place. It is described by classical Landau-

Lifshitz equation �̇M = γ(�Heff × �M), where �Heff is the
effective field which accounts for all the above-mentioned
contributions.
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On the other hand, nonconservative contributions arise
from the material intrinsic dissipation and the spin-transfer
torque induced by the current flow [26]. The former ac-
counts for the phenomenologically introduced intrinsic
Gilbert dissipation [27], the phenomenon by which the pre-

cessional motion of �M, excited by a given stimulus, relaxes
towards its equilibrium state. The relaxation rate is propor-
tional to a scalar quantity, called Gilbert constant α. The
torque exerted on the magnetization is generally represented

by �TID = (α/MS)( �M × �̇M).
Concerning the dissipative effects induced by the current

flow, it has been extensively shown that this bias current can
become spin-polarized in the direction of the magnetization
vector of the thicker magnetic layer and can then transfer
this induced spin angular momentum to the magnetization
of the thinner magnetic layer. For a proper direction of the
bias current I, this spin-transfer mechanism creates a torque
which opposes to that induced by the Gilbert damping,
creating an effective negative damping. The corresponding
spin-transfer torque, derived by Slonczewski [28], can be

expressed as �TST = (σI/MS)[ �M × ( �M × �p)], where the unit
vector �p defines the direction of the spin polarization (in
turn defined by the magnetization vector of the PL) and
the constant σ modulates the strength of the spin-torque
effect. It is equal to σ = εg0μB/2eMSSd, where ε is the spin-
torque efficiency (defined in [29]), g0 is the Landè factor, μB
is the Bohr magneton, e is the absolute value of the electronic
charge, d is the thickness of the magnetic layer, and S is the
current-carrying area [30].

It should be mentioned that, because of the larger value
of both saturation magnetization and thickness, the PL is not
substantially affected by any current-driven magnetization
dynamics, so that it is generally treated as it were fixed (or
pinned) along its equilibrium direction. On the contrary, the
FL’s properties allow it to describe more easily several kinds
of dynamics (e.g., switching [31], precession [32], domain-
wall motion [33], gyrotropic motion of vortex state [34]), as
it were “free” to move.

Under these circumstances, the magnetization dynamics
of the FL is governed by the Landau-Lifshitz-Gilbert-Slonc-
zewski (LLGS) equation

�̇M = γ
(
�Heff × �M

)
+

α

MS

(
�M × �̇M

)
+
σI

MS

[
�M ×

(
�M × �p

)]
.

(60)

It has to be remarked that the equality (with opposite sign)

of the two torques (�TID = −�TST), achievable by means of
a proper intensity and sign of current (the positive one, I
> 0, which corresponds to a current flow moving from the
PL to the FL), which in turn implies the fully compensation
of the two dissipation mechanisms, yields the system in an
out-of-equilibrium zero-dissipation stationary state (a limit
cycle, using the notation of dynamic systems) (see Figure 3).
In such a regime, the excitation of microwave spin waves
becomes physically conceivable.

To derive the mathematical formulation of the LDMM,
for the sake of simplicity, we write, first, the generalized
Lagrange equation for the case of an isolated magnetic

× × p

�H

�H

�H

�H

eff

effeff

×Meff × M × ˙
M

Undamped
precessionprecession

Out-of-equilibrium

→
M

→
M

→
M

→

→
M
→ → →

→M

Figure 3: Schematic representation of undamped (in the absence
of both Gilbert and current-induced damping) and out-of-
equilibrium (in the presence of both Gilbert and current-induced
damping) precessions. In this latter case, a limit cycle is described as
well since the torques due to the intrinsic dissipation and the spin-
transfer-induced one (for a proper intensity and direction of the
current) balance each other.

particle within the macrospin approximation. After that,
we will generalize this approach for the case of an isolated
particle composed by N interacting momenta.

3.1.1. LDMM for a Macrospin System. We will preliminarily
assume that the dynamics of the magnetization vector could
be described through three degress of freedom (θ,φ,ψ), as
shown in Figure 1. In such a framework the generalized
Lagrange equations read

d

dt

(
∂L

∂φ̇

)
− ∂L

∂φ
+
∂�ST

∂φ̇
+
∂�ID

∂φ̇
= 0,

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
+
∂�ST

∂θ̇
+
∂�ID

∂θ̇
= 0,

d

dt

(
∂L

∂ψ̇

)
− ∂L

∂ψ
+
∂�ST

∂ψ̇
+
∂�ID

∂ψ̇
= 0,

(61)

where L = T + U represents the Lagrangian of the system
given by the sum of the kinetic energy T and the potential U,
whereas �ST and �ID are the dissipation functions related to
the spin torque and the intrinsic damping, respectively.

Taking advantage of the explicit formulations of the
energy contributions given in Section 2.1, we can rewrite the
previous system by accounting for the relationship among
the potential, the kinetic energy, and the conservative part
Ẽ = T − U of the total mechanical energy (which in the
conservative limit coincides with the Hamiltonian of the
system H in the presence of fixed constraints). By sub-
stituting L with 2T − Ẽ, we thus obtain

2
d

dt

(
∂T

∂φ̇

)
− d

dt

(
∂Ẽ

∂φ̇

)
− 2

∂T

∂φ
+
∂Ẽ

∂φ
+
∂�ST

∂φ̇
+
∂�ID

∂φ̇
= 0,

2
d

dt

(
∂T

∂θ̇

)
− d

dt

(
∂Ẽ

∂θ̇

)
− 2

∂T

∂θ
+
∂Ẽ

∂θ
+
∂�ST

∂θ̇
+
∂�ID

∂θ̇
= 0,

2
d

dt

(
∂T

∂ψ̇

)
− d

dt

(
∂Ẽ

∂ψ̇

)
− 2

∂T

∂ψ
+
∂Ẽ

∂ψ
+
∂�ST

∂ψ̇
+
∂�ID

∂ψ̇
= 0.

(62)
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To solve the proposed problem, we need thus to explicitly
find the expressions of the variables T, Ẽ, �ID and �ST, shown
in (62), in Lagrangian coordinates.

The kinetic energy T associated to the precessional
motion of the magnetization vector can be computed by
referring to the case of a rigid body with a fixed point Ω (see
Figure 1). In this case, the rotational kinetic energy density is
expressed as

T = 1
2
�lΩ · �ω, (63)

where �lΩ is the angular momentum and �ω is the angular
velocity vector. Notice that in the following the kinetic
energy T, the dissipation functions �ID and �ST, the work
dw, and the energy losses dw/dt are referred to their
corresponding quantities per unit volume. In addition, we
recall the definition of the energy density E = Ẽ/V given
in Section 2.1. By virtue of the relationship between angular

momentum �lΩ and magnetic dipole momentum �μ (�lΩ =
(1/γ)�μ), and considering that this latter is directed along ê′3
(see Figure 1), the previous scalar product involves, in turn,

the only component of�lΩ along ê′3. It leads to

T = 1
2
MS

γ

(
φ̇ cos θ + ψ̇

)
. (64)

Equation (64) therefore represents the rotational kinetic
energy T = T(θ,φ,ψ) expressed in Lagrangian coordinates
withMS = μ/V . The conservative part E of the energy density
accounts for all the standard micromagnetic contributions
discussed previously. As shown in Section 2.1, all the con-
tributions appearing in E only depend on the Lagrangian
variables θ,φ, but not on their derivatives, namely, E =
E(θ,φ).

To derive the Lagrangian formulation of the dissipative
contributions, let us start from the classical definition of
the work dw carried out by a magnetic system subject to a
nonconservative force. As it is known, such a force has to be
derived from the gradient of a dissipation function � and the
rate of energy losses associated to a dissipative torque can be
thus expressed as

dw

dt
= ± �̇M · ∂�

∂ �̇M
, (65)

where the plus (minus) sign accounts for torques which act
as “drain” (“source”) of energy and refers to the case � = �ID

(� = �ST).
So, by multiplying the LLGS equation (60) by �Heff and

assuming that the energy losses rates are small compared to

the conservative (precessional) part, namely, �̇M � −γμ0( �M×
�Heff), we deduce the following expressions for the dissipative
function densities

�ID = α

2γM0

�̇M
2

, (66)

�ST = σJ

γM0
�p ·

(
�M × �̇M

)
. (67)

It should be noticed that (66), which appears in the usual
form of a Rayleigh-like dissipation function, is a positive-
definite form, as expected for a power dissipated through
a viscous friction mechanism, whatever the magnetization
configuration (α, γ, and Ms are positive constants). On the
other hand, the spin-torque dissipation function of (67) is
a non-Rayleigh one and strongly depends, apart from the
direction of the current flow J, on the relative magnetization

configuration of the ferromagnetic layers ( �M and �p).
Finally, taking into account the expression of the time-

independent unit vector �p = (sinΘPL cosΦPL, sinΘPL

sinΦPL, cosΘPL), the explicit expressions of the dissipative
functions densities are

�ID = αMs

2γ

(
θ̇2 + φ̇2sin2θ

)
= �ID

(
θ,φ

)
,

�ST = σJMs

γ

[
f1
(
φ
)
θ̇ + f2

(
θ,φ

)
φ̇
]
= �ST

(
θ,φ

)
,

(68)

where

f1
(
φ
) = sinΘPL sin

(
ΦPL − φ

)
, (69)

f2
(
θ,φ

) = sin2θ cosΘPL − cos θ sin θ sinΘPL cos
(
ΦPL − φ

)
.

(70)

We proceed by evaluating first the third Lagrange equation

2
d

dt

(
∂T

∂ψ̇

)
− d

dt

(
∂E

∂ψ̇

)
− 2

∂T

∂ψ
+
∂E

∂ψ
+
∂�ST

∂ψ̇
+
∂�ID

∂ψ̇
= 0.

(71)

In (71), we notice that the kinetic energy is the only term
dependent on the intrinsic rotation, and, in particular, on its

velocity
·
ψ, so that the previous equation reduces to

2
d

dt

(
∂T

∂ψ̇

)
= 0, (72)

which stands for a first integral of motion representing
the conservation of the (only component of the) angular
momentum

2
∂T

∂ψ̇
= MS

γ
= constant ≡�lΩ ·�e′3. (73)

Such a first integral also points out that our system can be
described through only two degrees of freedom, as expected
for the characterization of the dynamics of a vector having
constant modulus which undergoes a precession (with a fixed
point) onto a sphere. Taking into account this result, in the
following we will use the parameters θ,φ.

The first two Lagrange equations read

2
d

dt

(
∂T

∂φ̇

)
− d

dt

(
∂E

∂φ̇

)
− 2

∂T

∂φ
+
∂E

∂φ
+
∂�ST

∂φ̇
+
∂�ID

∂φ̇
= 0,

2
d

dt

(
∂T

∂θ̇

)
− d

dt

(
∂E

∂θ̇

)
− 2

∂T

∂θ
+
∂E

∂θ
+
∂�ST

∂θ̇
+
∂�ID

∂θ̇
= 0,

(74)
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which, substituting the corresponding expressions (the con-
servative part E of the total energy density will be discussed
later on in the text), become

−Ms

γ
sin θθ̇ +

∂E

∂φ
+
σJMs

γ
f2 +

αMs

γ
φ̇sin2θ = 0,

Ms

γ
φ̇ sin θ +

∂E

∂θ
+
σJMs

γ
f1 +

αMs

γ
θ̇ = 0.

(75)

Since in the present LDMM approach we are interested in
the characterization of the linear dynamics of these magnetic
current-driven auto-oscillatory systems, we adopt the clas-
sical formalism of small oscillations. By following this pro-
cedure, we linearize the system of (75) by considering small
perturbations (δθ, δφ) around the equilibrium configuration
of the FL (Θ,Φ), as done in (2), and expand the energy terms
in Taylor series up to the second perturbative order.

By means of such a formalism, the system given in (75)
leads to the set of generalized Lagrange equations

− Ms

γ
sinΘδ̇θ +

∂E

∂δφ
+
σJMs

γ

×
[
χ(Θ,Φ)δθ + η(Θ,Φ)δφ + ν(Θ,Φ)

]
+
αMs

γ
˙δφsin2Θ = 0,

Ms

γ
˙δφ sinΘ +

∂E

∂δθ
+
σJMs

γ

[
ζ(Θ,Φ)δφ + β(Θ,Φ)

]

+
αMs

γ
δ̇θ = 0,

(76)

where

χ(Θ,Φ) = sin 2Θ cosΘPL − cos 2Θ sinΘPL cos(ΦPL −Φ),

η(Θ,Φ) = cosΘ sinΘ sinΘPL sin(Φ−ΦPL),

ν(Θ,Φ) = sinΘ(sinΘ cosΘPL−cosΘ sinΘPL cos(ΦPL−Φ)),

ζ(Θ,Φ) = − sinΘPL cos(ΦPL −Φ),

β(Θ,Φ) = sinΘPL sin(ΦPL −Φ).
(77)

Furthermore, by developing also the energy density E
in Taylor series around the equilibrium state in analogy
with what was done in (24) for HDMM, we notice that
only the second derivatives appear in the equation. Indeed,
the inessential constant term can be neglected and the first
derivatives vanish at equilibrium. Moreover, considering
that the new Lagrangian variables (δθ,δφ) have to exhibit
a time dependence proportional to exp(iωt) (being ω/2π

the frequency of the spin-wave eigenmode), we end up
with

δφ

[
Eφφ +

σJMs

γ
η

]
+ δθ

[
Eφθ +

σJMs

γ
χ

]

= δφ

[
−iωαMs

γ
sin2Θ

]
+ δθ

[
iω
Ms

γ
sinΘ

]
,

δφ

[
Eθφ +

σJMs

γ
ζ

]
+ δθ[Eθθ]

= δφ

[
−iωMs

γ
sinΘ

]
+ δθ

[
−iωαMs

γ

]
,

(78)

where the subscripts stand for partial derivative with respect
to the indicated variables, whose explicit expressions can be
found in the Section 2.1. The terms involving β(Θ,Φ) and
ν(Θ,Φ) have been disregarded since they do not exhibit an
explicit time dependence.

By setting λ = γ/Msω and σ̃ = σMs/γ, (78) can be
recast in the form of a complex generalized non-Hermitian
eigenvalue problem

A�v = λB�v, (79)

with

A =
[
−iα sin2Θ i sinΘ
−i sinΘ −iα

]
,

B =
[
Eφφ + σ̃Jη Eφθ + σ̃Jχ
Eθφ + σ̃Jζ Eθθ

]
,

�v =
[
δφ, δθ

]T
.

(80)

As expected, if no damping and current are taken into
account (α = 0, J = 0 A/m2), the system in (79) so obtained
recovers exactly the fully conservative HDMM one, where
the matrix A is Hermitian, whereas the matrix B is real and
symmetric (see (40)), and all the corresponding eigenvalues
are real.

In the presence of dissipative effects due to damping and
spin torque, the symmetry of the problem is strongly reduced
and the corresponding eigenvalues will be, in general, com-
plex quantities: the real part represents the mode frequency,
whereas the imaginary part defines the mode decay rate.
With this information in hands, it will be possible to
establish, after a single iteration, the subset of the spin-wave
normal modes which becomes unstable after the application
of a spin-polarized current. In detail, for any applied current
below the excitation threshold, the imaginary parts of all
eigenvalues have to be positive, recalling the behavior of
a damped oscillator. On the contrary, for current values
above the excitation threshold, the imaginary parts of the
activated normal modes switch to a negative value, giving
rise to the instability mechanism which determines, in the
time domain, the growth of the precession cone and, in turn,
the change of the generated frequency.
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Finally, it should be mentioned that, unlike HDMM,
LDMM cannot be recast in a nongeneralized eigenvalue
problem form.

3.1.2. LDMM for an Isolated System Composed by N Interact-
ing Magnetic Momenta. Let us consider now the magnetic
system of our micromagnetic calculations composed by a
finite number N of interacting magnetic momenta. Within
our nanoscale numerical approach, each magnetic momen-
tum is identified by means of a micromagnetic cell. The
generalization of (78) to N cells (k = 1, . . . ,N) leads to a
system of 2N scalar and linear equations as follows:

λ

⎧⎨⎩
N∑
l=1

[
Eφkφl δφl + Eφkθl δθl

]
+ δθk

[
σ̃Jχk

]
+ δφk

[
σ̃Jηk

]⎫⎬⎭
= δφk

[−iα sin2Θk
]

+ δθk[i sinΘk],

λ

⎧⎨⎩
N∑
l=1

[
Eθkφl δφl + Eθkθl δθl

]
+ δφk[σ̃Jζk]

⎫⎬⎭
= δφk[−i sinΘk] + δθk[−iα].

(81)

The system in (81) can be analogously formulated as a
complex generalized non-Hermitian eigenvalue problem (in
the same form as (79)), where

A =

⎡⎢⎢⎢⎢⎢⎣
−iα sin2Θ1 i sinΘ1 0 0 · · ·
−i sinΘ1 −iα 0 0 · · ·

0 0 −iα sin2Θ2 i sinΘ1 · · ·
0 0 −i sinΘ2 −iα · · ·
· · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎦,

B=

⎡⎢⎢⎢⎢⎢⎣
Eφ1φ1+σ̃Jη1 Eφ1θ1+σ̃Jχ1 Eφ1φ2 Eφ1θ2 · · ·
Eθ1φ1+σ̃Jζ1 Eθ1θ1 Eθ1φ2 Eθ1θ2 · · ·
Eφ2φ1 Eφ2θ1 Eφ2φ2+σ̃Jη2 Eφ2θ2+σ̃Jχ2 · · ·
Eθ2φ1 Eθ2θ1 Eθ1φ1+σ̃Jζ1 Eθ2θ2 · · ·
· · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎦,

�v = [δφ1, δθ1, δφ2, δθ2, . . . . . . δφN , δθN
]T
.

(82)

It is also interesting to notice that both matrices A and
B appearing in (80) and (82) admit a decomposition
which allows to separate the conservative part from the
nonconservative one

A = Ac + Anc

B = Bc + Bnc,
(83)

where

Ac =

⎡⎢⎢⎢⎢⎢⎣
0 i sinΘ1 0 0 · · ·

−i sinΘ1 0 0 0 · · ·
0 0 0 i sinΘ1 · · ·
0 0 −i sinΘ2 0 · · ·
· · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎦,

Anc =

⎡⎢⎢⎢⎢⎢⎣
−iα sin2Θ1 0 0 0 · · ·

0 −iα 0 0 · · ·
0 0 −iα sin2Θ2 0 · · ·
0 0 0 −iα · · ·
· · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎦,

Bc =

⎡⎢⎢⎢⎢⎢⎣
Eφ1φ1 Eφ1θ1 Eφ1φ2 Eφ1θ2 · · ·
Eθ1φ1 Eθ1θ1 Eθ1φ2 Eθ1θ2 · · ·
Eφ2φ1 Eφ2θ1 Eφ2φ2 Eφ2θ2 · · ·
Eθ2φ1 Eθ2θ1 Eθ1φ1 Eθ2θ2 · · ·
· · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎦,

Bnc =

⎡⎢⎢⎢⎢⎢⎣
σ̃Jη1 σ̃Jχ1 0 0 · · ·
σ̃Jζ1 0 0 0 · · ·

0 0 σ̃Jη2 σ̃Jχ2 · · ·
0 0 σ̃Jζ1 0 · · ·
· · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎦.

(84)

The results of this approach have been successfully compared
with those coming from another micromagnetic framework
which integrates the LLGS equation in the time domain
by using a finite-difference scheme [22, 23, 35]. In these
works, we evaluated the accuracy of the LDMM approach in
determining the excitation threshold and studied in detail the
reorientational phase transition which takes place when the
direction of the external magnetic field is varied.

Finally, we would like to mention that the extension of
the LDMM approach to model the more realistic (and at-
tractive) nonlinear and nonautonomous dynamics [30, 36–
41] is currently under study.
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