
Constructing the CMA Simulation Step by Step

D. J. Goossens∗

April 8, 2015

Introduction

This document was begun Wed, Mar 25, 2015 11:35:20 AM to describe the pro-
cess of setting up a Monte Carlo model of Monoclinic 9-Chloro-10-methylanthracene,
and forms part of the deposited material accompanying the publication ‘A Pro-
cess for Modelling Diffuse Scattering from Disordered Molecular Crystals, Illus-
trated by Application to Monoclinic 9-Chloro-10-methylanthracene’ by Darren
Goossens. To be used in conjunction with [1] and [2], and with the paper in
Advances in Condensed Matter Physics to which this deposited material is at-
tached.

This process was undertaken running the ZMC suite of code under cygwin
(http://cygwin.com) on Windows. The suite can also be used on Linux (its
native environment) and Mac OS X, and is available as source code, mostly
compiling with g95 (www.g95.org).

1 CIF files

As a first step, I constructed the .cif files of the +1 and -1 CMA molecules,
where ±1 are the two states the molecules can be in, Cl or CH3 on the -9- and
-10- disordered sites.

The files were derived from versions in the Cambridge Structural Database,
and modified to describe the two possible configurations, one with CH3 on the
-9- atomic position in CMA and one with Cl on the -9- atomic position.

These .cif files are:
with_CH3_1.cif

with_CH3_2.cif

The construction was done by hand, editing the downloaded files in a text
editor. The main changes to the as-downloaded file(s) were to:

• Put a dummy atom at the centre of the central ring, to act as an origin
(not really necessary) and as a single-atom representation of the whole
molecule for the calculation of occupancy contact vectors (see below).

∗darren.goossens@gmail.com

1

• Copy the file and in the copy swap the CH3 and Cl groups on one molecule
to make the other configuration.

2 Fill the unit cell

The CIFs were in turn (one by one), imported into Mercury
(http://www.ccdc.cam.ac.uk/Solutions/CSDSystem/Pages/Mercury.aspx).
I selected Calculate and Packing/Slicing and packed out the unit cell. In this case
Z = 4. I then saved each resulting structure to a separate mol2 file:

with_CH3_1.mol2

with_CH3_2.mol2

3 Z-matrices

Used zmat maker to construct z-matrices and (external) z-matrix coordinates
for each molecule type [1]. Running zmat maker outputted a z-matrix (.zmat
file) and the quaternions and origin atom translations (.qxyz file) needed to
place the molecule into a unit cell. In this case, these files were:

with_CH3_1.qxyz

with_CH3_1.zmat

with_CH3_2.qxyz

with_CH3_2.zmat

Note that command line commands were like (‘$’ is the command prompt):

$ zmat_maker.exe with_CH3_1.mol2

Note also that

$ zmat_maker.exe --help

may be useful. Asking for help like this is worth a try with most of the commands
used here.

4 Set up initial Short-Range Order (or Not)

I began with a random occupancy structure with the correct global average but
no correlation structure. To do this I used make random occ to set up an initial
random occupancy structure (‘occupancy structure’ refers to the arrangement
of the type 1 and type 2 molecules, which in this case are really just flips of
each other). This occupancy structure was taken from [3-6]. Reference [6] was
particularly useful (see its figures 4 and 6). Since the orientations and positions
generated by zmat maker were the same for both species (which made sense,
given that the two CIF files were made by exchanging the CH3 and Cl and
leaving all other atoms fixed, rather than by flipping the whole molecule over),

2

it was possible to get the ratios correct by putting 0.686 of type 1 and 0.314
of type 2 on each site. This ensured that the ‘Cl rich’ sites were always where
the 1s are in figure 4 of [6]. This then meant that when the occupancy MC was
done the average molecular site occupancy could be maintained by ensuring
that occupancies were swapped only within a given molecular site (i.e., the
the occupancy of a molecule on the first position in a unit cell was only ever
swapped with the occupancy of a molecule in the first position of some other
cell, for example).

Here is the make random occ session:

$ make_random_occ.exe

How big is the model crystal? (asize bsize csize)

32 32 32

How many locations in the unit cell?

4

How many types of zmatrix in the structure?

2

How many instances of zmatrix 1 on location 1

1

How many instances of zmatrix 2 on location 1

1

How many instances of zmatrix 1 on location 2

1

How many instances of zmatrix 2 on location 2

1

How many instances of zmatrix 1 on location 3

1

How many instances of zmatrix 2 on location 3

1

How many instances of zmatrix 1 on location 4

1

How many instances of zmatrix 2 on location 4

1

What is the probability of getting instance 1

of zmatrix 1 on location 1

0.686

What is the probability of getting instance 1

of zmatrix 2 on location 1

0.314

What is the probability of getting instance 1

of zmatrix 1 on location 2

0.686

What is the probability of getting instance 1

of zmatrix 2 on location 2

0.314

What is the probability of getting instance 1

3

of zmatrix 1 on location 3

0.686

What is the probability of getting instance 1

of zmatrix 2 on location 3

0.314

What is the probability of getting instance 1

of zmatrix 1 on location 4

0.686

What is the probability of getting instance 1

of zmatrix 2 on location 4

0.314

What is output filename?

CMA_initial_random_occ.txt

Done.

5 Contact vectors (interatomic interactions)
Part 1

The next step was to set up an input file for ZMC to generate the contact list.
This file is shown in Gen_contacts.inp

Here are the last few fields:

NEWCONTACTS CMA_set9_contacts

VMIN 1.0

VMAX 7.0

CONTATOMS ZMAT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

CONTATOMS ZMAT 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

These lines tell ZMC to look for contacts involving z-matrices 1 and 2 and atoms
2–28, with contact lengths of between 1.0Å and 7.0Å.

To run it:

$ ZMC --getcontacts Gen_contacts.inp > Gen_contacts.screen_output

Where Gen_contacts.screen_output just captures the screen dump of the
program and the results are in CMA_contacts_initial, which is referred to in
the input file, Gen_contacts.inp.

6 Sort the contacts

This can be done any number of ways. In this case, it was a two step process.
First, the list (CMA_contacts_initial) was imported into Excel, then sorted
on (see the header line of the contact file for symbols): (1) Length (2) oz (‘origin
z-matrix’, basically the type of z-matrix that the contact is coming ‘from’) (3)
dz (‘destination z-matrix’, basically the type of z-matrix that the contact is
going ‘to’) The result was stored in CMA_contacts_excel_sort.

4

7 Continue sorting the contacts

In this case, I wanted to give contacts which were symmetry-related (ie, the
same contact) the same type number. For this, I wrote a bit of code called
Classify, with the source code in classify_v2.f. Compiling was just:

$ gfortran.exe -o Classify_v2 classify_v2.f

Then running:

$./Classify_v2.exe

Classify

Assumes contacts are already sorted into

ascending order by length, and within that

that they have been sorted by oz and within

that by dz. Assumes om=dm=1 always !!!!

This is for CMA mono only!!!

Feb 2015

What is increment? 4 for disorder, 1 for no disorder.

4

Infile?

CMA_contacts_excel_sort

Outfile?

CMA_contacts_grouped

Reading CMA_contacts_excel_sort to CMA_contacts_grouped

How many rows?

49332

49332 rows.

Header is...

ol oz om oat da db dc dl dz dm dat length type

And output was to CMA_contacts_grouped.
What the program does is fairly crude. It looks at the length of the contact

and at what types of molecules it connects. For a given length, the contact
could connect molecules 1 to 1, 1 to 2, 2 to 2 or 2 to 1. Note that 2-2 and 1-1
(and 1-2 and 2-1) are not necessarily equivalent, given that molecules can have
low symmetry. Hence all four possibilities are given different types. If size-effect
is being implemented, it may make sense for the size effects on these four types
to be related, and to consider these four types together as a single type with
four variations.

Note also that aspects of the CMA problem are hard-coded into classify_v2.f,
and that while it should act as a template for further studies, it may not be
directly applicable. In particular, the classify_v2.f program assumes the
spreadsheet sort noted in the previous section was performed exactly as speci-
fied!

5

8 Calculate the force constants on the contact
vectors

This was done following the formula developed in [7], which uses an exponential
form and the van der Waals radii of interacting atoms to determine a force
constant. This work was undertaken primarily by Eric Chan, and the program
to calculate the force constants has a name that reflects this.

Compile:

$ gfortran.exe -o Eric_Chan_springs eric_trim_disorder.f

Run:

$./Eric_Chan_springs.exe

Assumes contacts are already classified as per

classify_v2.f, i.e.:

ascending order by length, and within that that

that they have been sorted by oz and within

that by dz. Assumes om=dm=1 always !!!!

This is for CMA mono only!!!

Feb 2015, Darren Goossens.

Infile?

CMA_contacts_grouped

Outfile? (sprcons written here)

CMA_force_const_Chan

Outfile? (trimmmed contacts written here)

CMA_contacts_grouped_trimmed

Reading CMA_contacts_grouped, writing to CMA_force_const_Chan

How many rows?

49332

49332 rows.

Header is...

ol oz om oat da db dc dl dz dm dat length type

This then resulted in a trimmed list of contacts and their force constants. A lot
of the generated contacts proved to have zero force constants (i.e., be too long
to worry about). Compare the length of the two contact lists:

$ wc CMA_contacts_grouped_trimmed

4769 61997 224197 CMA_contacts_grouped_trimmed

$ wc CMA_contacts_grouped

49333 641329 2516034 CMA_contacts_grouped

So before trimming there were 49333 lines in the file (top line is header, so
49332 contacts). Afterwards, only 4766 contacts. Note that trimming was done
by working backwards through the file and eliminating all the contacts after the

6

last one with a non-zero spring constant. That meant that contacts shorter than
the last non-zero one but which were zero remained in the model. A further
improvement would be to remove them and then renumber what is left. This
would speed things up a bit but is not needed for demonstration purposes. Also,
note that if the parameters that determine the force constants are themselves
to be refined (see [7]), then the trimming would also need to be repeated each
cycle of refinement.

9 Run a model of CMA

The first model (‘Model 1’)used random occupancies (no chemical SRO — that
is, no correlations amongst the molecule flips apart from the fact that the two
species are not randomly 50:50 distributed but more like 70:30). It was run,
and then its Fourier transform was calculated to look at the diffuse scattering.

An input file to ZMC was set up – Model_1.inp – which used random oc-
cupancies but many MC cycles to give an indication of the thermal diffuse
scattering. The results were fed into DZMC, which also reads in an input file
as used by DIFFUSE to define the calculation regions. These files are included
in this archive and are called diffuse.monoXYZ where XYZ = 0kl, hk0 or h0l.
Other cuts can be specified. Note also that the diffuse.monoXYZ files can be
modified to use different scattering factors (absorption edges, neutrons. . .), to
subtract the single body average (Bragg) scattering in a number of ways (‘Y’
does a calculation based on average atomic positions and atomic displacement
parameters, ‘e’ does an exact calculation using 5% of the model, ‘E’ does an
exact calculation using the whole model. Similar options are available in DIS-
CUS [8].

Scattering factors were taken from
http://it.iucr.org/Cb/ch6o1v0001/sec6o1o1/?#sec6o1o1o4

and the file
diffuse.mono0kl

is fairly self-documenting.
The simulation was controlled by two things, the input file Model_1.inp,

and the ZMC command line.
Invoke ZMC as

$ZMC --help2 --help

for some help. It is useful to direct the output to a file for easy reference.

$ZMC --help2 --help > ZMC.help

The ‘Trimmed’ list of contacts written to CMA_force_const_Chan was pasted
into the input file, Model_1.inp. Only the section above the word ‘Untrimmed’
was pasted in, and not including the word ‘Trimmed’....

The small batch job (shell script) Model_1.sh is a convenient way to run
the calculation. If you have multiple cores, you might want to put ampersands

7

on the ends of the commands that run the DZMC jobs to let them all run at
once, for example.

The command was (might be different in a Windows command prompt):

$ nohup bash Model_1.sh > Model_1.screen &

And this was followed by much waiting.

10 View the Calculated Diffraction

DZMC uses as its engine DIFFUSE, which outputs binary files. The toolbox
program bin2gray converts these to pgm files, which can be viewed using any
number of programs; a very useful tool is ImageJ. The binary file names were
given in the files Model_1_in??? and were:

Model_1_hk0

Model_1_0kl

Model_1_h0l

Note that

$ bin2gray --help

may be useful. Then

$ bin2gray --hmirror --vmirror --twofold Model_1_0kl Model_1_hk0

and

$ bin2gray --twofold Model_1_h0l

(the h0l layer does not have mirror planes due to the monoclinic structure).
This resulted in three files:

Model_1_hk0.pgm

Model_1_0kl.pgm

Model_1_h0l.pgm

Which were viewed and compared to the observations.
Files with ‘Bragg’ in the title do not subtract out the average structure from

the diffraction calculation. This leaves the Bragg peaks in, and leaves in any
associated high-frequency ripples that result from having these bright features in
the pattern. If these calculations are then thresholded and/or scaled to remove
the ripples, it can be useful for comparison with observed data to combine the
Bragg spots with the calculated diffuse to get an image that looks more like the
observations.

8

11 Occupancy Correlations

To do occupancy correlations, the first thing was to develop a list of interactions
for use with the Ising-like potentials. ZMC could be used for this, with only the
origin (dummy) atom being used in the calculation. The input file was

Gen_occ_contacts.inp

so the command was

$ZMC --getcontacts Gen_occ_contacts.inp

and the results were written to CMA_occ_contacts_initial.
This file ‘only’ has 96 lines in it, and since it was being used to establish the

occupancy structure (the array of 1 and 2 giving molecule orientation) the oz,
om, dz, dm fields were all irrelevant, and duplicates were culled. It was then
sorted and classified quickly using a spreadsheet to give

CMA_occ_contacts_sorted

This file described the same interactions as noted in figure 1 of [3], where there
the interactions are denoted a,b,c,d and are equivalent to 1,2,4,3 (respectively)
in the file CMA_occ_contacts_sorted Hence, based on the correlations used
in [3], these four interactions need to induce occupancy correlations of 0.4, 0.2,
0.05 and 0.0.

The program to do this was called occupancy_mc_v2.f90 and was compiled
thus:

gfortran.exe -o Occ_MC_v2 occupancy_mc_v2.f90 rannum.f

where rannum.f is a random number generation routine borrowed from some-
where or other. The Occupancy simulation can be run interactively, but it was
simpler and better for record keeping to put the inputs into a file and redirect
the input/output, giving this command:

$./Occ_MC_v2.exe < MC_occ.inp > MC_occ_Epstein.screen

which took the input from MC_occ.inp, generated correlations as suggested
by [3], then dumped the screen output to MC_occ_Epstein.screen and the
actual new occupancy structure to CMA_occ_correlations_Epstein.

12 The ‘final’ model (which is not final)

So the next step was to put the new correlation structure into the input file for
ZMC and run again.

$ nohup bash Model_2.sh > Model_2.screen &

which produced images in the same way as before. Clearly at this stage a model
existed. It could now be modified, extended, tested more thoroughly, and so
forth, to gain the actual structural insight that was desired. Once the diffraction
pattern of the model crystal agrees with that of the real crystal, the pattern
and the model can be explored to find out about the structures present.

9

References

[1] D. J. Goossens, A. P. Heerdegen, E. J. Chan, and T. R. Welberry. “Monte
Carlo Modelling of Diffuse Scattering from Single Crystals: The Program ZMC.”
Metallurgical and Materials Transactions A, 42A:23-31, 2010. DOI:10.1007/s11661-
010-0199-1. [2] http://rsc.anu.edu.au/~goossens

[3] J. Epstein, T. R. Welberry, and R. D. G. Jones. “Analysis of the diffuse x-
ray scattering from substitutionally disordered molecular crystals: Monoclinic
9-bromo-10-methylanthracene.” Acta Crystallographica, 38:611-618, 1982.

[4] R. D. G. Jones and T. R. Welberry. “Crystals exhibiting disorder - the mon-
oclinic polymorph of 9-chloro-10-methylanthracene.” Acta Crystallographica
Section B, 37(5):1125-1126, May 1981, doi:10.1107/S0567740881005232.

[5] R. D. G. Jones and T. R. Welberry. “Crystals exhibiting disorder - the mon-
oclinic polymorph of 9-bromo-10-methylanthracene.” Acta Crystallographica
Section B, 36(4):852-857, Apr 1980, doi:10.1107/S0567740880004682.

[6] T. R. Welberry and R. D. G. Jones. Journal of Applied Crystallography,
13:244-251, 1980.

[7] E. J. Chan, T. R. Welberry, D. J. Goossens, and A. P. Heerdegen. J. Appl.
Cryst., 43:913-915, 2010, doi:10.1107/S0021889810022260

[8] R. B. Neder and Th. Proffen. Diffuse Scattering and Defect Structure
Simulations: A cook book using the program DISCUS. OUP, 2008.

10

