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In recent years, germaniumhas attracted intensive interests for its promising applications in themicroelectronics industry.However,
to achieve high performance Ge channel devices, several critical issues still have to be addressed. Amongst them, a high quality
gate stack, that is, a low defect interface layer and a dielectric layer, is of crucial importance. In this work, we first review the
existing methods of interface engineering and gate dielectric engineering and then in more detail we discuss and compare three
promising approaches (i.e., plasma postoxidation, high pressure oxidation, and ozone postoxidation). It has been confirmed that
these approaches all can significantly improve the overall performance of the metal-oxide-semiconductor field effect transistor
(MOSFET) device.

1. Introduction

After continuously pursuing higher performance comple-
mentary metal-oxide-semiconductor field effect transistor
(MOSFET) devices formore than four decades, it is becoming
increasingly difficult for Si-based MOSFET to enhance per-
formance through traditional device scaling [1–5]. Recently,
Ge has attracted intensive interests as the most promising
channel material for next generation MOSFET because of
the intrinsic higher carrier mobility in Ge than that in Si (2x
highermobility for electrons and 4x for holes) [6–14]. In order
to realize high performance Ge p-type MOSFETs, advanced
high-𝑘/Ge gate stacks with scaled EOT and superior MOS
interfaces are mandatory [15, 16]. Electrically active defects
on the Ge surface and Ge/oxide interfaces are suspected
as the probable cause of the mobility degradation of per-
formance characteristics in MOSFETs. Hence, high quality
MOS interfaces are not guaranteed due to the large amount
of defects at direct high-𝑘/Ge interfaces [17]. To solve this
problem, an interfacial layer (IL) is introduced between the
high-𝑘 layer and the Ge substrate, which can provide effective
electrical passivation of the Ge surface. Among a variety
of ILs, high quality GeO

2
has been considered as the most

promising choice due to its extremely low interface defect

density 𝐷it (∼6 × 10
10 cm−2eV−1) [18] and its potential to

enable high performance Ge n-MOSFETs [19]. But there
is a problem: the formation of volatile GeO either during
growth or at elevated temperatures around 550∘C–600∘C,
which are often used in MOSFET processing. Initially it was
believed that GeO is formed at the interface between GeO

2

and Ge. More experimental evidences though suggest that
GeO is formed at the top surface of GeO

2
and desorbs at

high enough temperature [20–22]. In addition, the relative
dielectric constant (𝑘-value) of GeO

2
is much lower than

that of Hf- and La-based high-𝑘 gate dielectrics used for
advanced Si technology [23–30]. This means that gate stacks
containing thick interfacial GeO

2
layers are difficult to scale

below 1 nm EOT as required for future technology nodes.
Therefore, a high-𝑘/GeO

2
IL/Ge gate stackwith a high quality

and ultrathin GeO
2
interfacial layer is obviously required

to achieve subnanometer overall EOT in high performance
Ge MOSFETs. The biggest challenge at present is how to
manufacture, in a controlled manner, an ultrathin GeO

2

passivation layer without compromising its electrical quality.
Themost promising route is to use well-controlled oxida-

tion method to introduce the GeO
2
IL of very good quality.

Recently, it has been reported that high quality GeO
2
/Ge

interfaces have been fabricated by thermal oxidation [31],
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Figure 1: Schematic illustration of HPO system and process flow [35].

ozone oxidation [32], plasma oxidation [33], and so forth.
Among them, high-temperature thermal oxidation [34] and
ozone oxidation [35] can realize superior GeO

2
/Ge MOS

interfaces with a 𝐷it value less than 5 × 1011 cm−2eV−1.
Plasma postoxidation enables the formation of ultrathin
GeO
𝑥
interfacial layer between high-𝑘 dielectrics and Ge,

suitable for equivalent oxide thickness (EOT) scaling while
keeping low𝐷it (∼5 × 10

10 cm−2eV−1) [33]. In this review, the
three effective oxidation methods will be discussed in detail.

2. Ge/Dielectric Interface Passivation Methods

2.1. High-Pressure Oxidation. Many approaches were investi-
gated to form a stable and desirable GeO

2
IL in high-𝑘/Ge

gate stack. One of the most effective methods was high-
pressure oxidation. Lee et al. recently reported that the high-
pressure oxidation (HPO) of germanium (Ge) for improving
electrical properties of Ge/dielectric stacks was investigated
[11, 34–39]. Figure 1 shows the schematic illustration of HPO
system and the process flow used in their work. The system
mainly composes of an oxygen cylinder, a vacuumpump, and
a tube furnace.The furnace consists of a quartz oxidation tube
enclosed in a steel pressure vessel.

During the process, the HPO system is evacuated to
approximately 1 Pa by rotary pump after the cleaned Ge
wafers are placed into quartz oxidation tube. Then, the fur-
nace chamber surrounding the steel pressure vessel is heated
to a thermal oxidation temperature. Temperature calibration
of HPO furnace was carried out in the temperature range
from 200∘C to 600∘C for precise measurements [35].

By applying the HPO method followed by low-temper-
ature oxygen annealing (LOA), the interface state density
was reduced to less than 1011 cm−2eV−1 near the midgap,
as shown in Figure 2. Moreover, the refractive index of
thermally oxidized GeO

2
was increased by HPO which is

indicating higher density of GeO
2
grown by HPO, as shown

in Figure 3. It was also revealed that the dielectric constant of
GeO
2
increases from 5.2 in the case of atmospheric-pressure

oxidation (APO) to 5.8 in the case of HPO. With HPO
method followed by LOA, Lee et al. also obtained the highest
hole mobility of 725 cm2/Vs in Ge/GeO

2
gate stack which is

3.5 times higher than (100) Si universal mobility. With this
method, they also demonstrated the highest electronmobility
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Figure 2: Energy distribution of the interface states density (𝐷it)
estimated by the conductance method at 100 and 200K. [37].

of 1920 cm2/Vs in Ge/GeO
2
/Y
2
O
3
gate stack, as shown in

Figure 4. Both are the record-high values of Ge MOSFETs,
and this is a strong evidence that high quality Ge interface
from conduction to valence band edge is possible by the Ge
surface passivation. Discussed from a thermodynamic point
of view, the GeO desorption from Ge/GeO

2
stacks could be

efficiently suppressed by HPO.
Furthermore, by applying the combination of Y

2
O
3
and

low-temperature high-pressure oxidation (LT-HPO)method,
Lee et al. also have demonstrated the peak mobility of
787 cm2/Vs and high-𝑁

𝑠
mobility (at𝑁

𝑠
= 1 × 10

13 cm−2) of
429 cm2/Vs in Ge n-MOSFET with sub-nm EOT, which are
the highest ones to date among scaled Si and Ge MOSFETs
[38]. It is expected that electrical properties of GeO

2
metal-

insulator-semiconductor capacitor (MISCAP) can be further
improved by optimizing the oxidation temperature and
oxygen pressure of HPO.
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Figure 3: Refractive index (𝑛) of GeO
2
films estimated by spectro-

scopic ellipsometry at 𝜆 of 632.8 nm under the assumption that the
extinction coefficient is zero [35].

2.2. Plasma Postoxidation. O
2
plasma treatment is a very

effective approach to form low defect GeO
2
/Ge interfaces and

GeO
2
IL at low substrate temperatures, due to the highly

reactive O radicals [48, 49]. Zhang et al. have proposed a
novel GeO

2
IL formation process by applying the electron

cyclotron resonance (ECR) oxygen plasma to form high
quality GeO

𝑥
ILs through a thin Al

2
O
3
oxygen barrier, which

can realize a low 𝐷it and a thin EOT of around 1 nm at the
same time [33].The basic process flow is shown in Figure 5. In
this plasma postoxidation method, a thin GeO

𝑥
IL is formed

by oxidizing the Ge surface beneath a thin Al
2
O
3
layer. The

Al
2
O
3
serves as a sufficient oxygen barrier which suppresses

the growth of unnecessarily thick GeO
𝑥
IL. In more detail,

an ultrathin (1–1.5 nm) Al
2
O
3
layer is first deposited on

Ge by atomic layer deposition, followed by oxygen plasma
treatment to oxidize the Ge substrate. The Al

2
O
3
layer then

acts as a barrier layer of oxygen and effectively protects Ge
surfaces from direct exposure of ECR oxygen plasma and
any damages during the fabrication processes. In addition,
low processing temperature provided by the ECR plasma
oxidation is expected to minimize the thermal degradation
of the GeO

𝑥
/Ge interface. They have improved this process

to realize EOT less than 1 nm by employing this plasma
postoxidation (PPO) process to HfO

2
-based gate stacks [45].

A plasma postoxidation time of 10 s is sufficient to reduce
𝐷it while maintaining the equivalent oxide thickness (EOT).
The 𝐷it of Au/Al

2
O
3
/GeO
𝑥
/Ge MOS capacitors is found

to be significantly suppressed down to a value lower than
1011 cm−2eV−1. As shown in Figure 6, they can achieve the
minimum 𝐷it of 5 × 10

10 cm−2eV−1 and 6 × 1010 cm−2eV−1
for pMOS (1.67 nm EOT) and nMOS (1.83 nm) capacitors,
respectively.

High performance Ge MOSFETs with 0.98 nm (EOT)
Al
2
O
3
/GeO
𝑥
/Ge gate stack have also been demonstrated by

Zhang et al. [12]. The Ge n-MOSFETs have a record-high
peak mobility of 937 cm2/Vs as shown in Figure 7, and the
Ge pMOSFETs with EOTs of 1.18, 1.06, and 0.98 nm have
provided peak mobility values of 515, 466, and 401 cm2/Vs,
respectively. The Ge pMOSFET with an EOT of 0.98 nm has
been found to provide around 1.8 times mobility enhance-
ment against the previously reported values at this EOT
value.

Figure 8 shows the mobility benchmark of Ge pMOS-
FETs in the ultrathin EOT range. From the comparison
among the data record so far, a record-high peak mobility
(596 cm2/Vs) has been achieved in EOT of ∼0.8 nm for
HfO
2
/Al
2
O
3
/GeO
𝑥
/Ge pMOSFETs, which is 5.1 times large as

the previous value. This proves the novel gate stack structure
and plasma postoxidation method can provide sufficient
MOS interface passivation. In the same work, a high quality
gate stack (HfO

2
/Al
2
O
3
(0.2 nm)/GeO

𝑥
/Ge) with a record

0.7 nm EOT was also successfully demonstrated. The 𝐷it of
this 0.7 nm gate stack is in the order of 1011 cm−2eV−1, which
leads to a record 546 cm2/Vs peak mobility.

So, we can conclude that, by applying the PPO method,
one can realize both ultrathin EOT less than 1 nm and low
𝐷it value at the same time. As a result, the ECR plasma
postoxidation method is a promising solution for fabricating
advanced high-𝑘/GeO

𝑥
/Ge gate stacks with superior MOS

interfaces and thin EOT.

2.3. Ozone Postoxidation. Ozone oxidation provides an alter-
nativemethod to form a high quality GeO

2
IL.Theminimum

𝐷it of 3 × 10
11 cm−2eV−1 was demonstrated by using ozone

oxidation at 400∘C [32]. In previous experimental investiga-
tion, Kuzum et al. demonstrated a ∼1.5 times higher mobility
than universal Si mobility, where a GeO

2
passivation layer

was first formed by ozone oxidation and an Al
2
O
3
dielectric

was followed by ALD [50]. Considering the promising aspect
of this ozone-based surface passivation, in the remainder of
this review, the research of ozone postoxidation forGe surface
passivation will be discussed in more detail.

Aiming at realizing Ge surface passivation and thin
EOTs at the same time, Sun et al. proposed a new ozone
postoxidation (OPO) method for Al

2
O
3
/Ge MOS devices

[46]. The OPO treatment performed on Al
2
O
3
/Ge gate stack

is schematically shown in Figures 9 and 10 comparing the 𝐶-
𝑉 characteristics of Al

2
O
3
/Ge MOS capacitors with different

OPO times. It could be found that the sample without the
OPO treatment process exhibits very poor 𝐶-𝑉 behaviors,
and the 𝐶-𝑉 properties were significantly improved with the
increase of the OPO time. The inset shows the EOT value of
the capacitors decreases from ∼2.39 nm to ∼1.79 nm with the
increasing time of OPO.

In order to investigate the impact of OPO treatment
on the interface features of Al

2
O
3
/Ge gate stack, the high-

resolution cross-sectional transmission electron microscopy
(HR-TEM) images were taken and shown in Figure 11. It
can be seen that the as-deposited sample is uniform and
amorphous with a sharp interface. The physical thickness of
the Al

2
O
3
layer is deduced to be 3.6 nm. Furthermore, there

was no GeO
2
interfacial layer (IL) growth between Al

2
O
3
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Figure 4: A hole mobility of 725 cm2/Vs was achieved in Ge/GeO
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mobility. In case of electron mobility, Ge/GeO
2
/Y
2
O
3
gate stack shows the highest electron mobility of 1920 cm2/Vs. Both are record-high

values of Ge MOSFETs [11].
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films and Ge substrates even after the OPO treatment for 3
and 5min.

To further understand the impact of the OPO treatment
on Al

2
O
3
/Ge gate stack, the chemical components of Al

2
O
3

films and the interfacial stoichiometry of all samples were
examined by X-ray photoelectron spectroscopy (XPS) mea-
surement. As shown in Figure 12, except the Ge0 component,
no germanium-related peak signals could be observed in
the XPS spectrum of both as-deposited and OPO treated
samples.This indicates that the Ge substrate was not oxidized
after the OPO treatment even for 5min or the amount
of the GeO

𝑥
at the interface is under the XPS’s detection

limit. It could also be found that the Al 2𝑝 spectrum
of as-deposited sample exhibits two split peaks of Al–Al
bonding at 73.0 eV and Al–O bonding at 74.1 eV, indicating
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Figure 6: 𝐷it distribution of the Au/Al
2
O
3
/GeO

𝑥
/Ge MOS capaci-

tors versus energy [33].

the coexistence of the oxygen-deficient composition and the
stoichiometric composition in the Al

2
O
3
film. From theOPO

treated samples’ XPS spectra, we could find that the Al–
Al bonding feature intensity rapidly decreases, while the
Al–O bonding feature intensity continues to increase with
the increase in the OPO time. It indicates that the OPO
treatment could cure the oxygen deficiency in the Al

2
O
3
film

and finally enhance the average oxygen content of the film.
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improved significantly with the OPO treatment.The inset shows the
reduction of EOT versus the OPO treatment time [46].

The EOT value of the MOS capacitor, extracted from the 𝐶-
𝑉 characterizations, decreases from ∼2.39 nm to ∼1.79 nm,
which may be attributed to the continuous improvement in
the permittivity of the ALD-Al

2
O
3
film with the increase

in the OPO time. After a careful process optimization with
the OPO technology, sub-1 nm EOT and surface passivation
could be achievable at the same time in Ge MOSFETs.

Just recently, Yang et al. have introduced the cycling ozone
oxidation (COO) method into the ALD process to form a
high quality Al

2
O
3
/GeO
𝑥
/Ge stack [47]. Figure 13 shows the

process flow of COO method used in their work. This COO
method is proved to be effective in repairing the defects like
OH-related groups to suppress the gate leakage current. The
minimum 𝐷it value of 1.9 × 1011 cm−2eV−1 is obtained by
inserting GeO

𝑥
passivation layer with the COO treatment, as

shown in Figure 14 [47].

3. Conclusion and Further Outlook

In order to realize high-mobility Ge CMOS device, different
interface control and gate dielectric enhancement methods
of Ge were systematically investigated. In this review, we
have summarized and discussed various interface control
technologies which are effective in obtaining high quality
Ge MOSFETs. For reducing the interface state density and
enhancing the mobility in Ge MOSFETs, the high-pressure
oxidation, plasma postoxidation, and ozone postoxidation
have been proven to be very effective based on the formation
of good quality Ge oxide. For high-pressure oxidation and
plasma postoxidation techniques, both of them can obtain
a relatively low minimum value of 𝐷it in the order of
1011 cm−2eV−1 even at a thin EOT of subnanometer [12, 38].
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Figure 11: High-resolution cross-sectional transmission electron microscopy (HR-TEM) image of ALD-Al
2
O
3
on Ge structure: (a) without

OPO treatment; (b) OPO treatment for 3min; and (c) OPO treatment for 5min [46].
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For ozone postoxidation technique, a relatively lowminimum
value of𝐷it of 1.9 × 10

11 cm−2eV−1 was also obtained under a
relatively thick EOT (definite data not given in their report)
[47].Thus, these three techniques are all potential methods to
improve the interfacial properties of Ge/dielectric gate stack
in Ge MOSFETs.

It is noted that there are still several challenges for this
Ge MOS interface passivation technique. The high-pressure
oxidation technique has to be performed under a high
pressure of ∼70 atm, and thus its applicability to integrate
with the current Si CMOS technology is still not clear. On
the other hand, the plasma postoxidation technique is well
approved in planar Ge MOSFETs. However, its applicability
in 3D channel device, especially the gate-all-around (GAA)
device, is not investigated yet. For ozone postoxidation, it
is still desired to examine the scalability of Ge gate stacks.
Due to the drawbacks or limits of each technique, further
optimization is still needed to improve the mobility and to
scale down the EOT in Ge MOSFETs. The compatibility
with existing integrated circuit technology platform is also an
important issue.
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