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A new diagram method for the line shape function in the optical conductivity formula is introduced and the result obtained
applying the method to an electron-phonon system is compared with that derived using the projection-reduction method. The
result satisfies the population criterion, which states that the distribution functions for electrons and phonons should be combined
in multiplicative forms and gives physical intuition to quantum dynamics of electrons in a solid. This method can be called the
“KC diagram” method because it originates from the proper application of the Kang-Choi reduction identity and a state-dependent

projection operator.

1. Introduction

Studies of the optical transitions in electron systems are
powerful for examining the electronic properties of solids
because the absorption line shapes are quite sensitive to
the type of scattering mechanism affecting the transport of
electrons and to the interaction of electrons with intense laser
light. A perturbation-based study is a general method for
gaining knowledge on the dynamics of a system. This consists
of dividing the Hamiltonian into an exactly soluble part and
nontrivial perturbative part, the effects of which are studied in
perturbative order. The Feynman diagram is the most popular
method for representing the terms in perturbative expres-
sions. This diagrammatic method can be used directly for
reasoning and problem solving as well as for representing the
perturbative expressions by drawings. The easily recognizable
topology of the diagrams makes the diagrammatic method
a powerful tool for constructing approximation schemes. In
addition, the diagrammatic representation can be a suggestive
tool providing physical intuition vital to quantum dynamics
by increasing the diagrams to a representation for possible
alternative physical processes.

The standard diagram method can represent the trajec-
tory of the particles well in the intermediate states of the

scattering processes. On the other hand, when the method is
applied to obtaining the line shape (or self-energy) function
for the electron-phonon system, the Fermi distribution func-
tions for the electrons and the Bose distribution functions
for the phonons are simply added [1-11], which violates the
“population criterion” suggesting that the Fermi and Bose
distribution functions for electrons and phonons should be
combined in multiplicative forms. In other words, the theory
can be said to be suitable if the Fermi distributions are
multiplied by the Bose distributions in the formalism because
the electrons (fermions) and phonons (bosons) belong to
different categories in quantum-statistical physics. In spin-
tronics, which has attracted considerable attention in recent
years, preserving the information injected into spin over a
practical time scale is important for the spintronics devices.
Therefore, it is crucial to understand how the distribution
functions are included because the temperature dependence
of the spin relaxation time might be caused by the Bose and
Fermi distribution functions [8-12].

On the other hand, although a dynamical conductivity
formula for superconducting materials could be obtained
from Eliashberg theory [13] where the electron-phonon
interaction is described by the spectral function, the result
did not contain the distribution function for phonons, so



the phonon emissions and absorptions as well as photon
absorptions and emissions in all electron transition processes
could not be presented in an organized manner. Nam [14,
15] derived general expressions for the current density for
superconductors in a transverse electromagnetic field from
a Green function method but the result could not explain
the inverse relaxation time (2I'/%) from the fully microscopic
viewpoint. In the present paper, we derive an explicit form of
I' from a new diagram method.

The present authors developed some projection methods
for the optical transition formulae for electron-phonon sys-
tems and used them to calculate the line widths in semicon-
ductors [12, 16-18]. Normally, the resolvent factor included
in the conductivity tensor is expanded using projectors, and
a perturbative range of formulae can be obtained. Recently,
the formalism was improved by introducing nonlinear terms
near the resonance points, yielding a meaningful result
including the Fermi and Bose distribution functions properly
with the proper use of the projection-reduction (PR) method
combining the Kang-Choi reduction identity (KCRI) and
state-dependent projection operator (SDPO) [18].

This paper introduces a new diagram method using the
vertex linkers called “springs” and “loops” for the line shape
function in the optical conductivity tensor and compares the
result obtained applying the method to an electron-phonon
system with that derived using the PR method. We further
show that physical intuition vital to the quantum dynamics
of electrons in a solid can be obtained by the diagrams.

2. Method

When an electromagnetic wave of frequency w is applied
to a system along the I(= x,y,z) direction, the linear
optical conductivity for a system of electrons interacting with
phonons can be derived using the state-dependent projection
method as follows [18]:
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where (X)lxﬁ = (a|X|pB) for electron states & and f3, r; is
the I component of the electron position vector, jj is the k
component of the single electron current density operator,
f, is the Fermi distribution function for an electron with
energy E,, and E,3 = E, — Eg. The denominator in (1)
represents the transition from the initial state « to the final
state 3 with a photon absorption of frequency w. If there is
no phonon scattering, the line shape would be like a delta
function. However, as the electrons are scattered by phonons,
the shape is broadened, so the line shape function, I;;3(w),
is involved, which is derived by a diagram method. When
an electron-phonon interaction is involved in an electron
transition, the electron undergoes an implicit transition from
an implicit state, which is coupled with the initial (final) state
by an electron-phonon interaction, to the final (initial) state
with phonon absorption (or emission) and photon emission
(or absorption). The implicit transition forms a loop because
the phonon absorption process maintains a balance with the
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FIGURE 1: All possible electron transition processes in the line shape
function, I;5(w), in (1). The springs and loops correspond to the
interaction coupling factors, C,g(q), and the implicit transition
factors, T, («, B), respectively. A, B, C, and D are the same as those in
(6); for example, process A consists of the left spring and right upper
loop.
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phonon emission process and there are reverse processes
because phonon (photon) absorption and emission processes
occur independently.

The rules for deriving the line shape function in the
optical conductivity tensor by the diagram method are as
follows.

Rule 1. Implicit states induced by the electron-phonon inter-
action exist between the initial and final states.

Rule 2. An implicit state is connected to the initial (or
final) state by a proper interaction coupling factor (C-factor),
Cap(q), which is represented by a spring (see Figure 1):
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where V, is the coupling factor that depends on the mode of
the phonons. A spring emits or absorbs a phonon with wave
vector g.

Rule 3. There are two implicit transition factors (T-factors)
for each C-factor. The one forms a clockwise loop, T', («, f3),
and the other forms a counterclockwise loop, T_(«, ) (see
Figure 1):

T, (« B) = Gup (iwq) P, (a, ). (3)
Here the G-factor, Gaﬁ(iwq), is defined as

Gop (tw,) = 8 (hw + E, - Eg 7 hw, ) (4)

by which the energy conservation is satisfied; that is, Ez =
E,+hw¥hw, and the population factors, P, («, f3), are defined
as

P+(a’ﬁ) = (Nq+ l)foc (l_fﬂ)_quﬁ(l_foc)’
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where N, is the Bose distribution function for phonons with
energy hw,. In a loop, the red (upper) and blue (lower) half
circles correspond to phonon emission (N, + 1) and phonon

absorption (N,), respectively.



Advances in Condensed Matter Physics

Rule 4. A C-factor multiplied by a T-factor becomes an
element in the line shape function.

Rule 5. Finally, summing the elements, after summing each
element over all the phonon wave vectors and implicit states,
we obtain the line shape function.

3. Results

Using the rules, the line shape function can be obtained.
There are four elements (Figurel). The first two terms
correspond to C,, (q) and the other two terms correspond to
Cyp(q), where A denotes the implicit state. The springs emit
or absorb a phonon (purple square) with a wave vector g,
through which the implicit states are created from the initial
or final states. The blue vertical arrows pointing to the loop
mean that a phonon emitted from the spring is absorbed by
an electron during the blue implicit transition, and the red
vertical arrows pointing to the spring mean that a phonon
emitted by an electron during the red implicit transition is
absorbed by the spring. A phonon created by a left spring can
be absorbed by an electron during the transitions between
the initial («) and implicit (A) states of the left blue (lower)
half circles or the left spring can absorb a phonon emitted by
an electron during the transitions of the left red (upper) half
circles. The right red (blue) half circles mean that the implicit
transitions between the implicit state and the final state (/3)
occur emitting (absorbing) a phonon to (created from) the
right spring. A photon is absorbed in the forward (rightward)
process and emitted in the backward (leftward) process.
From Rule 5, the result is given as
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The physical meaning of the first term (A) in (6) is as
follows: G 3(+w,) means that the energy of an implicit state
A is determined by the energy of the final state (3, photon
energy, and phonon energy, so that energy conservation can
be satisfied; that is, E, + hw = Eg + hw,. |C,1(@)]> means
that the implicit state A is coupled with the initial state «
by a phonon with a wave vector q. P, (A, 5) means that the
reverse implicit transition from the final state 3 to the implicit
state A with phonon absorption should be subtracted from
the forward implicit transition from the implicit state to
the final state with phonon emission. This means that when
an electron-phonon interaction is involved in an electron
transition, a transition occurs via implicit states induced by
local fluctuations. A net transition is possible because the
implicit states are determined by the energies of the final (or

initial) state, photon, and phonon according to (4). The other
three terms in (6) can be interpreted in a similar manner.

Although I';g(w) is called the line shape function, the line
width (or relaxation rate) must be calculated from plotting
(1) against the frequency considering (6). The line width,
however, can be obtained directly from (6) if the Lorentzian
approximation is assumed for the weak scattering. Therefore,
all the states given by A are called the implicit states because
they are included only in I,z(w). The implicit states are
determined by the delta functions for energy conservation
given in (4) and momentum conservation, which is given by
(2). The transition from the initial state « to the final state §
occurs via two implicit transitions, T, (&, A) and T, (A, f3), and
the implicit state is connected to the initial or final states by
Car(q) or Cyp(q). Although the implicit transitions are not
measured directly, they should be considered in the calcula-
tions. Note that the other theories [1-11] cannot provide any
diagrammatic representation because they contain the sums
of two distribution functions, such as (N, g t1/2+1/27 S

Figure 2 shows all the possible implicit transition pro-
cesses in Figure 1. The loops (1), (2), (3), and (4) correspond
to C, A, D, and B in (6), respectively. The blue triangle, green
circle, and purple square denote the photon, electron, and
phonon, respectively. The meaning of stage (a) is as follows.
The electrons in the initial state of loop (1) and implicit state
of loop (2) emit phonons to the springs and absorb photons.
Two springs emit phonons to loops (3) and (4), and the
electrons in the initial state of loop (3) and the implicit state
of loop (4) absorb photons. (b) and (e) are virtual stages.
Stage (c) means that the electrons in the initial state of loop
(1) and implicit state of loop (2) transit to the implicit and
final states by emitting phonons to the springs and absorbing
photons, and the electrons in the initial state of loop (3) and
the implicit state of loop (4) transit to the implicit and final
states by absorbing phonons emitted from the springs and
absorbing photons. Stage (c) becomes stage (f) if the electrons
in the implicit state of loop (1) and final state of loop (2)
absorb phonons from the springs and emit photons, and the
electrons in the implicit state of loop (3) and final state of loop
(4) emit phonons to the springs and emit photons.

4. Conclusions

So far, we introduced a new diagram method for the line
shape function in the optical conductivity tensor for an
electron-phonon system. We showed that the same result as
that derived using the PR method could be obtained more
easily and in a physically acceptable manner using the present
diagram method. The phonon emissions and absorptions
as well as the photon emissions and absorptions in all
electron transition processes can be analyzed in an organized
manner because the line shape functions include the electron
and phonon distribution functions properly. These diagrams
should not be confused with the time-ordered diagrams in
the Feynman scheme [19] or with the temperature diagrams
in the Feynman-like scheme [20, 21] because the present
diagram method is not the one representing the trajectories
of the particles in the intermediate stages of the scattering
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FIGURE 2: All the possible implicit transition processes in Figure 1. Loops (1), (2), (3), and (4) correspond to C, A, D, and B in (6), respectively.
The blue triangle, green circle, and purple square denote the photon, electron, and phonon, respectively.

processes. On the other hand, this method can be called the
“KC diagram” because it is based on the electron-phonon
population topology originated by the proper application of
KCRIand SPDO. The experimental results could be explained
by the formulae considered in this paper [16, 17] and physical
intuition for the quantum dynamics of an electron in solids
could be provided using the present diagrammatic method.
Therefore, a proper theory that is physically acceptable and
generally applicable can be obtained using the KCRI and
SDPO. This method is expected to be applicable further to
other electron transition phenomena, which is left for future
studies.
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