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It is best to do things systematically, since we are only human, and
disorder is our worst enemy.

Hesiod (∼ 800 BCE)

In mathematics you don’t understand things. You just get used to
them.

Johann von Neumann (1903-1957)

If I had been rich, I probably would not have devoted myself to
mathematics

J. L. Lagrange (1736-1813)
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Preface

This is a book about Monte Carlo (MC) modelling of short-range order (SRO)
in crystals, and in particular about using the program ZMC. It grew out of an
attempt to document a program, called ZMC [1, 2], which is designed to allow
(reasonably) ready implementation of MC modelling of SRO in molecular crys-
tals. The program is in constant development, but in 2008 and 2009 underwent
major modification into a version that will henceforth see only minor modifica-
tion. This document is centred on ZMC, but is not restricted to it.

The program ZMC does some things and not others. It does not do occupancy
simulations, which is to say that problems that require the ordering of different
species, such as ordering in a binary alloy for example, cannot be dealt with.
What ZMC will do is let the the atoms displacively adjust once the occupancy
structure is established. That may seem like a very limited mandate, but the
program is designed to deal with molecules. Molecules can have internal de-
grees of freedom such as rotations of segments around bonds. ZMC can deal with
multiple types of molecules in multiple possible orientations. Hence is an occu-
pancy simulation is required, that is done externally to ZMC (though that will
be discussed herein) and then the results are fed into ZMC for displacive relax-
ation. The discussion of para-terphenyl in chapter 4 will show that sometimes
occupancy problems can be dealt with within ZMC. . . but it is a rather special
case.

ZMC produces an output file which can be used in various ways. Usually
they are fed into into DIFFUSE [3] to calculate diffuse diffraction patterns to
compare with those observed; one day a module will be added to allow it to
output to a format that can be used by DISCUS [4], which is a widely available
and ready-to-use program, unlike DIFFUSE. Users are encouraged to think of
other quantities that could be calculated from the various forms of output;
pair distribution functions, even possibly EXAFS and XANES spectra; that is
beyond the current author’s scope. However, it is firmly believed that ultimately,
bringing multiple techniques to bear on a single problem, and fitting them all
jointly to a single model, will be a powerful way to deeper understanding.

ZMC and the associated papers and documents would not exist without sev-
eral people. The two prime figures being Prof. T. R. Welberry and Dr A. P.
Heerdegen. Richard Welberry [5] has spent many years developing these tech-
niques, and what is presented here is merely a development of an aspect of his
work, with perhaps more of an eye on usability for the non-expert than Richard
has generally concerned himself with. Aidan Heerdegen is not only a fine scien-
tist who has contributed much to the development of the algorithms in ZMC, his
advice has also been crucial in turning vague ideas into concrete Fortran code,
providing many of the key components of ZMC. The author would also like to
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thank Dr E. J. Chan, whose use and modification of the program in pursuit of
doing some science (which after all is what it is ultimately all about) tested the
code and in doing so contributed greatly to ironing out kinks, squashing bugs
and adding in capability and changing the fundamental design of aspects of the
program.

Given the verbose, disjointed, untidy and probably inefficient nature of the
code, it must be stated that while many others have contributed good ideas
and suggestions to the project, any insufficiencies in the code, any program-
ming habits that offend skilled and rigorous programmers (a group to which the
author does not belong) and any bugs are the sole responsibility of the author.

The project is open to contributions; please contact the author.
ZMC is written in Fortran90, and has been compiled on Linux using the Intel

Fortran Compiler [6] [7] and gFortran [8]. It has also been compiled on Mac OS X
using g95. This document was written in LATEX using the TDE editor [9] which
I cannot recommend highly enough. ZMC uses a module library written and
compiled by Dr A. P. Heerdegen.
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Chapter 1

Defining the Problem

Modeling SRO is difficult because SRO consists of deviations away from the
average structure, and as a result does not have to obey space group symmetry.
The average across the whole crystal, the long-range order (LRO) has to obey
this symmetry, but a given instance of local structure does not. Now, the exact
instantaneous position of every atom in the sample containing ∼ 1023 atoms
cannot be modelled. What can be modelled is the ‘average’ SRO instead of
(or as well as) the average LRO. The LRO manifests in the Bragg scattering,
whose analysis is well established, whether it be single crystal data or powder
diffraction data. What does ‘average SRO’ actually mean? In this case, SRO is
an ordering which persists over approximately tens of unit cells, and may be an
ordering of species, displacements, or some combination of these.

When solving for the LRO, which is referred to as structure solution, several
useful hints are available. First, the nature of the solution is known; a unit cell
is required. An exception is, for example, a modulated structure, although in
some sense the answer is still a unit cell, all be it one that is described in more
than three dimensions.

A second useful thing is that only the Bragg peaks need be analysed. It
is possible to establish systematic absences, unit cell parameters and space
group symmetry through fairly well-established routes. Again, this is an over-
simplification (there will always be difficult cases), but it generally holds.

Third, there is often a ‘model’ structure to begin with. A given material is
often a derivative of something which is known.

The study of SRO can often make use of some of these factors, for example
a ‘family resemblance’ with other problems. However, because SRO can take
on so many forms, often when the analysis begins even the broad outlines of
the solution are not known. Does the model need to have SRO correlated
occupancies? Multiple molecular orientations? Are they correlated? Is the
disorder purely displacive? Does size-effect need to be considered (of which
more later)? Often, it is unknown whether the assumed model is even capable

of describing the ‘true’ situation, no matter what values its parameters take on.
So in a sense the type of model needs to be found before a specific model can
be constructed.

In the work presented here, the modelling of SRO is tackled through con-
structing a model crystal. Because of the SRO, the unit cells are not identical;
however, the interactions from cell to cell should be the same. Hence if the inter-
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10 CHAPTER 1. DEFINING THE PROBLEM

actions are used to correlate the molecules, the problem is reduced to one with a
reasonable number of parameters—the parameters describing the interactions,
rather than those directly giving the atomic positions. (As will be discussed
in chapter 6, a further level of parameterisation has been explored, in which
the interaction constants are themselves generated from a simple model with a
handful of parameters.) And by using a sizable model crystal the model should
effectively model the population of local configurations successfully.

This is still far from trivial. It is routine to spend considerable time inter-
acting with a model before finally coming to the conclusion that it cannot fit
the data.



Chapter 2

The Approach

2.1 Generalities

ZMC uses an approach based around the idea of Monte Carlo (MC) simulation
[10]. MC can be used in many contexts—to fit equations to curves, minimise χ2

for various kinds of fits and optimisations or bring a model system into thermal
equilibrium. It is the last of these that applies here. The aim is to perform a
fit—ultimately, the goal is to produce a model whose Fourier transform gives
diffuse scattering that looks like that which is observed coming from the real
system — but that is a loop ‘outside’ the running of a particular MC simulation.

MC simulation is used to bring a given model into thermal equilibrium;
whether the parameters of that model are ‘right’ or not, whether the model ‘fits’
the data, these are other questions, beyond the scope of ZMC, though not beyond
the scope of this document (see chapter 5). A rough flowchart of this can be seen
in figure 2.1. The chart shows that what ZMC does (if run for long enough) is
bring the system into thermal equilibrium, the idea being that the interactions
in the system (all scaled relative to kBT ) will induce some correlation structure
in the displacements which will then cause features in the diffuse scattering
pattern. However, there is no a priori reason why the output from ZMC cannot
be used to calculate other quantities. The diagram also shows that ZMC in no
way evaluates the model; it relies on the user to look at the outputs (diffraction
patterns, histograms, correlations) and come up with a next iteration. The user
might choose to embed ZMC within a process which automatically evaluates the
outputs and adjusts the parameters of the model.

Here the key problem becomes apparent; is the model capable of fitting
the data? It is possible to spend a lot of time fiddling with parameters, size-
effects, occupancy structures, contact vector connectivities, molecular flexibility
(molecular degrees of freedom in general) and other things before a model which
is even able to fit the data is found. The question: “Do I need to adjust my
model or do I need a new model?” Is often almost impossible to answer with
certainty. ZMC only helps with this in so far as it makes construction of the
model faster, which means it is also faster to modify the model. But the insight
into what needs to be changed still must most often come from the user.

ZMC fits within a broader template—the use of diffuse scattering as a probe
of SRO. This document is not intended to be a thorough-going examination of
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Figure 2.1: Flowchart of the MC process as in ZMC. The inner loops are within
the program but the outer loop (‘evaluate model’) is not.

diffuse scattering, that has been done before, and been done very well [5, 11, 12].
In the broader context, the use of ZMC might be summed up by the diagram in
figure 2.2, in which figure 2.1 is in a sense embedded.

Figure 2.3 is a false colour map of a section of reciprocal space, in which
the x and y coordinates give the position in reciprocal space and the colour
gives the intensity observed at that point. The first decision is whether an
occupancy model is required or whether the SRO can be reproduced by ‘only’
correlating atomic or molecular displacements (and conformations). How can
this be determined? First, the average structure from Bragg diffraction should
be able to give some idea of whether there are split sites, for example. Otherwise,
an incipient phase transition (for example a cell doubling) may give insight. The
diffuse scattering itself will show some evidence, and sometimes it will be clear
what features are due to the occupancies. For example well-defined diffuse spots
at ‘supper lattice’ reflection positions, typically something like (hkl)±

(

1

2
, 1

2
, 1

2

)

.

If an occupancy model is required, it is necessary to work out what the oc-
cupancy objects objects are. Multiple types of molecules? Multiple orientations
and/or conformations of a single molecule? Then the nature of the correlations
must be established. Along what directions are the entities correlated and how
strongly? This most often reduces to looking at nearest neighbour correlations.
Are they correlated positively or negatively with their nearest neighbours? In
a more complex situation, there may be a need for a multivalued occupancy
variable. This means that, for example, if there is a ‘1’ on some site A then
there will most likely be a ‘2’ or ‘4’ on site B, but less likely to have ‘3’, ‘5’ or
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Run 
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occupancies?
need to model

Collect Diffuse Scattering

Obtain (large) crystal
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Publication/etc
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Evaluate results
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Figure 2.2: Flowchart of the SRO analysis process when making use of ZMC.
The box ‘Run ZMC’ contains figure 2.1.
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Figure 2.3: Example of observed diffuse scattering data, in this case two recip-
rocal space sections from para-terphenyl.
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‘6’, where ‘1’ etc just encodes say the position of some functional group on a
phenyl ring, for example [13]. Similarly, there may be multibody interactions
[5], in which the probability of occupying a given site depends jointly on the
probabilities of several neighbouring sites.

Once (what appears to be) a good occupancy model has been obtained, it can
be fed into ZMC. This requires thinking about how the molecules connect, what
forces act between them and what size-effects are required. There is also the
question of molecular flexibility; what degrees of freedom must the molecule(s)
be allowed? There may be a need to take care in re-evaluating the occupancy
structure at this stage, hence the going back and forth arrows in figures 2.1 and
2.2.

A model is evaluated by calculating its diffuse scattering pattern(s) using
DIFFUSE then comparing with observations. The comparison may be done
qualitatively (that is, by eyeball) or using some kind of refinement program,
including least squares [14] or genetic algorithms [15].

2.2 Specifics

In this section, some of the details of the implementation will be discussed, with
a view to defining terms and outlining possible pitfalls and useful tactics. First,
molecular representation.

2.2.1 Representing a Molecule

A molecule can be anything from a single atom to a large assemblage of atoms.
In ZMC a molecule is represented as a z-matrix. An example is shown in table 2.1.
In this case the molecule is deuterated para-terphenyl, shown schematically in
figure 2.4. The numbering of atoms in the z-matrix is chosen so that the groups
of the molecule can be twisted around the C–C single bonds by changing the
dihedral angle of a single appropriate atom. That means that all ensuing atoms
have to be forced to depend on the previously defined atoms in the right way,
or for example a phenyl ring might get broken in a unphysical way, if all atoms
in the ring do not follow the one whose angle is being changed.

The process used to generate the z-matrix depends on having a good quality
average crystal structure, with the ability to separate overlapping, superim-
posed molecules in disordered structures so that the ‘building block’ unit of the
structure, the isolated molecule, is known. It may be that a similar structure
without disorder can be used as a guide, and many units in molecules (phenyl
rings, for example) can often be usefully approximated by known geometries.

The process is typically done in stages. First, a .cif file is obtained (from a
database of from a conventional single-crystal Bragg experiment, or constructed
by hand if the problem requires this), and the atoms in it reordered such that
the expected internal degrees of freedom (for example the angle of the central
phenyl ring in the molecule in figure 2.4) are logically defined. It may be useful
to define ‘dummy’ atoms (those beginning with ‘x’ in table 2.1) to allow more
convenient definition of degrees of freedom and of the molecular axes. If a
molecule has a centre of symmetry, it may be desirable to place the molecular
origin on this point, even if there is no ‘real’ atom there. In the example given
here, this has been taken rather to an extreme; while the molecular origin is on
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Table 2.1: The z-matrix for d-para-terphenyl. Atoms with labels prefixed ‘x’ are
‘dummy’ atoms used to aid in defining the local coordinate system and internal
degrees of freedom. The starred (*) value is allowed to vary, and this allows the
whole central phenyl ring to rotate as a rigid unit.

Label l Distance m Angle with n Dihedral angle
from l (Å) lm (◦) with lmn (◦)

1 x1 – —– – —– – —–
2 C4 1 2.912 – —– – —–
3 C5 2 1.406 1 120.510 – —–
4 C6 3 1.395 2 120.251 1 179.771
5 C7 4 1.387 3 120.678 2 -1.240
6 C8 5 1.384 4 119.710 3 1.561
7 C9 6 1.394 5 120.468 4 -1.155
8 x2 7 1.409 6 120.519 5 0.432
9 C4B 8 5.825 7 121.127 6 -179.368

10 C5B 9 1.406 8 120.510 7 -0.750
11 C6B 10 1.395 9 120.251 8 -179.771
12 C7B 11 1.387 10 120.677 9 1.240
13 C8B 12 1.384 11 119.710 10 -1.561
14 C9B 13 1.394 12 120.468 11 1.155
15 x2B 14 1.409 13 120.519 12 -0.432
16 C2B 15 1.329 14 121.037 13 179.518
17 C1B 16 1.407 15 121.135 14 -180.000 *

18 C3B 17 1.393 16 121.658 15 -179.878
19 C2 18 1.406 17 120.534 16 -0.732
20 C1 19 1.407 18 117.804 17 0.700
21 C3 20 1.393 19 121.658 18 -0.713
22 D1 20 1.107 21 118.327 19 -176.663
23 D2 21 1.061 20 118.909 22 5.629
24 D1B 17 1.107 18 118.327 16 176.662
25 D2B 18 1.061 19 120.538 17 -178.415
26 D3 3 1.064 4 121.032 2 -171.714
27 D4 4 1.056 5 122.918 3 -178.101
28 D5 5 1.042 6 118.647 4 176.696
29 D6 6 1.127 7 118.434 5 170.882
30 D7 7 1.066 8 122.600 6 174.386
31 D3B 10 1.064 11 121.033 9 171.714
32 D4B 11 1.056 12 122.918 10 178.101
33 D5B 12 1.041 13 118.647 11 -176.696
34 D6B 13 1.127 14 118.434 12 -170.882
35 D7B 14 1.066 15 122.600 13 -174.386

the middle of the central phenyl ring, the desire was to allow only the central
ring to rotate relative to the two our ones. Hence the second atom is a very long
way away from the first, and the two out rings are defined first, before returning
to define the central ring last.

Then Mercury, a program which is part of the CCDC [16] is used to populate
the unit cell with contiguous, unbroken molecules. Then that cell is saved as
a .mol2 file, which is processed by a custom-written program called zmat maker

which outputs as many z-matrices as required, along with the coordinates needed
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Figure 2.4: Schematic diagram of the para-terphenyl molecule, with internal
twist angles φ1 and φ2 noted. An example of the H–H intramolecular contacts
which prefer a non-coplanar configuration of the rings is noted as a dashed line.
Note that in practice the model uses only a single rotation angle, φ, which gives
the angle of the central ring to the plane of the outer two.

to place them into the unit cell, thus providing all information needed to pop-
ulate a unit cell.

Now, the molecule can be thought of as consisting of a series of variables
which fall into two classes—external and internal. The external ones are x, a
3-vector giving the Cartesian position of the origin atom of the z-matrixand q,
a quaternion, a 4-vector giving the direction in the unit cell frame of reference
of the first bond defined in the molecule. These two things serve to position
and orient the molecule in the unit cell.

The internal variables are contained in a vector i of length N where N is
the number of internal degrees of freedom in the molecule. For the example in
figure 2.4, i is of size 1—it contains only the value of the angle the central phenyl
ring makes to the plane of the outer rings. Generally only dihedral angles are
allowed, since these are likely to be the lowest energy motions; but there is no
other reason why bond angles and lengths cannot be allowed to change.

During a MC step (see figure 2.1), the molecule is chosen, its energy is
calculated, then random shifts (whose maximum magnitude is either input by
the user or the result of an automated optimisation process) are applied to all
or some of the components (as specified by the user) of x, q and i. This will
stretch and compress the ‘springs’ modelling interactions within the molecule
and connecting the molecule to its neighbours, changing the molecule’s energy
(see section 2.2.2), and so when the energy is calculated a second time, the
Metropolis MC step [10] proceeds. It should be noted that q is a normalised
vector, so after the random shifts are applied to its components, the qj , it is
renormalised.

2.2.2 A Molecule’s Energy

Internal degrees of freedom (the values stored in i) will cause an energy penalty
whenever the value of the variable is not some ‘ideal’ value set by the user. The
contribution of this energy, Eintern, to the energy of a molecule might be written

Eintern =

N
∑

j=1

Fj(φj − φj0)
2 (2.1)
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where the molecule has N internal degrees of freedom indexed by j, φj is the
‘instantaneous’ or current value of the jth degree of freedom (an angle or length)
and φj0 is its ‘ideal’ (zero energy penalty) value. Fj is the associated force
constant.

Now, it is quite reasonable that when one segment of the molecule twists
one way, for example, another segment might find it energetically favourable to
twist another way. Hence the internal degrees of freedom are allowed to interact,
though only on a pairwise basis, with interactions of the form:

Ecross =

N
∑

j=1

j−1
∑

k=1

Fjk((φj − φj0)× (φk − φk0)) (2.2)

where the subscript ‘cross’ is used to indicate that these are ‘cross-terms’ in the
internal energy. Many, possibly all, of the interaction constants, the Fjk, will
be zero.

These two terms combine to give the ‘intramolecular’ energy of the molecule,
Eintra = Eintern + Ecross.

The intermolecular component of the energy is calculated by assuming the
molecule is connected to surrounding molecules via Hooke’s law springs (har-
monic potentials). Harmonic potentials are used because they are simple and
fast to implement, they can be parameterised by a single number, they are a
reasonable approximation close to the bottom of many types of potential well
(Lennard-Jones, Buckingham for example) and they are a weak assumption.
They are bad for most of these same reasons—particularly, they will be too
weak when the distances become short (repulsion is ultimately extremely strong
since atoms are unlikely to invade each others’ space) and too strong when the
interatomic separations become large—for large separations, atoms are not in-
teracting at all, so to have a large energy penalty there is nonsense. Also, being
harmonic they are inherently unable to capture any symmetry-breaking inter-
actions in the system, meaning they cannot model a phase transition. These
things can be dealt with by using more complex potentials—at the expense of
more computing time and perhaps more free parameters in the modelling (and
ultimately in the ‘fit’), something which may or may not be valid given the
power of the data to discriminate between models. It is intended that ZMC be
able to allow the user to choose Lennard-Jones potentials in the input file, but
as of time of writing this is not implemented in the ‘canonical’ version of the
program. Some of these issues are discussed in chapter 6.

Various strategies can be used when selecting atom-atom interactions to
connect molecules. Several studies (amongst many others, [17, 13]) have used
a relatively small subset of the possible ‘contact vectors’ connecting molecules
(this is for speed reasons, and again to minimise free parameters in the model).
Such models use just enough springs to mutually orient the contacting molecules
and/or their segments. Hence the interactions are ‘effective’ interactions, and
do not admit of detailed interpretation (except in rare cases).

Another approach is to use all interactions out to some cutoff length; this
will generally imply the existence of hundreds of interactions which, strictly
speaking, are not symmetry equivalent and therefore should have different force
constants. However, if the force constants can be chosen using some simple
procedure (for example a function of the atom types and their expected Van
der Waals radii), the number of parameters can again be reduced.
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Hooke’s law is F = −kx where F is the force, k is the spring constant and
x is the extension of the spring. Integrating with respect to x gives the energy

associated, E = kx2

2
. Recasting this to suit the modeling discussed here gives

Einter =
∑

cv

Fcv(dcv − dcv0)
2 (2.3)

where dcv is the instantaneous length of the given contact vector, dcv0 is its ‘equi-
librium length’ and Fcv is its associated force constant (note the ‘ 1

2
’ has been

absorbed into Fcv), and the sum is over all contact vectors (cv) connecting to the
given molecule. If the model uses a subset of the nearest neighbour atom-atom
contact vectors, the interactions must be considered as ‘effective’ interactions
only, and while the associated Fcv may be indicative of the relative strengths of
the interactions in different directions, they should primarily be considered as
a mechanism for inducing a correlation structure into the displacements.

There is (at least) one more complexity to be added in. This is the size-effect
[5]. In brief, the size-effect is the change in expected atom-atom separation when
the occupancy changes. Consider a binary alloy. It may contain 50% A atoms
and 50% B atoms in the crystal, distributed without long-range ordering (for
example they are not perfectly clustered or perfectly alternating, or in chains).
In this case the ‘average’ atom will be 50% A and 50% B, and the average atomic
separation will be an average of the preferred separation of B–B pairs, A–A pairs
and A–B pairs. Yet when a single real site is considered, it will be occupied by
A or B—there is no such atom as ‘50% A 50% B’ in the periodic table. And the
atomic position will depend on how the atom can best satisfy the energetically
preferred separations. This means that the preferred interatomic separation
(dcv0 in equation 2.3) is a function of the occupancies of the connecting sites.
Hence equation 2.3 can be modified by incorporating a size-effect term, ǫ, which
is a function of the occupancies, S, of the two sites (ǫ = ǫ(S1, S2)):

Einter =
∑

cv

Fcv(dcv − (1 + ǫ)dcv0)
2 (2.4)

or
Einter =

∑

cv

Fcv(dcv − (dcv0 + ǫ))2 (2.5)

where equation 2.4 uses a fractional size effect and equation 2.5 uses an absolute
one.

Hence, the total energy of a molecule in the crystal is Etot = Einter+Eintra.
In ZMC the size-effect is implemented in two ways, allowing the user to choose

that which makes most sense. In both cases, the contact vectors connecting the
sites of varying occupancy (A or B), which could be called vAA, vAB, vBA

and vBB, must be treated as separate types, with the user knowing that they
are manifestations of the ‘same’ type (and presumably will therefore all have
the same spring constant—although there will be cases when that is a bad
approximation). Once that is done, the four (three if vAB = vBA, which is not
always the case) can (1) all be given different equilibrium lengths in the list of
contact vectors (2) all be given the same length but different size effect or (3) a
combination of the two. The advantage of the ‘size-effect’ approach is that that
number can be altered in the input file easily, whereas if implemented in the
contact vector list, it must be altered for each occurrence of that type of vector.
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To put this another way, as noted, by having a separate class of contact
vectors for each combination of occupancies: In the binary alloy case discussed
above there are four possible nearest neighbour contact vectors, which could
be called vAA, vAB, vBA and vBB. There are then three possible preferred
interatomic distances, dAA, dAB and dBB, where plainly dAB = dBA (plainly
in the case of A and B being simple atoms, but if they are complex molecules
this may not be true). These could either be considered as four classes, each
with one of three possible lengths, or as four classes, all of the same length but
with different size-effects. Both these ways of considering the problem can be
implemented in ZMC. ZMC uses an absolute size-effect (equation 2.5). It allows
implementation of a size-effect as well as changing the vector lengths themselves
because the size-effect required to model the data is generally not known before
starting, and it is easier when interacting with the program to change one size-
effect parameter in the input file than to edit the contact vector list.

The average separation between average atomic positions is known, so the
size-effects should be set to maintain this. If considering the binary alloy case,
the occupancy variables for two sites (S1 and S2) will be 2-valued variables,
whose two values could be 0 or 1, +1 and −1, 1 or 2, A or B as above, or
anything else that suits. Here they will be denoted +1 and −1, or + and − for
short. Then if bonds (or contact vectors) rather than sites are considered for a
moment, there will be four kinds of contact vectors (this is the same as noted
above in the different notation): v++, v+−, v−+ and v−−. There are three
possible preferred interatomic distances, d++, d+− and d−−, where plainly (in
this simple case) d+− = d−+. The actual number of each type of vector will
depend on the correlation structure of the occupancies. Figure 2.5 shows some
possible cases for a simple square lattice binary alloy. The figure shows that
the number of each type of contact vector in the model crystal depends on the
occupancy correlations (positive in figure 2.5a, negative (−1 in fact) in 2.5b,
zero in 2.5c and negative but of magnitude less than unity in 2.5d.

If N++ is the number of ++ contact vectors, and similarly for −−, +− and
−+, then the concentration of that vector type can be defined as

c++ =
N++

N++ +N+− +N−+ +N−−

(2.6)

and then by definition

c++ + c+− + c−+ + c−− = 1. (2.7)

If it is allowed that the average separation must be maintained, then if some
vectors are made longer others must be made shorter. If the size-effect on vector
v++ is ǫ++ for example, then that would imply the constraint

c++ǫ++ + c+−ǫ+− + c−+ǫ−+ + c−−ǫ−− = 0, (2.8)

and in the binary alloy case, c−+ = c+− and ǫ+− = ǫ−+. This may seem
self evident, but if for example ‘+’ means a molecule is in one orientation and
‘−’ means it is in another, then the symmetry of the molecule may well mean
that ǫ+− 6= ǫ−+. Consider the four pairs of (simple) molecules drawn in figure
2.6. Note also that this development is for crystals in which the interacting
objects have only two possible configurations. When more states are possible,
the equations must be appropriately generalised.
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(a) (b)

(c) (d)

Figure 2.5: Four possible ways of ordering ‘big’ (S = +1) and ‘small’ (S=-1)
atoms in two dimensions on a square grid. Note that in (a) phase segregation
has occurred and so very few contact vectors between unlike atoms are present.
In (b) there are no contacts between like atoms due to the perfect alternation.
In (c) there is random occupancy (when drawing the diagram, big or small atom
was chosen by tossing a coin) and so about 1/4 of the vectors are small to small,
1/4 are big to big and about half are mixed. (d) shows a SRO system which
obeys none of these extreme cases, although atoms tend to alternate.
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Figure 2.6: Four possible ways of ordering flips on a molecule. ‘+’ means the
molecule zig-zags one way, and ‘−’ means is zig-zags the other. The contact
vectors noted by the dashed lines are equivalent, and it is plain that ǫ+− 6= ǫ−+,
whereas it is quite likely that ǫ++ = ǫ−−.

The size-effect discussion assumes that all the vectors that are equivalent
(which interchange upon changing the occupancy—for example all the dotted
lines in figure 2.6—have the same spring (force) constant, F . This may not be a
terribly physical thing to do—plainly in a molecule, different contacting atoms
may have different bonding properties, whether the contact vector is modelling
Van der Waals forces, covalent bonding or something else. Given that the model
crystal will have cyclic boundary conditions and fixed lattice parameters, it is a
moot point whether care must be rigorously taken to obey equation 2.8 or not.
Anecdotal experience suggests it is not a problem unless the parameters used
are completely unreasonable.

Size-effect implementation in ZMC might be conceptualised as a shift of the
interatomic harmonic potential such that the forces between the various pairs
of interacting atoms are not going to be zero when all atoms are at their aver-
age positions. It will be energetically favourable for some pairs to have longer
than average separations, and for others to have shorter, depending on their
occupancy; this is what size-effect means.

Since the molecule may be subject to conflicting demands, and unable to
satisfy all interatomic potentials at once, the resulting actual shifts away from
the global average separations induced by the size-effect parameters will in gen-
eral be much smaller than the size-effect parameters themselves (perhaps an
order of magnitude smaller). Indeed, depending on the other energy terms in
the system, the shift may not even be of the same sign. Plainly this will partly
depend on the relative sizes of the spring constants as well.

This all may sound complicated, but it is one of the strengths of the MC
approach that, notionally at least, the various key aspects of the chemistry of
the problem should be able to be put into the model (and in particular into the
various terms in the molecular energy) and then allowed to interact via the MC
algorithm. This should allow the resulting sometimes quite complex behaviour
to arise ‘naturally’. This is what would happen in a real system. In practice,
it is very often just these conflicts between different aspects of the system that
give rise to complex SRO and resulting diffuse scattering because they prevent
the system reaching a nice, long-range-ordered state which can be essentially
completely described by a conventional structure analysis.

Here one quality of the MC approach becomes apparent: It is almost in-
finitely flexible, but often it is very difficult to know what needs to go into the
model in the first place. ZMC implements a simple subset of the infinite num-
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ber of possible energy terms that can be abstracted from real systems. It is
possible to imagine energy being modelled by multipole expansions, multi-body
interactions, differently shaped potentials, hard-sphere models, empirical energy
terms that depend on bond valence sums [18], energetics of excluded volumes,
Ising-like energy terms, arbitrary rules that can be written as a series of IF

statements in a computer program. . . the alternatives are endless. ZMC uses a
handful of these approaches—really only one of them, with a little bit of flex-
ibility built in—that are deemed appropriate for the class of problems it was
designed to tackle, namely modelling SRO in molecular crystals. That is not to
say it cannot be used for other things. A nail may be driven in with the back
of a screwdriver.

2.2.3 Occupancy Simulations

If a model requires occupancies, that is not normally handled by ZMC. What is
meant by occupancies in this case is that two or more types of objects have to
be ordered, or the same object has to be ordered in two (or more) conforma-
tions or orientations that will not be able to interconvert thermally during the
ZMC modelling. It may be desirable to model cases that can interconvert with
occupancies also.

ZMC can take a given molecule and rotate it, shift it or let it twist, bend
and stretch around internal degrees of freedom. It cannot just flip it over or
swap it for another molecule. Hence, what the program does is read in a file
which tells it what type of molecule is on each position in the model crystal,
and what orientation it is in; if there is no disorder of this type, such a model
might be referred to as ‘a purely thermal model’. In a purely thermal model
in which all molecules are the same and there are no ‘occupancies’, both the
molecule number (z-matrix number) and the orientation number will always be
unity — in each case there is only one possibility. In a binary alloy, where one
‘molecule’ is an atom of type A and a second is an atom of type B, then there
is only one possible orientation, but two possible molecules on a given site, so
the orientation number would always be unity, but the molecule number could
vary (and show SRO). Or there could be a molecular system in which the one
molecule is found but it can flip over (see for example figure 2.6) in which case
the molecule number would always be unity but the orientation number could
vary (and show SRO). Or there could be instances where there are multiple
types of molecules with multiple possible orientations. In one problem, there
are two different types of molecules, one of which can flip over and the other of
which cannot [19, 20].

All this means is, a means of producing that file which tells ZMC what type
of molecule is on each position in the model crystal needs to be developed.
For purely thermal problems, this is simple — in fact, strictly no such file is
needed, as it is known what molecule is on each site, and what orientation it is
in, and only the displacive part needs to be done. ZMC deals with these cases
automagically, because when it interrogates the input files, it works out what
can go where and only looks for an occupancy file (as it will be referred to) if
it finds out that a one or more positions can have more than one molecule type
and/or more than one orientation—and it should complain if it cannot find one.
But if occupancies are present, that file does need to be produced, and this
section outlines a couple of strategies for doing that—not all of them, though.
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Further, while later sections of this document will detail the way in which ZMC

operates, it will not detail the way in which occupancy simulations work in the
same detail. Probably.

There are a few broad ways of inducing occupancy structures. One is the idea
of a growth model [5] in which the occupancy structure is assembled from a series
of rules, as if growing from some starting point. These rules generally take the
form of conditional probabilities. Occupy some site according to the occupancies
of the already occupied sites, but do not do it completely prescriptively or the
resulting structure will be long-range ordered (or frustrated, possibly).

A second approach is to again use MC, but this time on an array of variables
representing the molecular species and/or orientations. The simplest case here
is the binary case, where the energy of the ith molecule might be calculated as

Ei =
∑

j

wijSiSj (2.9)

where the ith molecule has N interacting neighbours indexed by j. This is
analogous to the Ising model from magnetism, so that the S will take on values
of +1 or -1. The simplest case is if it is assumed that only nearest neighbours
(NN) interact. This means that the energy becomes

Ei = wNN

∑

j

SiSj (2.10)

and plainly, the sign of wNN will determine whether the S tend to correlate
positively or negatively. This can be seen by considering an MC program using
equation 2.10 as the energy.

If wNN is positive, then wNNSiSj will be negative (a lesser contribution to
the system’s energy) if Si and Sj are of opposite sign. Hence, equilibrating
at non-zero temperature, T , will cause the S to be correlated negatively, with
the actual strength of the correlation dependent on the ratio of T to wNN, and
also on the composition of the system (if there is not a 50:50 ratio of atoms of
type A and B, for example in the binary alloy case, then perfect alternation is
impossible and the correlation can never achieve -1). Similarly, on a triangular
lattice there can be frustration if negative correlation is desired (see figure 2.7a).

The model can be complexified by allowing more distant interactions—there
could be second nearest neighbour (2NN) interactions, for example, such that
equation 2.10 becomes

Ei = wNN

∑

j

SiSj + w2NN

∑

k

SiSk (2.11)

where k indexes the second nearest neighbours. This introduces further possi-
bilities for frustration. If both wNN and w2NN are positive (so trying to induce
negative correlation) then the system may not be able to satisfy this (see figure
2.7b).

Plainly, high degrees of complexity are possible. There could be anisotropy
so that neighbours in a given plane interact more strongly or with different
signs of correlation to those in other directions. Entities may have more than
two possible states [13]. These things all require some sort of energy term which
can be used in an MC algorithm to select certain configurations as favourable.
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(a) (b)

Figure 2.7: Two ways the desire for strong correlation can be frustrated. In (a) it
is because of the triangular lattice. If all sites (I, II & III) want to be of opposite
value to their neighbours, what can be put on the unoccupied site (site III)? In
(b) it is because of the existence of second nearest neighbour interactions—if I
wants to be of opposite value to II, and III wants to be opposite to both, what
can be put on III?

It could be as crude as a series of IF statements, each adding a different energy
penalty to the system energy. It could be more complicated—like the use of bond
valence sums [18] to determine whether one atom is better suited to a given site
than another. The configurations may be treated as vectors and have an energy
dependent on their dot product—for those familiar with magnetism this would
be something like using a Heisenberg rather than an Ising Hamiltonian. It might
be that if the vectors are parallel (dot product unity for unit vectors), the energy
is low (or high) and the reverse if perpendicular (dot product zero). In [13] this
is the sort of approach used, where the vector pointed to the NO2 on a phenyl
ring where the other five carbons all had chlorines attached.

A useful tactic here is swapping of occupancies. If the overall composition is
known—which in general it will be from Bragg studies or from chemistry—then
this can be maintained in the occupancy simulation by exchanging atoms or
molecules. For example, go to one site, find the energy of whatever is there.
Go to a second site which as a different atom/molecule/whatever and find its
energy. Add the two to get, say, E1 . Now interchange the atom types, and find
the two energies again. Add them to get E2. Now perform the MC step using
E1 and E2 as ‘before’ and ‘after’. This ensures that if the model had correct
composition to begin, it will always maintain correct composition.

2.2.4 A Simple Ising Simulation

Below, the complete code of a simple MC simulation is shown. The program con-
sists of two loops, an inner and an outer. The model is a simple two-dimensional
square grid of atoms A and B. The is a ‘model crystal’. The correlation is a sim-
ple first neighbour correlation, specified by the user (corr1). The interaction
constant, wNN (weight in the code) is estimated as 1. 100 MC cycles are per-
formed, and the resulting correlation is calculated. The value of weight is then
adjusted based on the calculated correlation compared to the desired, and this
continues for 100 adjustments. Both these numbers are much larger than prob-
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ably required. It should also be noted that the output file output2.txt is in the
correct format for ZMC to read. It is a simple and verbose format, described
formally in section 3.1.2.

simpleI.f, a simple program to use an Ising-like energy term to induce
short-range order in an array of -1 and +1.

c A mimimal MC s imu la t i on to do nea r e s t neghbour c o r r e l a t i o n
c on a square ar ray .

program occupancy MC

imp l i c i t none

i n t e g e r c r y s t a l (256 , 256 ) , i , j , wrap(−(256−1):256∗2)
i n t e g e r vec ( 4 , 2 ) , swap (2 ) , i a ( 2 ) , jb (2 )

i n t e g e r loop1 , loop2
r e a l corr1 , weight , r r ( 1 ) , Enew , Eold , Edi f f , c o r r c a l c
r e a l r r r (2 )

wr i t e ( 6 ,∗ ) ’ What i s NN c o r r e l a t i o n ? ’
read (5 ,∗ ) co r r 1

wr i t e ( 6 ,∗ ) ’ Trying to obta in NN co r r e l a t i o n ’ , c o r r 1
weight = 10 .0

c I n i t i a l i s e random number gene ra to r
c a l l r s e ed (12311 ,30037)

c I n i t i a l i s e c r y s t a l −− 50 :50 −1 and +1
do i =1 ,256

do j =1 ,256
c a l l rannum( rr , 1 )
i f ( r r ( 1 ) . gt . 0 . 5 ) then

c r y s t a l ( i , j )=−1
e l s e

c r y s t a l ( i , j )=1
end i f

end do
end do

wr i t e ( 6 ,∗ ) ’ Crysta l I n i t i a l i s e d ’

c Set up boundary c ond i t i o n s
j=0
do i =−(256−1) ,256∗2

j=j+1
wrap( i )= j
i f ( j . eq . 2 5 6 ) j=0

end do

c Set up conne c t i v i t y
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vec (1 , 1 ) = 1
vec (1 , 2 ) = 0
vec (2 , 1 ) = 0
vec (2 , 2 ) = 1

vec (3 , 1 ) = −1
vec (3 , 2 ) = 0
vec (4 , 1 ) = 0
vec (4 , 2 ) = −1

do loop1 = 1 ,100
do loop2 = 1 ,100∗256∗256

c S e l e c t two s i t e s o f d i f f e r e n t occupancy
c a l l rannum( rr r , 2 )
i a (1 ) = in t (256 . 0 ∗ r r r ( 1 ) ) + 1
jb (1 ) = in t (256 . 0 ∗ r r r ( 2 ) ) + 1

101 c a l l rannum( rr r , 2 )
i a (2 ) = in t (256 . 0 ∗ r r r ( 1 ) ) + 1
jb (2 ) = in t (256 . 0 ∗ r r r ( 2 ) ) + 1
i f ( c r y s t a l ( i a ( 1 ) , jb ( 1 ) ) . eq .

& c r y s t a l ( i a ( 2 ) , jb ( 2 ) ) ) goto 101
c Ca l cu la t e the i n i t i a l energy , Eold

c a l l energy ( c r y s t a l , ia , jb , wrap , vec , weight , Eold )
c Swap the occupanc ie s

swap (1 ) = c r y s t a l ( i a ( 1 ) , jb ( 1 ) )
swap (2 ) = c r y s t a l ( i a ( 2 ) , jb ( 2 ) )
c r y s t a l ( i a ( 1 ) , jb ( 1 ) ) = swap (2 )
c r y s t a l ( i a ( 2 ) , jb ( 2 ) ) = swap (1 )

c Ca l cu la t e the new energy , Enew
c a l l energy ( c r y s t a l , ia , jb , wrap , vec , weight , Enew)
Ed i f f = Enew − Eold

c Do MC step
i f ( Ed i f f . gt . 0 ) then

c a l l rannum( rr , 1 )
i f ( r r ( 1 ) . gt . exp(−1.∗ Ed i f f ) ) then

c r e j e c t the MC move
c r y s t a l ( i a ( 1 ) , jb ( 1 ) ) = swap (1 )
c r y s t a l ( i a ( 2 ) , jb ( 2 ) ) = swap (2 )

end i f
end i f

end do
c Adjust the i n t e r a c t i o n constant

c a l l c o r r ( c r y s t a l , vec , wrap , c o r r c a l c )
weight = weight + ( c o r r c a l c − co r r 1 )
wr i t e (6 ,∗ ) loop1 , corr1 , c o r r c a l c , weight

end do

c Write out the r e s u l t s , twice !
open ( uni t =1, f i l e =’output . txt ’ )
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do i =1 ,256
wr i t e (1 , ’ ( 256 i 3 ) ’ ) ( c r y s t a l ( i , j ) , j =1 ,256)

end do
c l o s e ( un i t=1)

open ( uni t =1, f i l e =’output2 . txt ’ )
do i =1 ,256

do j =1 ,256
wr i t e (1 ,∗ ) i , j , 1 , 1 , ( c r y s t a l ( i , j )+3)/2 ,1

end do
end do
c l o s e ( un i t=1)
stop

end program occupancy MC

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

subrout ine co r r ( c r y s t a l , vec , wrap , c o r r c a l c )

imp l i c i t none

i n t e g e r c r y s t a l (256 , 256 ) , i , j , k , wrap(−(256−1):256∗2)
i n t e g e r vec (4 , 2 )
r e a l c o r r c a l c , S1 , S2 , sumS1 , sumS2 , sumS12 , sumS22 , sumS1S2 ,N

N = 0 .
sumS1 = 0 .
sumS2 = 0 .
sumS12= 0 .
sumS22= 0 .
sumS1S2= 0 .
do i = 1 ,256

do j = 1 ,256
S1 = c r y s t a l ( i , j )

c Only look at ne ighbours on p o s i t i v e s i d e to
c avoid double counting .

do k = 1 ,2
S2 = c r y s t a l (wrap ( i+vec (k , 1 ) ) , wrap( j+vec (k , 2 ) ) )
N = N + 1 .
sumS1 = sumS1 + S1
sumS2 = sumS2 + S2
sumS12 = sumS12 + S1∗S1
sumS22 = sumS22 + S2∗S2
sumS1S2 = sumS1S2 + S1∗S2

end do
end do

end do
c o r r c a l c = (N∗sumS1S2 − sumS1∗sumS2)/

& sq r t ( (N∗sumS12 − sumS1∗sumS1 )∗ (N∗sumS22 − sumS2∗sumS2 ) )
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return

end subrout ine co r r

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

subrout ine energy ( c r y s t a l , ia , jb , wrap , vec , weight ,E)

imp l i c i t none

i n t e g e r c r y s t a l (256 , 256 ) , i , j , wrap(−(256−1):256∗2)
i n t e g e r vec ( 4 , 2 ) , i a ( 2 ) , jb (2 )
r e a l S1 , S2 , weight , E

E = 0 .
do i = 1 ,2

S1 = c r y s t a l ( i a ( i ) , jb ( i ) )
do j = 1 ,4

S2 = c r y s t a l (wrap ( i a ( i )+vec ( j , 1 ) ) , wrap ( jb ( i )+vec ( j , 2 ) ) )
E = E + weight ∗ r e a l ( S1 ∗ S2 )

end do
end do
return

end subrout ine energy

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A single MC step is as follows: A site is chosen at random. Its energy is
calculated according to equation 2.10. A second site of opposite occupancy is
selected, and its energy calculated. The sum of these is the ‘initial energy’, Eold.
The two occupancies are exchanged and the energy is recalculated , Enew. If
Enew < Eold, the new configuration is kept. If not, it may still be kept according
to a simple temperature-dependent probability.

An MC cycle is a number of steps sufficient to visit each site in the model
crystal once (or twice since the algorithm visits two sites per step in this case).

The program presented here is not the most efficient that can be imagined.
Using 0 and 1 instead of -1 and 1 for the two values increases the speed of the
correlation calculation, for example; but it is relatively simple to parse, and the
correlation calculation is more generalisable.

Figure 2.8 shows two diffraction patterns, calculated from this model with
(1) nearest neighbour (NN) correlation of -0.4 and (b) of +0.4. The calculation
was performed using the code in appendices A, B and C. Cutting out the above
code and compiling it, and running the results through the compiled version of
that in the appendices will produce a binary output file. It is then processed
with bin2gray to produce a portable gray map (sic) (a .pgm file) which can be
viewed with many programs. ImageJ [21] is recommended. The code of the
Fortran 77 version of bin2gray is shown in appendix D. This version assumes that
the output from the DIFFUSE calculation is named intensity.bin.
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(a) (b)

Figure 2.8: (a) Shows the diffraction pattern of a simple cubic binary alloy with
correlations of -0.4 in the occupancies, and no other disorder. (b) Shows the
pattern for correlations of +0.4; the spots here fall where the Bragg peaks would
be, although they are much broader. The calculations were performed on the
output of the code listed in section 2.2.4, using DIFFUSE.

Figure 2.9 shows the convergence of the simple Ising simulation. It plots the
achieved correlation and the associated weight on the same axes, showing how
the values oscillate and then settle down.

Figure 2.10 plots sections of the model crystals, (a) for negative correlation
and (b) for positive. It shows clearly that in (a) atoms tend to alternate and
in (b) they cluster, and these are the real-space pictures corresponding to the
reciprocal space ones in figure 2.8. They were plotted simply by adding a line to
the readat.f such that it outputted a simple text file of the form x y S where
S is ±1. This file was read into a spreadsheet, sorted on the basis of the S values
and then two y versus x plots were superimposed, with different colour codings.

These are the ‘real’ equivalents of two of the more schematic diagrams shown
in figure 2.5.

2.2.5 Further Comments on Occupancy Simulations

Once the occupancy model has produced its output file, this is read into ZMC

and the model crystal is displacively relaxed. Size-effects are incorporated, the
diffuse scattering patterns are calculated and the model can be evaluated. To
change the occupancy correlations, change the wij . In general, as in section
2.2.4, the correlation structure is specified and an automatic adjustment of the
wij is used to produce output with these correlations. An example is plotted
in figure 2.9. Essentially, the MC program has an inner loop which equilibrates
the model subject to the wij , and an outer loop which calculates the resulting
correlations (most statistics text books will have the definition and computa-
tional formulae for correlation coefficients) and adjusts the wij through some
simple algorithm (if correlation is too negative or positive, make its interaction
constant larger or smaller (if need be change its sign) relative to T ; often T = 1
and does no appear explicitly). By repeated adjustment eventually the model
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Figure 2.9: Shows the set nearest neighbour correlation (-0.4, dashed line), the
actual correlation present in the model (black line) and the negative of the force
constant wNN as a function of MC cycle number for the ‘simple Ising’ model in
section 2.2.4.

(a) (b)

Figure 2.10: The real space crystals generated by the simple Ising simulation.
(a) Correlations of -0.4 in the occupancies, and no other disorder. (b) Correla-
tions of +0.4.
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has the occupancy correlations desired (if they are physically possible), and it is
ready to be passed to ZMC. Of course the occupancy correlations desired may not
match those present in the real system, so the whole process has to be refined,
something noted in figure 2.2.

Note that often an occupancy model does not need to capture much ‘reality’
from the system. It can he highly abstract—nothing more than an array of +1
and -1 for example, with the geometry of the real system essentially incorpo-
rated into how these things interact. As long as an array of occupancy variables
(molecule numbers and/or orientation numbers) is found and can then be im-
pressed onto the displacive simulation in ZMC, it does not much matter how it
came about.

Also, while this example has used integers, it is equally possible to use a
correlation between real numbers. When this is done, the reason for using a
more tedious correlation coefficient calculation than strictly necessary for the
special case of ±1 becomes apparent. In a molecular system, adjacent molecules
might have a twist angle on a bond, or some other continuous quantity that you
want to correlate. An example is para-terphenyl in section 4.3 [22, 23]. In that
case one way of tackling the problem was to populate the twist angles from a
distribution taken from the literature, and then swap twist angles using a similar
algorithm to that discussed above, only with real numbers in it.

2.3 Displacements

As noted, ZMC is essentially a program for displacive simulations. This is a
bigger task than it might seem because it tackles flexible molecules and occu-
pancies. Leaving the occupancy simulation to be external seemed a reasonable
compromise, given the need for flexibility.

In this section, I will simply show some sample displacive results that form a
more complete picture when combined with the simple Ising model above; what
I will show is just the same two-dimensional array, but under the following
conditions:

1. (a) All atoms the same, connected to nearest neighbours by Hooke’s law
springs.

2. (b) As above, but with a slightly weaker spring also connecting to second
nearest neighbours.

3. (c) Second neighbour interaction only.

4. (d) Two kinds of atoms, negatively correlated occupancies (see figure 2.10
and others above), no size effect.

5. (e) Two kinds of atoms, positively correlated occupancies (see figure 2.10
and others above), no size effect.

6. (f) Two kinds of atoms, negatively correlated occupancies (see figure 2.10
and others above), like atoms want to be 10% closer together than the
average, unlike want to be 10% further apart.
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7. (g) Two kinds of atoms, negatively correlated occupancies (see figure 2.10
and others above), big scatterers want to be 10% further apart than the
average, small want to be closer together, big–small is the average.

8. (h) Two kinds of atoms, negatively correlated occupancies (see figure 2.10
and others above), small scatterers want to be 10% closer than the average,
big want to be further apart. Big–small is the average.

So for each of these, a real-space and reciprocal-space picture (crystal versus
diffraction pattern) can be shown.

—————————————–
Whole bunch of figures.
—————————————–

2.4 Calculating Diffuse Scattering

The calculation of diffuse scattering patterns from the simulated crystal is not
central to this document, but it is appropriate to say a few words. ZMC is
primarily designed to mate to DIFFUSE [3].

DIFFUSE calculates the diffuse scattering from a model crystal by Fourier
transforming many small randomly chosen regions of the crystal (referred to
as ‘lots’) and adding the resulting intensities. Transforming the whole model
crystal results in high-frequency noise and edge-effects.

To use DIFFUSE a subroutine to give it the atomic positions and types has
to be constructed. This reads in the files output from ZMC and converts the
z-matrix-related numbers into atomic coordinates which are fed to DIFFUSE.

However, other programs exist, most particularly the DISCUS suite of pro-
grams, and they can also be used to calculate diffuse scattering plots. Hence
ZMC has (or will have) an option to output files suitable for DISCUS to read.

Whether being read by DIFFUSE or DISCUS, they tend to be very big files,
and ZMC tends to assume you have a fair bit of RAM and a large hard drive, by
which I mean you may need to tailor the size of your model crystal to match
your computing power. In 2004 we typically used a 32×32×32 unit cells model
crystal (for a system with say 120 atoms in a cell) but this scales up over time
as computing power increases. A more significant issue can be that the Fortran

compilers sometimes have limits on the sizes of the arrays they can allocate.
Chapter 3 and section 3.3 will have more to say about this in a little more
detail.
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Chapter 3

The Programs

This section is really the ‘instruction manual’ part of the document, and as
such the most crucial part. The previous sections discuss the problem that
the program tackles, and the outlines of the method the program uses. This
section indicates the commands used to implement models and generate diffuse
scattering plots. The next chapter outlines process to go through to implement
a model.

Here we talk about formats of input files, sensible values to put into those
input files, the suite of ancillary programs needed to sensibly tackle the problem.

The main program is ZMC. It began in frustration at having to write a new
program to tackle every problem. For example, the original work done on benzil,
C14H10O2, was done using a custom-written program [24, 25], partly written by
Prof. W. I. F. David, to whom I am indebted and who is in no way responsible
for any idiocies and misinterpretations I might have introduced! Later studies of
benzil and other compounds have used (various early versions of) ZMC, inlcuding
buut not limited to [26, 27, 17, 13, 28, 29, 20, 30, 31, 22, 23, 32].

Generally, getting a sensible working simulation using ZMC has proved much
quicker than writing a new program would have, with a working simulation
being ready in a few hours of intensive work. Having said that it is a very
large step from a working simulation (in the sense that the program runs and
produces output) to a good model.

As stated, ZMC does not do occupancy simulations, so some words were
expended in section 2.2.3 a typical program for implementing these. However,
even if the problem does not require an occupancy simulation, before ZMC can
be used one must generate z-matrices, lists of contact vectors, diagnostic plots
and potentially other bits and pieces, so there is a range of programs required.

Generally, the order will be:

1. Get a good .cif file for your structure. This may come from a database,
or may come from your own conventional single-crystal Bragg scattering
experiments.

2. Identify which atoms belong to a single molecule. This is easy when
you do not have a disordered structure with overlapping molecules, but
can be non-trivial when you are trying to extract actual molecules from
blurry electron density (as given by X-rays) or scattering-length density
(for example neutron diffraction). It may be necessary to split the .cif

35
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into several files, one for each overlapped molecule. Can you take the
mlecular shape from some other structure and disorder it an put it into
your cell?

3. Think about the internal flexibility you want the molecules to have, and
reorder the atoms such that the z-matrix idea will allow you to implement
those. That means, as discussed in section 2.2.1, that the molecule does
not get ‘broken’ if a twist is allowed around a bond, for example.

4. Think about whether ohne or more ‘dummy’ atoms might be useful, either
in defining the internal degrees of freedom or in defining the molecular
origin, such that the origin is on a centre of symmetry for example. This
latter may not be strictly necessary, but can aid in making the model
easier to ‘debug’.

5. Once you have the .cif file(s) you need, run zmat maker to generate the
z-matrices you will need, along with the quaternions and molecular origin
coordinates. These numbers should come out in a file of the correct format;
but if you have had to split up the .cif because of overlapping molecules,
some manual reassembly may be required.

6. If the crystal shows occupancies (see section 2.2.3), it is a good idea at
this point to set up a representative occupancy structure. This could
be random at this stage (and a very simple program exists for creating
such a random occupancy file, make random occ.f90), but it should be
indicative of what molecules in what orientations are allowed to occur at
what places in the unit cell. These places are referred to as ‘locations’
in ZMC to differentiate them from ‘sites’, because ‘site’ is always taken to
refer to an atomic position, whereas location is used to refer to a molecular
position (which may be occupied by one of a number of molecules in one
of a number of orientations, or by a vacancy, but can only contain one of
these things at a time).

7. You can now set up the part of the input files pertaining to the crystal
geometry, but you need a set of contact vectors (see section 2.2.2). ZMC

has a subroutine that can be called on the command line for doing this
(see section sec:zmc:contacts), but there is also a program with a graphical
interface, courtesy of Dr A. P. Heerdegen which does the same job more
interactively. See section 3.4.

8. Classifying contact vectors into groups, each of which will have the same
size-effect (see section 2.2.2) and force constant. The simplest way to do
this is to simply make all symmetry-equivalent vectors of the same type
(doing otherwise is not really defensible). Symmetry inequivalent vectors
that you want to give the same parameters to can either be given the
same type number, or just given the same parameters in the input file;
the latter is to be preferred as it is more flexible, and the input file format
is designed to make the information compact.

9. Define the internal degrees of freedom you want the molecule to have.

10. Decide on various other parameters that are explained below. Things like
temperature, force constants, size-effects, sizes of random variable shifts
and so on.
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11. Set up the input files for DIFFUSE to allow calculation of the diffraction
patterns (cuts through reciprocal space) that are desired.

12. Run the program

13. Puzzle over the results.

Something for the future would be to arrange a simple means of writing out
the simulation as far as it has got. Something like creating a small file that it
tests for each MC cycle and aborting if the file ‘STOPZMC’ exists.

3.1 ZMC

ZMC is really what this document is about. It has built-in significant help, ob-
tained by running ZMC −−help and ZMC −−help2, shown in appendices E and F).
The notes below should be examined in conjunction with the detailed example
simulations outlined in the following chapter.

3.1.1 The ZMC command line

This section outlines the fields on the command line, the command line options
and filenames that need to be given in the various modes in which ZMC can be
run. ZMC has three main modes of operation. (1) Generate a list of contact
vectors according to some simple rules supplied by the user (−−getcontacts). (2)
Plot the model crystal (crudely) (−−plot). (3) Do an MC simulation (neither of
the above is given).

All these require differing amounts of information to be available in the input
file.

Here is an extract from the built-in help:

|---------------------------------------------------------------------|

| Usage: |

| |

| ZMC [--option_1] [--option_2] ... [--option_n] infile [outfile] |

| |

| infile contains the parameters and additional filenames to run |

| the MC simulation. |

...

etc

...

|---------------------------------------------------------------------|

−−getcontacts: For contact vector calculation, ZMC needs a unit cell, z-matrix,
.qxyz file and some information on which atoms to connect to and what length
limits to use.

Refer to appendices E and F) for the gritty detail. I note here that it may
be useful to generate a relatively small subset of vectors at a time then combine
them into a final list; or not, if you want an exhaustive list.

−−plot: For plotting, , the user is asked some simple interactive questions
and a garishly coloured PostScript plot (or in fact set of plots) is the result.
Filenames are hard-wired in and so care must be taken to avoid over-writing
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previous plots. The plotting is supposed to use as much information as is given;
it will need the model crystal dimensions (keyword CELL) and if initial ran-
domness is specified, it will incorporate it into the plot (and mention this as
it does so). The plotting routine is acknowledged as crude and limited, with
many choices hard-wired in. It is a simple incorporation of what was an ad hoc

simulation testing and diagnostic tool into the main ZMC code, and this shows;
at present there is no intention of developing this part of the program beyond
minor refinements and big fixes.

Other command line arguments that could use a little more discussion in-
clude:

−−crystal: Causes the simulation to output a .crystal file, that contains
the variables for each z-matrix; in other words, writes out x, q and i for each
molecule in the model. In conjunction with the z-matrix itself and the MC input
file, this provides enough information to resume the simulation.

The first few lines of such a file might be:

DCDNB from the CSD

1 1 1 1 5.572 2.986 5.257 0.160 0.864 0.424 0.215 F -0.41615 -2.17374

1 1 1 2 1.878 6.279 1.801 0.424 -0.215 -0.160 0.864 F -1.15394 -2.31949

1 1 1 3 -0.260 3.599 8.859 0.160 0.864 0.424 0.215 T -0.23322 -1.93374

1 1 1 4 3.433 0.306 12.315 0.424 -0.215 -0.160 0.864 T -0.18090 -2.12341

1 1 2 1 5.572 2.986 5.257 0.160 0.864 0.424 0.215 F -0.20370 -2.88468

1 1 2 2 1.878 6.279 1.801 0.424 -0.215 -0.160 0.864 F -0.13101 -2.54319

...

etc

...

Where plainly we have a header, then many lines, each of the format: unit
cell indices (3 integers), location number , one integer, x (3 reals), q (4 reals
and one character) and i (some number of reals, possibly zero). The character
in the quaternion indicates whether the rotation it represents is ‘improper’ —
if it is improper, the flag is set to T.

This file may also be useful in interrogating the simulation and drawing out
its conclulsions.

−−diffuse: Causes ZMC to put out a file suitable for the accompanying diffuse
scatteing calculation program.

−−pairs: This goes to a molecule, writes its variables to a file (as for the
−−crystal option, more or less) but then also goes to the molecule at the end of
each contact vector and writes out its variables. The result is a series of files
with names pairs L C outfile.outwhere L is the location number of the origin
molecule C is contact number. Many of these files will be duplicates. Why?
Because such a file can then be examined for correlations between adjacent
molecules, exactly the sort of result diffuse scattering is supposed to give. For a
simple example, you could simply calculate (in a spreadsheet for example) the
correlation coefficient between the x coordinates of adjacent molecules to see
if they are ‘pushing’ each other along in the x direction, and compare this to
other correlations.

−−fracs, −−cartsn, −−cartst: Causes the simuation to write out in simple
format the x, y and z coordinates of all atoms in the simulation, plus their
indexing information (cell, location, z-matrix, etc). Useful for then plotting,
(for example figure 3.1a) or exploring for correlations or local structure.



3.1. ZMC 39

c

b

Ni

P
S

(a)

 0.4

 0.2

 0

 0.2

 0.4

 0.4  0.2  0  0.2  0.4

"r_27_a_yz_NiPS3_P2Q2_5000"

b

c

Correlation magnitude

(b)

Figure 3.1: (a) A scatter plot of (a subset of) the atom positions in the model
crystal of NiPS3 [33]. (b) A diagram representing the correlations of the atomic
displacements in the bc plane of S atoms in neighbouring layers. These figures
show that the distributions of displacements are relatively isotropic in the bc

plane,even though the correlations in the displacements are not.

−−corro, −−corra: Plots the correlation coefficient of the component of molec-
ular displacement along a given direction on adjacent molecules as a function
of the direction. Best seen in an example, in this case from [33], figure 3.1b.

−−energy: Outputs the MC energy of each molecule to outfile.energy.
Just how meaningful the MC energy is is anyone’s guess.

−−cif: Outputs a crude .cif file to outfile.cif. Probably a deeply im-
perfect .cif, especially in terms of the anisotropic ADPs, but potentially useful
even so. A brand new routine to perform this task is a desirable refinement in
future.

3.1.2 Description of the input files

This section outlines the formats of the various input files, gives examples for
the various modes in which ZMC can be run, and tries to indicate possible pitfalls.

3.1.3 Generating contact vectors

This section discusses using ZMC to generate a list of contact vectors (see section
2.2.2).
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3.1.4 Exploring the results

This section discusses using ZMC to output some information about the resulting
simulation.

3.2 zmat maker

3.3 DIFFUSE

3.4 jContacts

Aidan?



Chapter 4

Detailed Examples

4.1 A minimal simulation in ZMC

It seems sensible to outline, perhaps briefly, a minimal implementation of a
simulation in ZMC. The simplest unit cell is a simple cubic with a single atom at
the origin.

The z-matrix here becomes very simple, and indeed can be constructed by
inspection:

d:\zmc_win7\nothing>cat n1.zma

Random header

1

C 0 0.00 0 0.00 0 0.00

And similarly, the .qxyz file:

d:\zmc_win7\nothing>cat N1.QXY

1 1 1 1 0.0 0.0 0.0 1.0 F 0.0 0.0 0.0

Immediately we can generate some contact vectors, with a simple input file:

d:\zmc_win7\nothing>cat MC_INPUT.INP

HEADER Minimal

ZMATFILE 1 n1.zma

QXYZFILE 1 n1.qxy

CELL 3.0 3.0 3.0 90.0 90.0 90.0

!!

VMIN 2.0

VMAX 10.0

CONTATOMS ZMAT 1 1

NEWCONTACTS minimal.con

Which gives an output (sorted and classified on length) like this:

ol oz om oat da db dc dl dz

dm dat length type

1 1 1 1 -1 0 0 1 1 1 1 3 1

41
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1 1 1 1 0 -1 0 1 1 1 1 3 1

1 1 1 1 0 0 -1 1 1 1 1 3 1

1 1 1 1 0 0 1 1 1 1 1 3 1

1 1 1 1 0 1 0 1 1 1 1 3 1

1 1 1 1 1 0 0 1 1 1 1 3 1

1 1 1 1 -1 -1 0 1 1 1 1 4.24264 2

1 1 1 1 -1 0 -1 1 1 1 1 4.24264 2

1 1 1 1 -1 0 1 1 1 1 1 4.24264 2

1 1 1 1 -1 1 0 1 1 1 1 4.24264 2

1 1 1 1 0 -1 -1 1 1 1 1 4.24264 2

1 1 1 1 0 -1 1 1 1 1 1 4.24264 2

1 1 1 1 0 1 -1 1 1 1 1 4.24264 2

1 1 1 1 0 1 1 1 1 1 1 4.24264 2

1 1 1 1 1 -1 0 1 1 1 1 4.24264 2

1 1 1 1 1 0 -1 1 1 1 1 4.24264 2

1 1 1 1 1 0 1 1 1 1 1 4.24264 2

1 1 1 1 1 1 0 1 1 1 1 4.24264 2

1 1 1 1 -1 -1 -1 1 1 1 1 5.19615 3

1 1 1 1 -1 -1 1 1 1 1 1 5.19615 3

1 1 1 1 -1 1 -1 1 1 1 1 5.19615 3

1 1 1 1 -1 1 1 1 1 1 1 5.19615 3

1 1 1 1 1 -1 -1 1 1 1 1 5.19615 3

1 1 1 1 1 -1 1 1 1 1 1 5.19615 3

1 1 1 1 1 1 -1 1 1 1 1 5.19615 3

1 1 1 1 1 1 1 1 1 1 1 5.19615 3

1 1 1 1 -2 0 0 1 1 1 1 6 4

1 1 1 1 0 -2 0 1 1 1 1 6 4

...

etc

...

1 1 1 1 3 1 -1 1 1 1 1 9.94987 10

1 1 1 1 3 1 1 1 1 1 1 9.94987 10

And in this case it is easy to picture the vectors without doing any plots,
since plainly first neighbour (‘NN’), second neighbour (‘2NN’) and so on are
pretty simple on a simple cubic cell.

So the first MC uses the folllowing input file:

d:\zmc_win7\nothing>cat MC_INPUT.INP

HEADER Minimal

CONTACTFILE minimal_con_sort.prn

CRYSTAL 20 20 20

TEMPERATURE 1.0

ZMATFILE 1 n1.zma

QXYZFILE 1 n1.qxy

MCCYCLES 100

SPRCON 0.0

SPRCON 1.0 1

XYZINITW 0.3

QINITW 0.0
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(a) (b)

Figure 4.1: (a) hk0 cut for this ‘minimal’ model, nearest-neighbour only inter-
actions, aiming for a global Biso of 1.0. (b) The histogram of lengths for contact
vectors of type 1; output from the −−summary option of ZMC.

XYZWIDTH 0.1

BADJUST 1 1.0

INCUPDATE 1

CELL 3.0 3.0 3.0 90.0 90.0 90.0

!!

VMIN 2.0

VMAX 10.0

CONTATOMS ZMAT 1 1

NEWCONTACTS minimal.con

So in other words only the NN interaction is non-zero. We expect this to
simply mean that atoms will have their motions correlated in longitudinal chains
— they will ‘push and pull’ on each other in the directions of their motions.
A chain of correlated atoms will be like a small one dimensioanl (1d) crystal
embedded in the larger crystal. If a 3d corrlated crystal collapses the scattering
into 0 dimennsional Bragg spots, a 1d crystal will collapse it into 2d sheets of
intensity. Figure 4.1 shows the hk0 cut of the reciprcal space of this model; the
strong lines of scattering are indeed sections through planes. Figure 4.1a. And
we can see the resulting distribution of contact lengths for this interaction (or
any other) by examining the output of the −−summary switch. Figure 4.1b.

We can then turn on 2NN instead of NN by changing SPRCON

SPRCON 1.0 1

to

SPRCON 1.0 2

and so on. We can allow force constants on NN and 2NN to be non-zero
together

SPRCON 1.0 1 2
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(a) (b)

Figure 4.2: (a) hk0 cut for this ‘minimal’ model, nearest-neighbour only inter-
actions, aiming for a global Biso of 1.0. (b) The same but with 1000 MC cycles
and 120 lots of size 9× 9× 9 instrad of 100 MC cycles and 20 lots of 5× 5× 5
unit cells.

Figure 4.3: Bragg spot calculation.

Or do silly things like have neighbours 2 unit cells away interacting but
not the nearest nieghbours. Neighbours two cells away will be 6Å away, which
is contact vector type 4. This would seem to be likely to result in little 1d
‘crystals’ of lattice parameter 6Å embedded in the model, and we might expect
it to give planes of scattering therefore at half-integer positions. Does it? Figure
4.2a would suggest it does. We may also want to look at the effect of number
of lots, lot sizes, and number of MC cycles. As one example, (b) shows the
same calcualtion except with 1000 MC cycles and 120 lots of size 9 × 9 × 9.
Qualitatively the same, but different in detail, and this must be born in mind
when quantitatievly comparing calculation with experiment.

As a note, the Bragg spots are shown in figure 4.3.
Lastly, even though we are not looking at occupancy, we can look at size-

effect by messing with the SIZE keyword.
The ‘standard’ MC input file for this excursion is:

HEADER Minimal
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(c)(a) (b)

Figure 4.4: Some exploration of size-effect. See table 4.1.

CONTACTFILE minimal_con_sort.prn

CRYSTAL 20 20 20

TEMPERATURE 1.0

ZMATFILE 1 n1.zma

QXYZFILE 1 n1.qxy

MCCYCLES 200

SPRCON 0.0

SPRCON 200.0 1 4

!!SIZE 0.3 1

!!SIZE -0.3 4

XYZINITW 0.1

QINITW 0.0

XYZWIDTH 0.1

BADJUST 1 1.0

INCUPDATE 1

CELL 3.0 3.0 3.0 90.0 90.0 90.0

Where possible size-effect terms have been commented (‘!!’) out. The com-
binations oulined in table 4.1 were explored.

Table 4.1: Size=effects explored. See figure 4.4.

Label s.e. on 1 s.e. on 4

(a) 0 0
(b) 0.3 -0.3
(c) -0.3 0.3

And the associated patterns are shown in figure 4.4.
I note here that the bin2gray command used for all of these was effectively
$$> bin2gray –hmirror –vmirror –norm=NORM –rotave=4 FILENAME

where NORM was chosen to be just a little bigger than the maximum value
(as revealed by a premilinary bin2gray run without specifying a normalisation
value) and that the symmetry before the rotational averaging was not always
perfect; this is often improved by using ‘e’ or ‘E’ for Bragg spot removal. The
diffuse.hk0 file used for these calculations typcally looked like this:
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’minimal’

12645 9676

3.0 3.0 3.0 0.0 0.0 0.0

20 20 20

Y

-4.5 -4.5 0.0

4.5 -4.5 0.0 200

-4.5 4.5 0.0 200

-4.5 -4.5 0.0 1

1.0

9 9 9

20

1

1

Y

’C ’

2.31 20.844 1.02 10.2075

1.5886 0.5687 0.865 51.65 0.2156

0.0 0.0

4.2 DCDNB 1

This molecule was chosen pseudorandonly from the database and implemented.
The aim is to walk through the setting-up, making some common errors and
showing the range of tools used to put a simulation toegther. It is more realistic
than the simulation in 4.1 and correspondingly more complicated, although still
simple by many standards; for example it does not deal with occupancies.

So here we are setting up a simulation of DCDNB using ZMC; at this point
I am just getting something to run, not worrying about whether it is ‘right’ as
far as the SRO in DCDNB is concerned. I will use $$> to indicate a command
line prompt.

Here is the .cif as downloaded from the database, METXOZ CCDC 633654.cif:

###########################################################################

#

# Cambridge Crystallographic Data Centre

# CCDC

#

###########################################################################

#

# This CIF contains data generated directly from one or more entries in

# the Cambridge Structural Database and will include bibliographic,

# chemical, crystal, experimental, refinement, and atomic coordinate data,

# as available.

#

# Copyright 2011 The Cambridge Crystallographic Data Centre

#

# This CIF is provided on the understanding that it is used for bona fide

# research purposes only. It may contain copyright material of the CCDC
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# or of third parties, and may not be copied or further disseminated in

# any form, whether machine-readable or not, except for the purpose of

# generating routine backup copies on your local computer system.

#

# For further information about the CCDC, data deposition and data

# retrieval see <www.ccdc.cam.ac.uk>. Bona fide researchers may freely

# download Mercury and enCIFer from this site to visualise CIF-encoded

# structures and to carry out CIF format checking respectively.

#

###########################################################################

data_CSD_CIF_METXOZ

_audit_creation_date 2007-02-13

_audit_creation_method CSD-ConQuest-V1

_database_code_CSD METXOZ

_database_code_depnum_ccdc_archive ’CCDC 633654’

_chemical_formula_sum ’C6 H2 Cl2 N2 O4’

_chemical_formula_moiety

;

C6 H2 Cl2 N2 O4

;

_journal_coeditor_code "IUCr CI2241"

_journal_coden_Cambridge 1370

_journal_volume 63

_journal_year 2007

_journal_page_first o177

_journal_name_full ’Acta Crystallogr.,Sect.E:Struct.Rep.Online ’

loop_

_publ_author_name

"Zhong-Hua Luo"

"Hong-Jun Zhu"

"Shui-Ping Deng"

"Hong-Sheng Jia"

"Shan Liu"

_chemical_name_systematic

;

1,5-Dichloro-2,4-dinitrobenzene

;

_cell_volume 891.623

_exptl_crystal_colour ’yellow’

_exptl_crystal_density_diffrn 1.766

_exptl_crystal_description ’Needle’

_exptl_crystal_preparation ’ethanol’

_diffrn_ambient_temperature 298

#These two values have been output from a single CSD field.

_refine_ls_R_factor_gt 0.0606

_refine_ls_wR_factor_gt 0.0606

_symmetry_cell_setting monoclinic

_symmetry_space_group_name_H-M ’P 21/c’

_symmetry_Int_Tables_number 14
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loop_

_symmetry_equiv_pos_site_id

_symmetry_equiv_pos_as_xyz

1 x,y,z

2 -x,1/2+y,1/2-z

3 -x,-y,-z

4 x,-1/2-y,-1/2+z

_cell_length_a 9.5900(19)

_cell_length_b 6.5860(13)

_cell_length_c 14.751(3)

_cell_angle_alpha 90

_cell_angle_beta 106.86(3)

_cell_angle_gamma 90

_cell_formula_units_Z 4

loop_

_atom_type_symbol

_atom_type_radius_bond

C 0.68

H 0.23

Cl 0.99

N 0.68

O 0.68

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

Cl1 Cl 0.86836(16) 0.8072(2) 0.51157(9)

Cl2 Cl 0.52778(16) 0.1606(2) 0.42287(10)

O1 O 0.6239(4) -0.0393(5) 0.2774(3)

O2 O 0.6192(4) 0.1645(6) 0.1615(3)

O3 O 0.9089(5) 0.7816(9) 0.2416(3)

O4 O 1.0529(4) 0.7729(7) 0.3821(3)

N1 N 0.6402(4) 0.1278(6) 0.2447(3)

N2 N 0.9417(4) 0.7272(7) 0.3233(3)

C1 C 0.8048(5) 0.6115(7) 0.4339(3)

C2 C 0.8413(4) 0.5881(7) 0.3509(3)

C3 C 0.7831(4) 0.4338(7) 0.2888(3)

H1 H 0.80500 0.42330 0.23160

C4 C 0.6926(4) 0.2955(6) 0.3121(3)

C5 C 0.6525(5) 0.3152(6) 0.3944(3)

C6 C 0.7088(5) 0.4764(7) 0.4544(3)

H2 H 0.68120 0.49340 0.50940

#END

A labelled picture generated by Mercury is in shown figure 4.5.
First thing to do is reorder the atoms. (1) We want a convenient origin.

Probably a good place is the centre of the phenyl ring; and if we decide that we
want a ‘π’ electron to interact with, this ‘dummy’ atom is a useful surrogate.
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Figure 4.5: Single molecule of DCDNB generated in Mercury from the .cif file
in METXOZ CCDC 633654.cif (in section 4.2).

(2) We want to make sure that the NO2 groups can rotate without carrying the
whole molecule with them.

So we work out the average of all the C atom positions and put an ‘x’ atom
there.

Now the molecule looks like that shown in figure 4.6
And the .cif file looks like (just the changed bit)

x1 H 0.7471833 0.453416 0.3724166667

C3 C 0.7831(4) 0.4338(7) 0.2888(3)

H1 H 0.80500 0.42330 0.23160

C2 C 0.8413(4) 0.5881(7) 0.3509(3)

C1 C 0.8048(5) 0.6115(7) 0.4339(3)

Cl1 Cl 0.86836(16) 0.8072(2) 0.51157(9)

C6 C 0.7088(5) 0.4764(7) 0.4544(3)

H2 H 0.68120 0.49340 0.50940

C5 C 0.6525(5) 0.3152(6) 0.3944(3)

Cl2 Cl 0.52778(16) 0.1606(2) 0.42287(10)

C4 C 0.6926(4) 0.2955(6) 0.3121(3)

N1 N 0.6402(4) 0.1278(6) 0.2447(3)

O1 O 0.6239(4) -0.0393(5) 0.2774(3)

O2 O 0.6192(4) 0.1645(6) 0.1615(3)

N2 N 0.9417(4) 0.7272(7) 0.3233(3)

O3 O 0.9089(5) 0.7816(9) 0.2416(3)

O4 O 1.0529(4) 0.7729(7) 0.3821(3)

And so now we use Mercury to pack out the unit cell (Calculate -¿ Packing/S-
licing), shown in the figure 4.7 the cell.

And we can output this to an editable text file, Using the mol2 format (File
-¿ Save As) which I will call dcdnb cq1 METXOZ.mol2, and it looks like this:

@<TRIPOS>MOLECULE
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Figure 4.6: Single molecule of DCDNB generated in Mercury from the .cif file
in METXOZ CCDC 633654.cif, with dummy atom.

Figure 4.7: A unit cell of DCDNB packed in Mercury, showing the four molecules
(Z=4), with dummy atom.
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METXOZ

68 64 8 0 0

SMALL

NO_CHARGES

****

Generated from the CSD

@<TRIPOS>ATOM

1 x1 5.5722 2.9862 5.2574 H 1 RES1 0.0000

2 x1 1.8787 6.2792 1.8011 H 2 RES2 0.0000

3 x1 -0.2605 3.5998 8.8596 H 3 RES3 0.0000

4 x1 3.4330 0.3068 12.3159 H 4 RES4 0.0000

5 C3 6.2744 2.8570 4.0770 C.2 5 RES5 0.0000

6 H1 6.7291 2.7879 3.2695 H 5 RES5 0.0000

7 C2 6.5668 3.8732 4.9536 C.2 5 RES5 0.0000

8 C1 5.8617 4.0273 6.1253 C.3 5 RES5 0.0000

9 Cl1 6.1389 5.3162 7.2218 Cl 5 RES5 0.0000

10 C6 4.8533 3.1376 6.4147 C.2 5 RES5 0.0000

11 H2 4.3533 3.2495 7.1912 H 5 RES5 0.0000

12 C5 4.5701 2.0759 5.5677 C.3 5 RES5 0.0000

13 Cl2 3.2522 1.0577 5.9696 Cl 5 RES5 0.0000

14 C4 5.3068 1.9462 4.4059 C.2 5 RES5 0.0000

15 N1 5.0926 0.8417 3.4544 N.3 5 RES5 0.0000

16 O1 4.7964 -0.2588 3.9160 O.2 5 RES5 0.0000

17 O2 5.2472 1.0834 2.2799 O.2 5 RES5 0.0000

18 N2 7.6477 4.7893 4.5640 N.3 5 RES5 0.0000

...

etc

...

67 O3 5.5436 -1.8546 10.4691 O.2 8 RES8 0.0000

68 O4 6.3234 -1.7973 12.4526 O.2 8 RES8 0.0000

@<TRIPOS>BOND

1 5 6 1

2 5 7 un

3 5 14 un

4 7 8 1

5 7 18 1

6 8 9 1

7 8 10 1

...

etc

...

63 66 67 1

64 66 68 1

@<TRIPOS>SUBSTRUCTURE

1 RES1 1 GROUP 0 **** **** 0

2 RES2 2 GROUP 0 **** **** 0

3 RES3 3 GROUP 0 **** **** 0

4 RES4 4 GROUP 0 **** **** 0

5 RES5 5 GROUP 0 **** **** 0
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Figure 4.8: A unit cell of DCDNB packed in Mercury, showing the four molecules
(Z=4), with dummy atom now bonded.

6 RES6 21 GROUP 0 **** **** 0

7 RES7 37 GROUP 0 **** **** 0

8 RES8 53 GROUP 0 **** **** 0

@<TRIPOS>CRYSIN

9.5900 6.5860 14.7510 90.0000 106.8600 90.0000 14 1

But we have a problem here; Mercury is putting the new x1 atom in a separate
molecule to the DCDNB. That is because the H atom has too short a bonding
distance and is not considered to ‘belong’ to the molecule; call it a C atom
instead and we get figure 4.8 —note the extra bonds to the centre atom.

Now the .mol2 is:

@<TRIPOS>MOLECULE

METXOZ

68 88 4 0 0

SMALL

NO_CHARGES

****

Generated from the CSD

@<TRIPOS>ATOM

1 x1 5.5722 2.9862 5.2574 C.3 1 RES1 0.0000

2 C3 6.2744 2.8570 4.0770 C.3 1 RES1 0.0000

3 H1 6.7291 2.7879 3.2695 H 1 RES1 0.0000

4 C2 6.5668 3.8732 4.9536 C.3 1 RES1 0.0000

5 C1 5.8617 4.0273 6.1253 C.3 1 RES1 0.0000

6 Cl1 6.1389 5.3162 7.2218 Cl 1 RES1 0.0000

7 C6 4.8533 3.1376 6.4147 C.3 1 RES1 0.0000

...

etc

...
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68 O4 6.3234 -1.7973 12.4526 O.2 4 RES4 0.0000

@<TRIPOS>BOND

1 1 2 1

2 1 4 1

3 1 5 1

4 1 7 1

5 1 9 1

...

etc

...

86 63 65 1

87 66 67 1

88 66 68 1

@<TRIPOS>SUBSTRUCTURE

1 RES1 1 GROUP 0 **** **** 0

2 RES2 18 GROUP 0 **** **** 0

3 RES3 35 GROUP 0 **** **** 0

4 RES4 52 GROUP 0 **** **** 0

@<TRIPOS>CRYSIN

9.5900 6.5860 14.7510 90.0000 106.8600 90.0000 14 1

But we are not done yet; now we need to control the connectivity. We want
the centre atom to only connect to the atom we want it to. I want to imagine
for my own mental picture the molecule rotating around the vector connecting
H atoms, so I want to force the first bond to be from x1 to C3. This is from
atom 1 to atom 2. That means we have to remove all the other bonds to atom
1. But we do not need to renumber, since mol2 allows duplicate bonds. Further,
zmat maker only uses the first molecule to define the z-matrix, so we don’t need
to do this manipulation for molecule 2 to 4. So now we get this for the relevant
bit of the bond section of the .mol2 file:

@<TRIPOS>BOND

1 1 2 1

2 1 2 1

3 1 2 1

4 1 2 1

5 1 2 1

6 1 2 1

7 2 3 1

8 2 4 1

9 2 11 1

10 4 5 1

11 4 15 1

12 5 6 1

13 5 7 1

...

etc

...
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And now we can try to run zmat maker—but can you spot the deliberate
mistake?

Correct! The first three atoms are all in a line and so cannot define a plane
and so cannot define a dihedral angle, needed to define the position of the fourth
atom. So we need to go back to the .cif and renumber it with say C2 as the
third atom.

So now we go back to Mercury and pack out the cell again. And then we have
to sort out the connectivity again (fun, eh?).

The .mol2 file with modified connectivity may not read back into Mercury

successfully, but will be OK in zmat maker. So the output of running zmat maker

looks like this:
$$> zmat maker dcdnb cq1 METXOZ.mol2

Sub structure: 1

Z-matrix: 1

Quaternion: 0.160098 0.864619 0.424569 0.215740

Improper: F

COM Translation: 5.572200 2.986200 5.257400

RSD: 0.000012

Sub structure: 2

Z-matrix: 1

Quaternion: 0.424570 -0.215734 -0.160095 0.864621

Improper: F

COM Translation: 1.878642 6.279200 1.801061

RSD: 0.001022

Sub structure: 3

Z-matrix: 1

Quaternion: 0.160098 0.864619 0.424571 0.215738

Improper: T

COM Translation: -0.260502 3.599800 8.859539

RSD: 0.000780

Sub structure: 4

Z-matrix: 1

Quaternion: 0.424571 -0.215738 -0.160098 0.864619

Improper: T

COM Translation: 3.433066 0.306799 12.315883

RSD: 0.000957

Saved quaternion data to dcdnb_cq1_METXOZ.qxyz

Printed ok

Writing dcdnb_cq1_METXOZ.zmat

Key points are that the RSD (‘root square deviation’) is nice and small for
all the molecules, and that the .qxyz and .zmat files are written out as noted.
They look like this:

dcdnb cq1 METXOZ.qxyz:

1 1 1 1 0.1600 0.8646 0.4245 0.2157 F 5.5722 2.9862 5.257400

2 2 1 1 0.4245 -0.2157 -0.1600 0.8646 F 1.8786 6.2792 1.801061

3 3 1 1 0.1600 0.8646 0.4245 0.2157 T -0.2605 3.5998 8.859539

4 4 1 1 0.4245 -0.2157 -0.1600 0.8646 T 3.4330 0.3067 12.315883
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dcdnb cq1 METXOZ.zmat

METXOZ : Generated from the CSD

17

x1 0 0.00000 0 0.00000 0 0.00000

C3 1 1.37954 0 0.00000 0 0.00000

C2 2 1.37353 1 59.53489 0 0.00000

H1 2 0.92929 3 120.35904 1 177.96918

C1 3 1.37615 2 121.14223 4 176.96814

Cl1 5 1.71476 3 123.07847 2 -177.27394

C6 5 1.37557 6 118.04285 3 -177.60553

H2 7 0.93031 5 119.45915 6 -0.36510

C5 7 1.38738 8 119.46602 5 179.97775

Cl2 9 1.71322 7 117.94444 8 2.70892

C4 9 1.38178 10 123.47576 7 -175.70216

N1 11 1.47348 9 122.39807 2 -179.44162

O1 12 1.22960 11 117.61214 9 -35.59310

O2 12 1.20904 13 125.05824 11 178.51016

N2 3 1.46948 5 122.19559 2 178.98005

O3 15 1.20818 3 117.34031 5 -136.99116

O4 15 1.20155 16 124.43945 3 177.02079

Where the four integers at the front of the .qxyz file keep track of which
molecule goes on which molecular site and in which orientation (we only have
one orientation per site). To differentiate a molecular site from an atomic site
(the more usual use of the word ‘site’ in crystallography) I will sometimes refer
to a ‘location’.

Now we need to examine the NO2 groups. Working backwards, we see that
O4 depends on O3 (atom 16), so if we allow the dihedral angle of O3 to vary,
O4 will follow—good. O2 depends on O1 (atom 13), and nothing depends on
O2 (atom 14) and nothing but O2 depends on O1. This means that allowing
the N1/O1/O2 group to rotate will not cause any other part of the molecule to
‘break’.

So we look like we have a sensible molecular z-matrix for our purposes. It
is possible to explore the internal motions of the molecule and any unexpected
ramifications of the connectivity by using zmat anim, which animates the mo-
tions.

BUGNOTE:

\> zmat_anim --param=3 --delta=0.1 --nstep=20 dcdnb_cq1_METXOZ.zmat 13

17 At line 184 of file zmat_anim.f90 (Unit 6)

Traceback: not available, compile with -ftrace=frame or -ftrace=full

Fortran runtime error: Nonnegative width required in format

(A,I0,A,F)

^

BUGNOTE: I am not sure windows zmat maker works when there is more
than one z-matrix.

Anyway, we can’t run zmat anim, but z-matrix seems OK. Can’t run zmatchk

either. . .
BUGNOTE:



56 CHAPTER 4. DETAILED EXAMPLES

\> zmatchk dcdnb_cq1_METXOZ.zmat dcdnb_cq1_METXOZ.qxyz

At line 512 of file string_functions.f90

Traceback: not available, compile with -ftrace=frame or -ftrace=full

Fortran runtime error: Bad real number in item 1 of list input

So since we are not worrying about flipping molecules or occupancies of any
kind, we are just putting together a purely thermal model, or purely displacive
to be more precise, since that makes no assumptions about the static or dynamic
nature of the displacements.

So we need to generate some contact vectors. The relevant bits of the output
from ZMC −−help and ZMC −−help2 are respectively (full output from ZMC version
from April 2011 shown in appendices E and F):

|---------------------------------------------------------------------|

| Usage: |

| |

| zmc [--option_1] [--option_2] ... [--option_n] infile [outfile] |

| |

| infile contains the parameters and additional filenames to run |

| the MC simulation. |

| |

| outfile is the root name for most output; if not given the root |

| name will be infile (i.e., outfile = infile) |

| |

| Options always begin with two dashes, and if the option can be |

| passed a value, the value must be indicated with an equals sign |

| and there must be no spaces. E.g.: --summary=inline is right, |

| "--summary inline" is wrong, "--summary = inline" is wrong. |

| |

| Items enclosed in square brackets are optional. |

| |

| Options are: |

| |

...

snip

...

| |

| --help Prints this information and exits. |

| |

| --help2 Prints more help and exits. |

| |

| --version Prints version information and exits. |

| |

| --plot Runs interactive plotting of the simulation; crude but |

| sometimes useful. Exits after producing plots. |

| |

| --getcontacts |

| Runs a simple routine to generate contact vectors |

| based on parameters specified in keyword file. |

| Then exits. |

| |
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| --help, --help2 and --version can be run without infile |

| or outfile.out being specified. --quiet does not work with --help, |

| --help2 or --version. If --getcontacts is given, will not do MC |

| or plot. If --plot is given, will not proceed to MC. |

| |

|---------------------------------------------------------------------|

|---------------------------------------------------------------------|

| |

| The main input file is a series of keywords and values. Some |

| are mandatory, some are not. The order in the keyword file does |

| not matter. The details are outlined below. |

| |

| It is best to begin all filenames called within the keyword file |

| with alphabetical characters, not with numbers or other characters. |

| |

| ZMC uses a z-matrix to describe a molecule. If carefully |

| constructed, this allows segmented motion of the molecules in a |

| simple way. The convention for naming these files is to give |

| them the extension ".zmat". While a z-matrix defines the |

| molecular geometry, the molecule must be oriented and positioned |

| within the unit cell. This is done using a 3-vector (x, y, z) |

| to specify the origin of the molecule (the position of the first |

| atom) and a quaternion (a normalised 4-vector (q1,q2,q3,q4)) to |

| give the orientation. This information is in files with |

| extension ".qxyz". If one uses a third vector to hold the values |

| of the internal degrees of freedom for the molecule (this will |

| be an n-vector if there are n internal d.f.) then the molecule |

| is completely specified by the 3-vector, the 4-vector and the n- |

| vector. Given that a substantial molecule may have 50 atoms in |

| it, requiring 150 coordinates, this is a great economy of |

| variables. |

| |

| A molecule is said to occupy a location rather than a site |

| simply because site is a word commonly attached to atomic |

| position, and there is a desire to avoid confusion by using a |

| word (hopefully) without connotations. |

| |

| A single Monte Carlo (MC) step consists of choosing a molecule |

| at random, calculating its energy by summing over any |

| interactions pertaining to it (whether internal to the molecule |

| or between the molecule and its environment), then randomly |

| altering the molecules configuration (putting random shifts on |

| the three vectors noted above), calculating the new energy and |

| then accepting or rejecting the new configuration based on a MC |

| algorithm. |

| |

| Hence the keywords allow the user to specify what the degrees of |

| freedom are, what the force constants (spring constants) acting |
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| in the system are, and how wide the distribution of random |

| shifts can be (referred to as various kinds of widths). |

| |

| ZMATFILE Specifies the file containing a z-matrix. Must |

| be followed by an integer, which is the z-matrix |

| number, and a filename. |

| e.g. ZMATFILE 1 paraterphenyl.zmat |

| |

| QXYZFILE Specifies the file containing the variables |

| describing the average origin of the z-matrix |

| (xyz) and its orientation (quaternion, q). Must |

| be followed by an integer, which is the z-matrix |

| number, and a filename. |

| e.g. QXYZFILE 1 paraterphenyl.qxyz |

| |

| CELL Specifies unit cell parameters (angles in |

| degrees). Must be followed by 6 reals. |

| e.g. CELL 12.34 5.126 8.902 90.0 109.35 90.0 |

| |

| |

| VMIN When creating some contact vectors, this is the |

| minimum length (Angstrom). e.g. VMIN 1.9 |

| |

| VMAX When creating some contact vectors, this is the |

| maximum length. |

| |

| NEWCONTACTS Specifies the new contact vector file name. |

| e.g. NEWCONTACTS newfilename.out |

| |

| CONTATOMS Specified which atoms to look at when generating |

| contact vectors. "CONTATOMS ZMAT 1 17 25" would |

| look for contacts between atoms 17 and 25 on |

| ZMAT 1. To look for contacts involving more than |

| one z-matrix type, use multiple instances of |

| CONTATOMS. |

...

etc

...

|---------------------------------------------------------------------|

So from this we have a first try at assembling an input file that will give us
a list of contact vectors (interactions between non-bonded atoms, and in this
case ones on different molecules as well – intermolecular not intra). First, what
atoms will be use? Terminal atoms are H, Cl and O. These are atoms number:
6, 10 (Cl), 4, 8 (H) and 13, 14, 16, 17 (O). Let’s use these; there are a range
of strategies for choosing the interactions. Earlier studies of ours used slimmed
down molecules and the fewest possible interactions as ‘effective’ interactions
[24, 19]. More recent studies have used more exhaustive lists of interactions
[34], have played around with intramolecular contacts and so on [23] but for an
example we’ll just generate a list of ‘some’ interactions; we’re not worried about
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doing good science, we just want a calculation that works, for now.
We also need to decide on a VMIN and VMAX. Interactive exploration in

Mercury suggests that VMIN can be very short to make sure we pick up the
short contacts, and that VMAX could be around 4.3Å.

So here is our initial input file, MC DCDNB.inp:

HEADER DCDNB from the CSD

!!

!! Basic geometry needed

!!

CELL 9.5900 6.5860 14.7510 90.0000 106.8600 90.0000

ZMATFILE 1 dcdnb_cq1_METXOZ.zmat

QXYZFILE 1 dcdnb_cq1_METXOZ.qxyz

!!

!! Stuff related to getting contacts:

!!

VMIN 0.5

VMAX 4.3

NEWCONTACTS DCDNB_1.contacts

CONTATOMS ZMAT 1 6 10 4 8 13 14 16 17

Here is the command that was run:
$$> ZMC −−getcontacts MC DCDNB.inp ¿ MC DCDNB getcontects.screen

Note that the output redirection will be stymied if the contact vector file
already exists, since there will be an interactive prompt asking for overwrite
confirmation. . .

And here is the screen output, MC DCDNB getcontects.screen:

----------------------------------------------------------------------------

This is ZMC version dated April 20 2011, a program for implementing

Monte Carlo simulations of crystal structures, primarily for the

analysis of diffuse scattering.

All use should reference the paper:

D. J. Goossens, A. P. Heerdegen, E. J. Chan & T. R. Welberry, ’Monte

Carlo Modelling of Diffuse Scattering from Single Crystals: The

Program ZMC’ Metallurgical and Materials Transactions A, vol 42A,

(2011) 23-31. DOI:10.1007/s11661-010-0199-1

Invoke it with ZMC --help for some help, and ZMC --help2 for more help.

----------------------------------------------------------------------------

Input file is MC_DCDNB.inp

----------------------------------------------------------------------------

Keyword filename will be used as root name for output files.

Output files have root name MC_DCDNB.

----------------------------------------------------------------------------

Cell parameters are: 9.5900 6.5860 14.7510 90.0000106.8600 90.0000

----------------------------------------------------------------------------

Value for NUMLOCS not specified explicitly.

----------------------------------------------------------------------------
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Value for NUMZMATS not specified explicitly.

----------------------------------------------------------------------------

Number of z-matrix files to read: 1

Reading z-matrix 1 of 1 from : dcdnb_cq1_METXOZ.zmat

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

METXOZ : Generated from the CSD

17

x1 0 0.00000 0 0.00000 0 0.00000

C3 1 1.37954 0 0.00000 0 0.00000

C2 2 1.37353 1 59.53489 0 0.00000

H1 2 0.92929 3 120.35904 1 177.96918

C1 3 1.37615 2 121.14223 4 176.96814

Cl1 5 1.71476 3 123.07847 2 -177.27394

C6 5 1.37557 6 118.04285 3 -177.60553

H2 7 0.93031 5 119.45915 6 -0.36510

C5 7 1.38738 8 119.46602 5 179.97775

Cl2 9 1.71322 7 117.94444 8 2.70892

C4 9 1.38178 10 123.47576 7 -175.70216

N1 11 1.47348 9 122.39807 2 -179.44162

O1 12 1.22960 11 117.61214 9 -35.59310

O2 12 1.20904 13 125.05824 11 178.51016

N2 3 1.46948 5 122.19559 2 178.98005

O3 15 1.20818 3 117.34031 5 -136.99116

O4 15 1.20155 16 124.43945 3 177.02079

Printed ok

----------------------------------------------------------------------------

Interrogation of qxyz files suggests there are 4 locations in unit cell.

Interrogation of qxyz files suggests there are

up to 1 instances of a z-matrix on a location.

----------------------------------------------------------------------------

Quaternions and translations for z-matrix 1

dcdnb_cq1_METXOZ.qxyz

Location): 1

Sub structure (per location): 1

Quaternion: 0.160098 0.864619 0.424569 0.215740

Improper: F

COM Translation: 5.572200 2.986200 5.257400

Location): 2

Sub structure (per location): 1

Quaternion: 0.424570 -0.215734 -0.160095 0.864621

Improper: F

COM Translation: 1.878642 6.279200 1.801061

Location): 3

Sub structure (per location): 1

Quaternion: 0.160098 0.864619 0.424571 0.215738

Improper: T

COM Translation: -0.260502 3.599800 8.859539
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Location): 4

Sub structure (per location): 1

Quaternion: 0.424571 -0.215738 -0.160098 0.864619

Improper: T

COM Translation: 3.433066 0.306799 12.315883

----------------------------------------------------------------------------

Location 1 can have 1 type(s) of z-matrix(ices).

These are types 1

Type 1 is in 1 orientation(s) on that location.

These are orientation(s): 1

Location 2 can have 1 type(s) of z-matrix(ices).

These are types 1

Type 1 is in 1 orientation(s) on that location.

These are orientation(s): 1

Location 3 can have 1 type(s) of z-matrix(ices).

These are types 1

Type 1 is in 1 orientation(s) on that location.

These are orientation(s): 1

Location 4 can have 1 type(s) of z-matrix(ices).

These are types 1

Type 1 is in 1 orientation(s) on that location.

These are orientation(s): 1

----------------------------------------------------------------------------

Value for VMIN specified explicitly is: 0.5

----------------------------------------------------------------------------

Value for VMAX specified explicitly is: 4.3

----------------------------------------------------------------------------

Coordinates for location: 1

Occupied by zmatrix : 1

Which is ordinal number : 1 on that location.

In orientation number : 1 for that location.

1 5.572 2.986 5.257

2 6.274 2.857 4.077

3 6.567 3.873 4.954

4 6.729 2.788 3.269

5 5.862 4.027 6.125

6 6.139 5.316 7.222

7 4.853 3.138 6.415

8 4.353 3.249 7.191

9 4.570 2.076 5.568

10 3.252 1.058 5.970

11 5.307 1.946 4.406

12 5.093 0.842 3.454

13 4.796 -0.259 3.916

14 5.247 1.083 2.280

15 7.648 4.789 4.564

16 7.683 5.148 3.411

17 8.463 5.090 5.394

----------------------------------------------------
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Coordinates for location: 2

Occupied by zmatrix : 1

Which is ordinal number : 1 on that location.

In orientation number : 1 for that location.

1 1.879 6.279 1.801

2 1.176 6.150 2.981

3 0.884 7.166 2.105

4 0.722 6.081 3.789

5 1.589 7.320 0.933

6 1.312 8.609 -0.163

7 2.598 6.431 0.644

8 3.098 6.542 -0.133

9 2.881 5.369 1.491

10 4.199 4.351 1.089

11 2.144 5.239 2.653

12 2.358 4.135 3.604

13 2.654 3.034 3.142

14 2.204 4.376 4.779

15 -0.197 8.082 2.494

16 -0.232 8.441 3.648

17 -1.012 8.383 1.664

----------------------------------------------------

Coordinates for location: 3

Occupied by zmatrix : 1

Which is ordinal number : 1 on that location.

In orientation number : 1 for that location.

1 -0.261 3.600 8.860

2 -0.963 3.729 10.040

3 -1.255 2.713 9.163

4 -1.417 3.798 10.847

5 -0.550 2.559 7.992

6 -0.827 1.270 6.895

7 0.458 3.448 7.702

8 0.958 3.337 6.926

9 0.742 4.510 8.549

10 2.059 5.528 8.147

11 0.005 4.640 9.711

12 0.219 5.744 10.663

13 0.515 6.845 10.201

14 0.065 5.503 11.837

15 -2.336 1.797 9.553

16 -2.371 1.438 10.706

17 -3.151 1.496 8.723

----------------------------------------------------

Coordinates for location: 4

Occupied by zmatrix : 1

Which is ordinal number : 1 on that location.

In orientation number : 1 for that location.

1 3.433 0.307 12.316

2 4.135 0.436 11.135
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3 4.428 -0.580 12.012

4 4.590 0.505 10.328

5 3.723 -0.734 13.184

6 4.000 -2.023 14.280

7 2.714 0.155 13.473

8 2.214 0.043 14.250

9 2.431 1.217 12.626

10 1.113 2.235 13.028

11 3.168 1.347 11.464

12 2.953 2.451 10.513

13 2.657 3.552 10.974

14 3.108 2.210 9.338

15 5.509 -1.496 11.622

16 5.544 -1.855 10.469

17 6.323 -1.797 12.453

----------------------------------------------------

Initial Cartesian positions calculated.

----------------------------------------------------------------------------

Exiting normally.

----------------------------------------------------------------------------

And here is our initial contact vector list, DCDNB 1.contacts:

ol oz om oat da db dc dl dz dm dat length type

1 1 1 6 0 0 0 3 1 1 10 4.18846 1

1 1 1 6 0 1 0 1 1 1 10 3.91387 2

1 1 1 6 0 1 0 1 1 1 13 3.70847 3

1 1 1 6 0 1 0 4 1 1 4 3.89845 4

1 1 1 6 0 1 0 4 1 1 16 3.35289 5

1 1 1 6 1 0 0 3 1 1 17 4.11577 6

1 1 1 6 1 1 0 3 1 1 6 3.66621 7

1 1 1 6 1 1 0 3 1 1 17 3.16091 8

1 1 1 10 0 -1 0 1 1 1 6 3.91387 9

...

etc

...

4 1 1 17 1 -1 1 2 1 1 8 3.12604 283

4 1 1 17 1 0 0 3 1 1 16 3.78436 284

Unsorted, with each vector given its own type. Plainly this is silly; at the very
least all vectors that are symmetry-equivalent should be of the same type. There
my be good chemical reasons for combining more vectors than that, although
when using effective interactions, since it is not possible to know in detail what
interactions the chosen ones are ‘standing in for’, it is tricky to make any strong
assumptions.

Sorting these on length, and then assigning a type to each symmetry-equivalent
set gives this list:

ol oz om oat da db dc dl dz dm dat length type

1 1 1 4 1 -1 0 2 1 1 17 2.64139 1

2 1 1 17 -1 1 0 1 1 1 4 2.64139 1
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3 1 1 4 -1 1 0 4 1 1 17 2.6414 1

4 1 1 4 1 0 0 3 1 1 17 2.6414 1

3 1 1 17 -1 0 0 4 1 1 4 2.6414 1

4 1 1 17 1 -1 0 3 1 1 4 2.6414 1

...

etc

...

4 1 1 10 0 0 0 3 1 1 16 4.26201 36

3 1 1 16 0 0 0 4 1 1 10 4.26201 36

4 1 1 16 0 -1 0 3 1 1 10 4.26201 36

2 1 1 10 0 0 0 1 1 1 16 4.26202 36

1 1 1 16 0 0 0 2 1 1 10 4.26202 36

And we’ll save this to DCDNB 1 sort.contacts. Now, the first thing to do
with this is to plot the contacts. I use the crude ‘−−plot’ option of ZMC; it is
extremely crude, but useful. The other thing to do is to think about ways to
classify the vectors; this helps with developing the model. Classification schemes
include chemistry (H-H, H-O, H-Cl etc) or which neighbour they connect to, or
what direction they ‘point’ in and so on. You may want to make different groups
weaker or stronger depending on any of these criteria, in an attempt to fit your
data.

Here is the ZMC input file set up for plotting; I have left the contact vector
generation stuff in at the bottom.

HEADER DCDNB from the CSD

!!

!! Basic geometry needed

!!

CELL 9.5900 6.5860 14.7510 90.0000 106.8600 90.0000

ZMATFILE 1 dcdnb_cq1_METXOZ.zmat

QXYZFILE 1 dcdnb_cq1_METXOZ.qxyz

CONTACTFILE DCDNB_1_sort.contacts

CRYSTAL 32 32 32

!!

!! Stuff related to getting contacts:

!!

VMIN 0.5

VMAX 4.3

NEWCONTACTS DCDNB_1.contacts

CONTATOMS ZMAT 1 6 10 4 8 13 14 16 17

By interactively responding to the prompts, the first lot of files I have gener-
ated are simply views of the structure down three principal directions; these are
called no cont ?.ps, where ? = x, y or z and inspection of these is a good idea
to see if the geometry is being set properly by ZMC (also a good idea to compare
contact lengths output from ZMC with those explored in Mercury for additional
verification). Figure 4.9.

Next plots are con mul ?.ps, and I can plot any subset of the 36 types, but
here I plot them all just to show the complete bird’s nest they add up to. Figure
4.10.
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Figure 4.9: Two views of part of the model crystal of DCDNB showing multi-
coloured molecules and no contact vectors; output from ZMC.
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Figure 4.10: Two views of part of the model crystal of DCDNB showing multi-
coloured molecules and all contact vectors; output from ZMC.
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Figure 4.11: Left: View down x showing vector 16, right: View down y showing
vector 2.

While this is not terribly useful, it already shows that there are some di-
rections along which the network is thick with vectors and others are relatively
more sparse. This reinforces the word ‘effective’ in the phrase ‘effective interac-
tions’(!).

A useful thing to do is plot all the vectors one by one. Get ZMC to number
them, but say no to ’plot multiple vectors on same plot’ or whatever it exactly
asks. This will generate 3× 36 plots which I suggest combining into three files,
one for each of x, y and z. This can be done (at least on Linux) simply by
catting the required files together then running ps2ps on the output.

For example

cat con_???_y.ps > cony.ps

ps2ps cony.ps y.ps

will produce a 36 page PostScript file called y.ps, one plot per page.

Note that the colours will be awful! ZMC uses a crude algorithm to assign
colours purely in an attempt to differentiate molecules based on ‘location’ and
type. It is interesting and useful to note vectors that form chains or sheets of
molecules, as often this is a useful way of thinking about the crystal. A simple
example here is given by con 016 x.ps, where the vector seems to give chains,
albeit rather indirectly linked, running along y. Similarly vectors 28 and 29 and
presumably others. Vector 2 gives chains running approximately along z − x.
Figure 4.11.

These inspections are also significant in that if one has sorted solely on
length,there may be symmetry inequivalent vectors with coincidentally similar
lengths that have been given the same type and should not have.

Anyway, for now I just want to calculate a pattern. So the next step is to
run an MC simulation (at last!). Below I show the MC input file, with all force
constants (SPRCON) set to unity, with a requested overall average B-factor of
2 and every cycle the random shifts are adjusted to try for 50% rejections. This
does not have any effect at this time because I am doing just one MC cycle,
because I am simply going to explore the effect of different kinds of randomness.
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In this example, I have no randomness on the quaternions, just small random
shifts on x, y and z.

The MC file is:

HEADER DCDNB from the CSD

!!

!! Basic geometry needed

!!

CELL 9.5900 6.5860 14.7510 90.0000 106.8600 90.0000

ZMATFILE 1 dcdnb_cq1_METXOZ.zmat

QXYZFILE 1 dcdnb_cq1_METXOZ.qxyz

CONTACTFILE DCDNB_1_sort.contacts

CRYSTAL 32 32 32

!!

!! MC variables

!!

MCCYCLES 1

TEMPERATURE 1.0

XYZINITW 0.3

QINITW 0.0

!!

XYZWIDTH 0.0

QWIDTH 0.0

SPRCON 1.0

BADJUST 1 2.0

INCUPDATE 1

!!

!! Stuff related to getting contacts:

!!

VMIN 0.5

VMAX 4.3

NEWCONTACTS DCDNB_1.contacts

CONTATOMS ZMAT 1 6 10 4 8 13 14 16 17

And the command line was:
$$> ZMC −−diffuse −−cif MC DCDNB.inp Random xyz

where I asked for the .cif file (Random xyz.cif) just to check how big the
U (or B) from the XYZINITW value was. The .cif opened successfully in
Mercury; I am not sure that the Uaniso calculation is correct, I must note. I am
pretty happy with Uiso and the Uii.

So now we need the input files for the DIFFUSE calculation; these are the
same as for the DIFFUSE program outlined (though not in enormous detail)
in [3], although I usually call the diffuse associated with ZMC ‘DZMC’. And one
input file suitable for the hk0 cut of reciprocal space for this compound is shown
below. This file outlines the bit of reciprocal space being considered, whether to
subtracts out Bragg scattering or not, what sorts of atoms there are and their
scattering factors.

diffuse.hk0:

’DCDNB hk0 ’ ! Run description

12645,9676 ! Random number seeds
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9.590 6.586 14.7510 0.0 -0.290 0.0 ! Cell coords (cos of angles)

32 32 32 ! Size of crystal simulation (unit cells)

Y ! Periodic Boundary?

-8.7367,-6.0000, 0.0000 ! Origin of calculation volume

8.7367,-6.0000, 0.0000, 400 ! u (horizontal) axis

-8.7367, 6.0000, 0.0000, 400 ! v

-8.7367,-6.0000, 0.0000, 1 ! w (integer at end gives number of slices)

0.62 ! sin(theta)/lambda maximum

8,12,5 ! Lot size

10 ! Number of lots

64 ! Number of atom sites per cell

5 ! Number of atom types

e ! Subtract average lattice?

’C ’ ! Atom label

2.31,20.8439,1.02,10.2075 ! Scattering coeff (1)

1.58860,0.5687,0.865,51.6512,0.2156 ! Scattering coeff (2)

0.0,0.0 !fprime, f-double-prime

’O ’

3.0485,13.2771,2.2868,5.7011

1.5463,0.3239,0.867,32.9089,0.2508

0.0,0.0

’N’

12.2126,0.00570,3.13220,9.89330

2.01250,28.9975,1.16630,0.58260,-11.529

0.0,0.0

’Cl’

11.4604,0.01040,7.19640,1.16620

6.25560,18.5194,1.64550,47.7784,-9.5574

0.0,0.0

’H ’

0.0000,0.0000,0.0000,00.0000

0.0000,00.0000,0.0000,0.0000,000.000

0.0,0.0

So this file has X-ray scattering factors taken from the International Tables
for Crystallography [35], but could just as easily have neutron scattering lengths
[36]. The ‘e’ tells DIFFUSE to subtract off the scattering due to Bragg peaks, by
calculating the Bragg scattering from 5% of the model crystal. ‘E’ (upper case)
would tell it to calculate the Bragg spots from the whole model crystal and ‘Y’
says calculate the Bragg scattering from the Biso values; this is the fastest but
least precise.

The same calculation can then be done with a ‘N’ in place of the ‘e’ to leave
the Bragg spots in; this is a good way of making sure you are calculating the
bit of reciprocal space you think you asked for.

The command line (assuming interactive use of DZMC) is:
$$> DZMC Random xyz.diffuse

Then give the name of the input file (diffuse.hk0) and then the name you
want for the output file (in this case I chose Random xyz hk0

For automation, the easiest thing is to put the name of the input file (in
this case diffuse.hk0) and the desired output file into a small text file and use
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redirected input and output. Something like this:
$$> DZMC Random xyz.diffuse ¡ hk0.input ¿ hk0.screen

where the filenames are in hk0.input and the stuff that would usually go to
the screen goes to hk0.screen.

Unix utility tee is also useful if you want output to the screen and a file.
Here is diffuse.0kl, with an ‘N’ for ’subtract Bragg peaks?’, meaning that

all the scattering you can see is either Bragg spot or artifact (finite size of the
calculation) with any diffuse crushed down into the background.

I note that bin2gray seems to be flaky on Windows, but usable with careful
selection of command line parameters.

’DCDNB 0kl ’ ! Run description

12645,9676 ! Random number seeds

9.590 6.586 14.7510 0.0 -0.290 0.0 ! Cell coords (cos of angles)

32 32 32 ! Size of crystal simulation (unit cells)

Y ! Periodic Boundary?

0.0000,-6.0000,-13.441 ! Origin of calculation volume

0.0000, 6.0000,-13.441, 400 ! u (horizontal) axis

0.0000,-6.0000, 13.441, 400 ! v

0.0000,-6.0000,-13.441, 1 ! w (integer at end gives number of slices)

0.62 ! sin(theta)/lambda maximum

8,12,5 ! Lot size

10 ! Number of lots

64 ! Number of atom sites per cell

5 ! Number of atom types

N ! Subtract average lattice?

’C ’ ! Atom label

2.31,20.8439,1.02,10.2075 ! Scattering coeff (1)

1.58860,0.5687,0.865,51.6512,0.2156 ! Scattering coeff (2)

0.0,0.0 !fprime, f-double-prime

’O ’

3.0485,13.2771,2.2868,5.7011

1.5463,0.3239,0.867,32.9089,0.2508

0.0,0.0

’N’

12.2126,0.00570,3.13220,9.89330

2.01250,28.9975,1.16630,0.58260,-11.529

0.0,0.0

’Cl’

11.4604,0.01040,7.19640,1.16620

6.25560,18.5194,1.64550,47.7784,-9.5574

0.0,0.0

’H ’

0.0000,0.0000,0.0000,00.0000

0.0000,00.0000,0.0000,0.0000,000.000

0.0,0.0

This diffuse input file calculates the 0kl cut but does not subtract out Bragg
scatter. It was run:

DZMC Random_xyz.diffuse
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DIFFUSE - Ver. 2.1a - May 11, 1995

diffuse.in filename?

diffuse.0kl

The computation volume is defined by:

( 0.00, -6.00,-13.44) => ( 0.00, 6.00,-13.44)

( 0.00, -6.00,-13.44) => ( 0.00, -6.00, 13.44)

( 0.00, -6.00,-13.44) => ( 0.00, -6.00,-13.44)

Image size is 400 X 400 X 1

sin(theta)/lambda maximum = 0.62

Random number seeds are: 12645 9676

Crystal size is: 32 32 32

Periodic boundary? Y

Number of atom sites per cell : 64

Number of Atom types: 5

Lot Size is: 8 12 5

Number of Lots to Compute: 10

Subtract Average Lattice? N

intensity file?

Random_xyz_0kl_N

etc

and the output goes into Random xyz 0kl N. this is then turned into a view-
able .pgm file by running bin2gray. Symmetrising ups the smoothness of the
image, but you should always run bin2gray without any symmetrising first to
make sure your image is as symmetrical as it ought to be — helps cache errors.

$$> bin2gray –hmirror –vmirror –rotave=2 –norm=3400000 Random xyz 0kl N

and this creates Random xyz 0kl N.pgm, a 16bit .pgm file that can be opened
in many packages; I use ImageJ [21]. Putting on the ‘red hot’ colour palette and
pulling up the levels a bit gives figure 4.12.

The diffuse.hk0 treated the same way gives us figure 4.13; no Bragg spots
this time, and since the displacements are uncorrelated, no highly structured
diffuse either. Essentially we are seeing scattering from uncorrelated molecular
structure factors. Figure 4.13.

The effect of more lots can be seen by comparing figure 4.14a with figure
4.13; figure 4.14a uses 100 lots where figure 4.13 uses just 10. Figure 4.14b
shows the 0kl cut with the Bragg scattering subtracted and 100 lots calculated,
for comparison.

Figure 4.15 shows the same two cuts of reciprocal space after the MC has
been run for 100 cycles and 1000 cycles, where a cycle is the number of individ-
ual MC steps needed to on average visit each molecule once. Key parameters
are that all spring constants (SPRCON) have been set to 1.0, and that the
system is automatically adjusting to achieve a global Biso of 2.0, and that we
are dynamically adjusting the widths if the intervals from which the random
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Figure 4.12: The 0kl cut of reciprocal space of DCDNB, without the Bragg
scattering removed; some peaks noted for scale, and their indices should be
compared with the values in the file diffuse.0kl shown above.

h

k

Figure 4.13: The hk0 cut of reciprocal space of DCDNB, with the Bragg scatter-
ing removed; random displacements on x, y and z coordinates of all molecules,
no randomness in quaternions or internal degrees of freedom. Only 10 lots used
in the DIFFUSE calculation.
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Figure 4.14: (a) The hk0 cut of reciprocal space of DCDNB, with the Bragg
scattering removed; random displacements on x, y and z coordinates of all
molecules, no randomness in quaternions or internal degrees of freedom. 100
lots used in the DIFFUSE calculation. (b) is the same for 0kl.

increments on the molecular origin (x, y and z, the vector x) and on the four
components of the quaternion that governs overall molecular orientation (q).
Also, the molecules are being treated as rigid. 100 lots calculated. Bragg peaks
were calculated separately and then added on to these images to give a more
representative looking dataset.

By capturing the screen output, it is possible to observe the convergence of
the Biso to its chosen value and of the acceptance:rejection ratio to a ratio of
50% of moves rejected. Figure 4.16.

Another variation is to classify the contact vectors and modify their force
constants. Simple inspection of the contact vector list shows that, for example,
for some types of vectors we always have da=dc=0 but this is not necessarily
true of db. In other words, these vectors form a chain of contacts running along
the b axis. These vectors are numbers: 5,9,12,14,16,18,19,20,22,23,27,28,29,31
and 36. A plot of the structure with just these included is shown in figure 4.17.

So now we can look at what happens for example if we make these much
stronger than any other interactions. For example:

HEADER DCDNB from the CSD

...

etc

...

SPRCON 1.0

SPRCON 100.0 5,9,12,14,16,18,19,20,22,23,27,28,29,31,36

INSPR 0.0 ZMAT 1 INT 1 2

...

etc

...

We would expect this to cause the scattering to be more collapsed along b

(∼ b∗), giving the scattering a sort of banded appearance. Figure 4.18.
So now we clearly have a working simulation. Some points to note include:
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Figure 4.15: (a) and (c): The hk0 cut of reciprocal space of DCDNB, with the
Bragg scattering removed then added in from a separate calculation. After 100
(a) and 1000 (c) cycles of MC. (b) and (d): Same but 0kl

(a) (b)

Figure 4.16: (a) The convergence of the global Biso to the requested. (b) The
convergence of the rejection ratio (rejected MC moves ÷ total moves) to 0.5.
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Figure 4.17: Classes of contacts for which da=dc=0 is always true. These
therefore operate in chains along b, outlined by thick lines.
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Figure 4.18: (a) The hk0 and (b) the 0kl scattering froim a model in which
the classes of contact vectors for which da=dc=0 is always true are 100 times
stronger than the rest.
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• The notable sharpening of features when we go from 100 to 1000 MC
cycles — how mush sharper can it get?

• The fact that I have chosen. two easy sections to set up input files for —
h0l for example is trickier since β is not 90◦.

• Note that the ‘random’ calculations give a good indication of where in the
pattern scattered intensity is ‘allowed’ to go according to the molecular
structure factor. What this effectively means is that there are regions
of the diffraction pattern which will always be dark simply because the
molecular structure factor is small there. Such regions cannot therefore be
good tests of a model of the SRO, and this needs to be considered when
evaluating and refining models.

• After 100 cycles the global Biso is still oscillating, although the oscillation
amplitudes are small and soon after 100 MC cycles it settles down to the
desired value.

• Adjusting the rejection ratio and the Biso at the same time results in
interaction between the two. Further, if they fail to converge, that usually
means a subtle flaw or at least trick in the model; one example occurred
when one species had been removed form the occupancy structure to run
some simplified tests, but its existence had been left in the input files; the
actual MC did not care, it simply did not encounter this species when
calculating energies; but when it came to calculating a Biso across this
second species, numbers were undefined and this caused a breakdown in
the algorithm. Some tests have been added to combat this sort of thing,
but who’s to say there are not other unusual cases not yet encountered?

• Both the adjusted increments (‘widths’) and the adjusted spring constants
are outputted to the screen at the end of the simulation. These can be
copied back into the input file and these algorithms ‘turned off’ for subse-
quent simulations, as long as the subsequent simulations are substantially
the same as the initial one and can therefore use similar SPRCON and
width values.

• All the widths are generated from uniform distributions of random num-
bers, not Gaussian; this is because ZMC does not conserve the overall av-
erage inputted distribution — atoms may start with huge ADPs and end
with very small ones, or the system may be started in a completely ordered
state and thermally disordered. A future project is to make a version of
ZMC that conserves the average displacements as set up at the start. This
would have to be a swapping algorithm, and would use Gaussian random
numbers to set up the initial widths.

So far, we have done essentially two simulations; we have put random shifts
in x, and we have done a simple MC simulation in which x and q are allowed to
move. We have done some simple exploration of this as a function of the number
of lots calculated and the number of MC cycles done. Other parameters I am not
going to explore here include lot size and shape, ‘N’ versus ‘e’ versus ‘E’ versus
‘Y’ in the Bragg peak subtraction, and the effect on the pattern of randomness
in q. These are left as exercises for the reader! (No, I never do those things
either.)
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What we will look at next because it explores an important aspect of the
modelling is internal degrees of freedom. For DCDNB as implemented here,
that means rotations of the NO2 groups. Referring back to the z-matrix we can
see that the two atoms that have to be allowed to change their dihedral angles
are O1 and O3, or atom numbers 13 and 16. Hence if we want to generate some
randomness and not do much MC on these, analogous to what we did above for
x, then the input file for ZMC now looks like this:

HEADER DCDNB from the CSD

!!

!! Basic geometry needed

!!

CELL 9.5900 6.5860 14.7510 90.0000 106.8600 90.0000

ZMATFILE 1 dcdnb_cq1_METXOZ.zmat

QXYZFILE 1 dcdnb_cq1_METXOZ.qxyz

CONTACTFILE DCDNB_1_sort.contacts

CRYSTAL 32 32 32

!!

!! MC variables

!!

MCCYCLES 1

TEMPERATURE 1.0

XYZINITW 0.25

QINITW 0.0

ININITW 35.0

INTERNAL ZMAT 1 INT 1 dihedral 13

INTERNAL ZMAT 1 INT 2 dihedral 16

!!

XYZWIDTH 0.0

QWIDTH 0.0

SPRCON 1.0

INSPR 0.0 ZMAT 1 INT 1 2

BADJUST 1 2.0

INCUPDATE 1

!!

!! Stuff related to getting contacts:

!!

VMIN 0.5

VMAX 4.3

NEWCONTACTS DCDNB_1.contacts

CONTATOMS ZMAT 1 6 10 4 8 13 14 16 17

And the resulting .cif file gives a unit cell that looks like figure 4.19.
Now, I note that the ADPs result in the distribution on the O atoms looking

like ellipsoids, but in truth they will be more like bananas. By plotting the
coordinates of these atoms atop each other in a scatter plot, this becomes more
apparent, and incidentally shows how misleading conventional ADPs can be in
these segmented-molecule modes. Figure 4.20 was created by establishing an
MC input file in which the NO2 group dihedral angles were allowed random
shifts of at most around 35◦ and no other variation was allowed. ZMC was then
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Figure 4.19: A unit cell of DCDNB packed inMercury, showing the four molecules
(Z=4), with some randomness on x and on the internal degrees of freedom —
rotations of the NO2 groups, the dihedral angles of which are stored in the
vector i. Molecules also have some randomness in x.

run with the −−cartsn option to output a list of atomic Cartesian coordinates
without unit cell translations. This is a big file by some standards (> 100MB).
I ran this file through Unix sort, sorting by location (sort −g −k 4 infile > outfile)
then imported the first few thousand rows into a spreadsheet and plotted y

versus x, z versus y and z versus x and then manipulated the plot in xfig [37].
I am sure there are better ways but that suited the computer I was working on
at the time; gnuplot [38] and R [39] are better plotting solutions for many users
— scriptable, for one thing.

This use of the −−cartsn option brings to notice the other output flags for
ZMC. Their syntax can be observed by running ZMC with the −−help flag. This
output is largely self-explanatory, but is included in appendix E, with the output
of −−help2 in F, for anyone is looking at this document while not in front of a
computer.

DCDNB as modelled here possesses two internal degrees of freedom. In the
input files shown above, the torsional force constant on these is set to zero by
the keyword INSPR in the line:

INSPR 0.0 ZMAT 1 INT 1 2

So this line says that INTernal degrees of freedom 1 and 2 on ZMATrix 1
have a torsional force (‘spring’) constant of 0.0. This means that the rotations
of these groups are hindered only by the network con contact vectors to other
molecules — by the intermolecular interactions. The energy penalty associated
with rotating the group, in other words, comes from stretching and compressing
intermolecular contact vectors away from their equilibrium lengths (equation
2.3). But other restraints could be added; plainly a torsional force constant
could be placed on these dihedral angles simply by changing the line above to

INSPR 10.0 ZMAT 1 INT 1 2
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Figure 4.20: A scatter plot of DCDNB with large random variations on the
dihedral angles of the NO2 groups and no other randomness.

for example. The other possibility is intramolecular contact vectors. ZMC

with the −−getcontacts option does not generate intramolecular contact vectors.
However, since these are trivial to generate manually, or in Mercury, this is not
a major issue, and may be built into ZMC in a future version.

In the discussion of para-terphenyl in section 4.3, we will look at how com-
bining these things can be used to generate simple molecular conformations and
thus, in a sense, a crude form of molecular dynamics.

The other energy that may be needed as interaction between internal degrees
of freedom. These can be implemented on a pair-wise basis and are referred to
as ‘cross terms’ (equation 2.2). It may be that the groups tend to rotate in
parallel (in phase, if you prefer) or not, and this could be implemented using a
cross term — although perhaps an intramolecular contact vector would be just
as sensible, depending on the details of the system being modelled. ZMC tries to
give you the option.

This section has implemented a MC simulation of a relatively simple molec-
ular crystal, chosen (almost) at random. We have seen how to arrange the
molecular connectivity, generate a z-matrix and then contact vectors, manip-
ulate the input files to produce various kinds of behaviour and calculate the
diffuse scattering. We have not looked at occupancies, although an earlier sec-
tion has done this to some extent (section 2.2.4). This sort of system is often
called a ‘thermally’ disordered system. In some senses it is not disordered at all;
there are no split atomic sites, occupancy simulation needs to be applied. Yet
there are many systems of this ilk that show strong, highly structured diffuse
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scattering [24, 25] that is plainly informative about the correlated molecular
motions in the system.

Indeed, since the correlations in the ‘thermal motions’ come about through
intermolecular interactions, the fitting of the diffuse scattering to a sufficiently
realistic model may offer an alternative means of determining intermolecular
potentials that may have broader uses, in the calculation of IR spectra, for
example; it is to be born in mind that this work is written with a focus on
diffuse scattering, but that ultimately we are putting together a model crystal
from which, if sufficiently realistic, we may be able to calculate a range of
physical properties and compare with experiment — Young’s moduli? Lattice
contribution to the heat capacity? I am not yet sure. . .

4.3 para-terphenyl

PTP

4.4 Other Stuff

, PCNB, LiNbOF
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Chapter 5

Optimising the Model

Least squares, genetic algorithms, calibrated eyeball.
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Chapter 6

Parameterising the Force

Constants

This discusses Eric’s equation for parameterising the force constants, and the
idea of using all the contacts out to some length. It can also discuss use of
Lennard-Jones, and my idea of Lennard-Jones with a single potential for a
given type of atom pair, and not necessarily centred on the observed equilibrium
length.
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Appendix A

diffuse.f.

This appendix includes the code for diffuse.f, the Fortran 77 version of the
diffuse scattering calculation program DIFFUSE [3]. It must be compiled with
the readat.f shown in appendix B and the requested input file is shown in
appendix C. The compile command would look something like:

$$> g77 -o Diffuse diffuse.f readat.f

PROGRAM DIFFUSE

c Computes the d i f f u s e d i f f r a c t e d i n t e n s i t y from a s imulated
c d i s o rde r ed c r y s t a l . Input parameters are g iven in the f i l e
c ’ d i f f u s e . in ’ − output i s to the f i l e ’ i n t e n s i t y . bin ’ .
An
c i n t e r f a c e r out ine that prov ide s a c c e s s to in fo rmat ion in the
c s imu la t i on must be l i nked to t h i s program .

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c Vers ion 2 .1 a May 11 , 1995 ∗BDB∗
c Vers ion 2 .1 adds opt ion to subt r a c t exact ave . l a t t i c e
c v e r s i o n 2 .0 b computes Biso with or thogana l axes .
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

parameter (MI=400 ,MJ=400 ,MT=10 ,MS=155 ,MAT=6000)
parameter (MASK=2∗∗14−1)
complex c s f (MI ,MJ) , a c s f (MI ,MJ) , t c s f (MI ,MJ)
complex cex ( 0 :MASK) , c f a c t (0 : 1999 )
r e a l d s i (MI ,MJ) , xat (MAT, 3 ) , c e l l ( 6 )
r e a l ah o ( 3 ) , ah u (3 ) , ah v (3 ) , ah w (3 ) , uin ( 3 ) , v in ( 3 ) , win (3 )
r e a l a1 (MT) , b1 (MT) , a2 (MT) , b2 (MT) , a3 (MT) , b3 (MT)
r e a l a4 (MT) , b4 (MT) , c1 (MT) , fp (MT) , fpp (MT)
r e a l Biso (MS,MT) ,wt (MS,MT) , ax (MS,MT) , ay (MS,MT) , az (MS,MT)
in t e g e r i s t l (MI ,MJ) , c s i z e ( 3 ) , l s x y z ( 3 ) , lbeg ( 3 ) , l ( 3 )
cha ra c te r ∗70 de s c r i p
cha ra c te r ∗4 c a t (MT) , cat
cha ra c te r ∗1 qa la t , qbnd
cha ra c te r ∗32 fname
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common/ s i z e s /ah o , uin , vin , win , numu, numv ,numw, stlmax
common/ tabe l s /cex , i s t l , c f a c t
common/ s c a t t e r /a1 , b1 , a2 , b2 , a3 , b3 , a4 , b4 , c1 , fp , fpp
common/ c r y s t a l / c s i z e , c e l l
common/ in f o 1 / l s xyz , i s eed , j s eed , n lo ts , n s i t e s , ntypes
common/ in f o 2 /ah u , ah v , ah w
common/ in f o 3 / c at , descr ip , qa la t , qbnd

c Find out everyth ing we need to know to run the program . . .
c a l l READINF

c Write the input i n f o to standard output . . .
c a l l WRITEINF

c I n i t i a l i z e pseudo−random number gene ra to r . . .
c a l l RSEED( iseed , j s e ed )

c I n i t i a l i z e the complex exponent t ab l e . . .
c a l l cexpt ( cex )

c Open the output f i l e and wr i t e the appropr i a t e header . . .
c For 4byte record s i z e ( i . e . DEC) use the s e l i n e s
c i r l e n=numu
c i f ( i r l e n . l t . 2 0 ) i r l e n=20
c Else use the s e l i n e s

i r l e n=numu∗4
i f ( i r l e n . l t . 7 4 ) i r l e n=74

c
wr i t e (6 ,∗ ) ’ i n t e n s i t y f i l e ? ’
read (5 ,1122) fname
wr i t e (6 ,1122) fname

1122 format ( a32 )
c open ( uni t =1, f i l e =’ i n t e n s i t y . bin ’ , s t a tu s=’unknown ’ ,

open ( uni t =1, f i l e=fname , s t a tu s=’unknown ’ ,
∗ form=’unformatted ’ , a c c e s s=’ d i r e c t ’ , r e c l=i r l e n )

wr i t e (1 , r e c=1) i r l e n , d e s c r i p
wr i t e (1 , r e c=2)ah o , ah u , ah v , ah w ,numu, numv ,numw
wr i t e (1 , r e c=3) c e l l , stlmax
wr i t e (1 , r e c=4) i seed , j s eed , c s i z e , qbnd , n s i t e s , ntypes
wr i t e (1 , r e c=5) l s xyz , n lo ts , qa l a t

c l o s e ( un i t =1)

c Get average atom po s i t i o n s , occupancies , and Debye f a c t o r s . . .
p r in t ∗ , ’ Average St ruc tur e . . . ’
do 10 , i s i t e =1, n s i t e s
p r in t ∗ , ’ S i t e # ’ , i s i t e , ’ : ’
do 10 , i type =1, ntypes
cat=c a t ( i type )
c a l l AVINFO( i s i t e , cat , xx , yy , zz ,wx ,B)
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ax ( i s i t e , i type )=xx
ay ( i s i t e , i type )=yy
az ( i s i t e , i type )=zz
wt ( i s i t e , i type )=wx
Biso ( i s i t e , i type )=B
i f ( n int (wx∗100 ) . gt . 0 ) then
pr in t 101 , cat , xx , yy , zz , wt ( i s i t e , i type ) , Biso ( i s i t e , i type )

101 format (6x ,A, ’ atom at ( ’ , 3 f 6 . 3 , ’ ) , xocc = ’ ,
∗ f 5 . 2 , ’ , Biso = ’ , f 6 . 3 )

end i f
10 cont inue

c I f the r e i s no pe r i o d i c boundary l im i t the c r y s t a l s i z e . . .
i f ( ( qbnd . ne . ’ y ’ ) . and . ( qbnd . ne . ’Y’ ) ) then

c s i z e (1)= c s i z e (1)− l s x y z (1 )
c s i z e (2)= c s i z e (2)− l s x y z (2 )
c s i z e (3)= c s i z e (3)− l s x y z (3 )

end i f

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c For each r e c i p r o c a l plane a long the w−ax i s compute s c a t t e r i n g
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do 100 , nw=1,numw
pr in t ∗ , ’ ’
p r in t ∗ , ’ −−−−−−−−−−−−−−−−−−−−−−−−−−’
p r in t ∗ , ’ Rec ip r o ca l plane # ’ ,nw
pr in t ∗ , ’ −−−−−−−−−−−−−−−−−−−−−−−−−−’

c I n i t i a l i z e t ab l e o f s i n ( theta )/ lambda . . .
c a l l STLTAB( i s t l , c e l l , nw)

c Zero some a r r ay s . . .
do 110 , j =1,Numv
do 110 , i =1,Numu
c s f ( i , j )=cmplx ( 0 . d0 , 0 . d0 )
a c s f ( i , j )=cmplx ( 0 . d0 , 0 . d0 )
d s i ( i , j )=0.d0

110 cont inue

c Ca l cu la t e the average s t r u c tu r e f a c t o r i f asked to do so . . .
i f ( ( qa l a t . eq . ’ y ’ ) . or . ( qa l a t . eq . ’Y’ ) ) then

pr in t ∗ , ’ Computing Average S ca t t e r i n g us ing Biso . . . ’
c SCATTERING FROM AVERAGE CELL

do 120 , i s i t e =1, n s i t e s
cthp pr in t ∗ , ’ S i t e # ’ , i s i t e , ’ : ’

do 120 , i type=1, ntypes
cat=c a t ( i type )
xat (1 ,1)=ax ( i s i t e , i type )
xat (1 ,2)=ay ( i s i t e , i type )
xat (1 ,3)= az ( i s i t e , i type )
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wx=wt ( i s i t e , i type )
B=Biso ( i s i t e , i type )

natm=1
i f ( n int (wx∗1000 ) . gt . 1 ) then

c a l l SCATF( c fa c t , i type )
c a l l DEBYE( c fa c t ,B,wx)
c a l l STRUCF( t c s f , xat , natm ,nw)
do 125 , j =1,Numv
do 125 , i =1,Numu
a c s f ( i , j )= a c s f ( i , j )+ t c s f ( i , j )

125 cont inue
end i f

120 cont inue

c INTERFERENCE FUNCTION OF LOT SHAPE
xx=0.
yy=0.
zz=0.
c a l l GETAV( xat , natm , l s xyz , xx , yy , zz )
do 130 , i =0 ,1999

c f a c t ( i )=cmplx ( 1 . , 0 . )
130 cont inue

c a l l STRUCF( t c s f , xat , natm ,nw)
do 131 , j =1,Numv
do 131 , i =1,Numu
a c s f ( i , j )= a c s f ( i , j )∗ t c s f ( i , j )

131 cont inue
pr in t ∗ , ’ ’

end i f

c A more exact method i f asked . . .
i f ( ( qa l a t . eq . ’ e ’ ) . or . ( qa l a t . eq . ’E ’ ) ) then

i f ( qa l a t . eq . ’ e ’ ) then
mp=( c s i z e (1 )∗ c s i z e (2 )∗ c s i z e (3 ) )/20

pr in t ∗ , ’ Average S ca t t e r i n g from 5% o f Crysta l . . . ’
cthp pr in t ∗ , ’ This could take some time . . . ’
c SCATTERING FROM AVERAGE CELL

do 140 , i s i t e =1, n s i t e s
cthp pr in t ∗ , ’ S i t e # ’ , i s i t e , ’ : ’

do 140 , i type =1,ntypes
cat=c a t ( i type )
c a l l SCATF( c fa c t , i type )

natm=0
do 145 , i r =1,mp

c a l l RANLOC( c s i z e , l )
c a l l READAT( l , i s i t e , cat , inum , x , y , z )
i f ( inum . eq . 1 ) then

natm=natm+1
xat (natm,1)=x
xat (natm,2)=y
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xat (natm,3)=z
i f (natm . eq .MAT) then

c a l l STRUCF( t c s f , xat , natm ,nw)
do 146 , j =1,Numv
do 146 , i =1,Numu
a c s f ( i , j )= a c s f ( i , j )+ t c s f ( i , j )

146 cont inue
natm=0

end i f
end i f

145 cont inue
c a l l STRUCF( t c s f , xat , natm ,nw)
do 147 , j =1,Numv
do 147 , i =1,Numu
a c s f ( i , j )= a c s f ( i , j )+ t c s f ( i , j )

147 cont inue
140 cont inue

e l s e
l 1=c s i z e (1 )
l 2=c s i z e (2 )
l 3=c s i z e (3 )
mp=l1 ∗ l 2 ∗ l 3

p r in t ∗ , ’ Computing EXACT Average S ca t t e r i n g . . . ’
cthp pr in t ∗ , ’ This could take a loooooooong time . . . ’
c SCATTERING FROM AVERAGE CELL

do 150 , i s i t e =1, n s i t e s
cthp pr in t ∗ , ’ S i t e # ’ , i s i t e , ’ : ’

do 150 , i type =1,ntypes
cat=c a t ( i type )
c a l l SCATF( c fa c t , i type )

natm=0
do 155 , kk=1, l 3
l (3)=kk
do 155 , j j =1, l 2
l (2)= j j
do 155 , i i =1, l 1
l (1)= i i
c a l l READAT( l , i s i t e , cat , inum , x , y , z )
i f ( inum . eq . 1 ) then

natm=natm+1
xat (natm,1)=x
xat (natm,2)=y
xat (natm,3)= z
i f (natm . eq .MAT) then

c a l l STRUCF( t c s f , xat , natm ,nw)
do 156 , j =1,Numv
do 156 , i =1,Numu
a c s f ( i , j )= a c s f ( i , j )+ t c s f ( i , j )

156 cont inue
natm=0
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end i f
end i f

155 cont inue
c a l l STRUCF( t c s f , xat , natm ,nw)
do 157 , j =1,Numv
do 157 , i =1,Numu

a c s f ( i , j )= a c s f ( i , j )+ t c s f ( i , j )
157 cont inue
150 cont inue

end i f
c INTERFERENCE FUNCTION OF LOT SHAPE

xx=0.
yy=0.
zz=0.
c a l l GETAV( xat , natm , l s xyz , xx , yy , zz )
do 160 , i =0 ,1999

c f a c t ( i )=cmplx ( 1 . , 0 . )
160 cont inue

c a l l STRUCF( t c s f , xat , natm ,nw)
denom=1./mp

do 161 , j =1,Numv
do 161 , i =1,Numu
a c s f ( i , j )= a c s f ( i , j )∗ t c s f ( i , j )∗ cmplx (denom , 0 . )

161 cont inue
pr in t ∗ , ’ ’

end i f

c Now compute the d i f f u s e s c a t t e r i n g by averag ing the t o t a l
c i n t e n s i t i e s from ’ n lo ts ’ r e g i o n s o f the s imulated c r y s t a l .
c Loop over a l l atom types and then over a l l atom s i t e s .

do 200 n lo t =1, n l o t s
c a l l RANLOC( c s i z e , lbeg )

c pr in t ∗ , ’ Lot number = ’ , nlot , ’ ( l ,m, n ) = ( ’ ,
c ∗ ( lbeg ( i ) , i =1 ,3 ) , ’ ) ’

do 210 , i type =1,ntypes
cat=c a t ( i type )
c a l l SCATF( c fa c t , i type )
do 210 , i s i t e =1, n s i t e s

i f ( n int (wt ( i s i t e , i type )∗1000 ) . gt . 1 ) then
c a l l GETATM( xat , natm , lbeg , c s i z e , l s xyz , i s i t e , cat , n c e l l )

c p r in t ∗ , ’ # o f ’ , c a t ( i type ) , ’ atoms on l a t t i c e ’
c ∗ , ’ s i t e ’ , i s i t e , ’ = ’ , natm

c a l l STRUCF( t c s f , xat , natm ,nw)
c Add th i s part o f the s t r u c tu r e f a c t o r to the t o t a l . . .

do 215 , j =1,Numv
do 215 , i =1,Numu
c s f ( i , j )= c s f ( i , j )+ t c s f ( i , j )

215 cont inue
end i f

210 cont inue
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c Subtract average (Bragg ) s c a t t e r i n g amplitude . . .
do 220 , j =1,Numv
do 220 , i =1,Numu
c s f ( i , j )= c s f ( i , j )− a c s f ( i , j )

220 cont inue

c Convert to i n t en s i t y , add to to ta l , and zero c s f ( ) ) . . .
do 230 , j =1,Numv
do 230 , i =1,Numu

ds i ( i , j )=d s i ( i , j )+ r e a l ( c s f ( i , j )∗ conjg ( c s f ( i , j ) ) )
c s f ( i , j )=cmplx ( 0 . d0 , 0 . d0 )

230 cont inue

c Save the d i f f u s e i n t e n s i t y to d i sk . . .
c Comment out i f you don ’ t want to save t h i s o f t en .
c There i s a pr e t ty b ig per formance pena l ty on VP! !
c open ( uni t =1, f i l e =’ i n t e n s i t y . bin ’ , s t a tu s=’old ’ ,
c ∗ form=’unformatted ’ , a c c e s s=’ d i r e c t ’ , r e c l=i r l e n )
c xnorm=1./( r e a l ( n c e l l ∗ n lo t ) )
c do 240 j =1,Numv
c i r e c=numv∗(nw−1)+ j+5
c wr i t e (1 , r e c=i r e c ) ( d s i ( i , j )∗xnorm , i =1,Numu)
c240 cont inue
c c l o s e ( un i t =1)

c Te l l the f i l e ’ cur . txt ’ where we are . . .
i f ( ( n l o t /50)∗50 . eq . n l o t . or . n l o t s . l t . 2 0 0 ) then

open ( uni t =1, f i l e =’ cur . txt ’ , s t a tu s=’unknown ’ )
wr i t e ( 1 ,∗ ) ’ Now at l o t # ’ , nlot , ’ / ’ , n l o t s
wr i t e ( 1 ,∗ ) ’ Now at plane # ’ ,nw, ’ / ’ ,numw

c l o s e ( un i t =1)
end i f

200 cont inue
c Fin i shed doing ’ n lo ts ’ r e g i o n s on t h i s one plane .

c Check to s e e i f we did zero l o t s and do average I
i f ( n l o t s . eq . 0 ) then

wr i t e (∗ ,∗ ) ’ This w i l l only have the average in i t ! ’
do 300 , j =1,Numv
do 300 , i =1,Numu
ds i ( i , j )= r e a l ( a c s f ( i , j )∗ conjg ( a c s f ( i , j ) ) )

300 cont inue
n lo t=1

n c e l l=1
end i f

c Save the d i f f u s e i n t e n s i t y to d i sk . . .
c open ( uni t =1, f i l e =’ i n t e n s i t y . bin ’ , s t a tu s=’old ’ ,

open ( uni t =1, f i l e=fname , s t a tu s=’old ’ ,
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∗ form=’unformatted ’ , a c c e s s=’ d i r e c t ’ , r e c l=i r l e n )
xnorm=1./( r e a l ( n c e l l ∗ n l o t s ) )
do 170 j =1,Numv
i r e c=numv∗(nw−1)+ j+5
wr i t e (1 , r e c=i r e c ) ( d s i ( i , j )∗xnorm , i =1,Numu)

170 cont inue
c l o s e ( un i t =1)

100 cont inue
c Fin i shed .

p r in t ∗ , ’ Al l done ! ’
p r in t ∗ , ’ ’

c
e r r c n t=0

556 open ( uni t =1, f i l e =’ cur . count ’ , s t a tu s=’unknown ’ , e r r =555)
read (1 ,∗ ) i count

rewind 1
icount=icount+1

c
wr i t e (1 ,∗ ) i count

c l o s e ( un i t =1)
goto 558

555 cont inue
e r r cn t=e r r cn t+1
i f ( e r r cn t . l t . 1 0 0 ) goto 556
pr in t ∗ , ’ unable to wr i t e cur . count ’

c
558 cont inue

END

SUBROUTINE AVINFO( i s i t e , cat , xx , yy , zz ,wx , Biso )
c Takes a look at a l l o f the uni t c e l l s in the s imulated
c c r y s t a l and computes the average po s i t i o n (xx , yy , zz ) o f
c an atom labe l e d ’ cat ’ on the l a t t i c e s i t e ’ i s i t e ’ .
I t
c a l s o r e tu rns the occupat ion f r a c t i o n ’wx ’ and an
c i s o t r o p i c s t a t i c d i sp lacement Debye f a c t o r ’ Biso ’

i n t e g e r l ( 3 ) , c s i z e (3 )
r e a l c e l l ( 6 )
double p r e c i s i o n sumx , sumy , sumz , sumua , sumub , sumuc
cha ra c te r ∗4 cat

common/ c r y s t a l / c s i z e , c e l l

c These are the c e l l d imens ions and co s i n e s
a1=c e l l ( 1 )
a2=c e l l ( 2 )
a3=c e l l ( 3 )
c1=c e l l ( 4 )
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c2=c e l l ( 5 )
c3=c e l l ( 6 )

s3=sq r t (1.− c3 ∗∗2)
ugh=(1.−c2∗∗2+c1 ∗∗2∗ s3 ∗∗2)

c Def ine some cons tant s ( us ing double p r e c i s i o n f o r v a r i a b l e s
c that loop r e a l sums) . . .

xpi2 =(4.∗ atan ( 1 . ) ) ∗ ∗ 2
ntot=0
sumx=0.d0
sumy=0.d0
sumz=0.d0
sumua=0.d0
sumub=0.d0
sumuc=0.d0

c Loop over a l l c e l l s and do the sums . . .
do 10 , kk=1, c s i z e (3 )
l (3)=kk
do 10 , j j =1, c s i z e (2 )
l (2)= j j
do 10 , i i =1, c s i z e (1 )
l (1)= i i

c This i s a c a l l to the user supp l i ed subrout ine .
We pass
c i t a c e l l ’ l ( ) ’ , s i t e ’ i s i t e ’ , and atom de s c r i p t i o n ’ cat ’
c and i t t e l l s us i f the r e i s such an atom the r e ( i . e .
c inum=1) and i f so where (x , y , z ) .

c a l l READAT( l , i s i t e , cat , inum , x , y , z )
i f ( inum . eq . 1 ) then

ntot=ntot+1
sumx=sumx+x
sumy=sumy+y
sumz=sumz+z
sumua=sumua+( a1∗x +a2∗y∗ c3 + a3∗ z∗ c2 )∗∗2
sumub=sumub+( a2∗y∗ s3 + a3∗z∗ c1∗ s3 )∗∗2
sumuc=sumuc+(a3∗z )∗∗2∗ugh
e l s e i f ( inum . ne . 0 ) then

end i f
10 cont inue

c Normalize , compute Debye fa c to r , and get outa here . . .
wx=r e a l ( ntot )/ r e a l ( c s i z e (1 )∗ c s i z e (2 )∗ c s i z e ( 3 ) )

i f (wx∗1000 . gt . 1 ) then
denom=1./ r e a l ( ntot )

xx=sumx∗denom
yy=sumy∗denom
zz=sumz∗denom
sumua=sumua∗denom
sumub=sumub∗denom
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sumuc=sumuc∗denom
sumaa=( a1∗xx +a2∗yy∗ c3 + a3∗ zz∗ c2 )∗∗2
sumab=( a2∗yy∗ s3 + a3∗ zz∗ c1∗ s3 )∗∗2
sumac=(a3∗ zz )∗∗2∗ugh
Ba=8.∗xpi2 ∗( sumua−sumaa)
Bb=8.∗xpi2 ∗( sumub−sumab)
Bc=8.∗xpi2 ∗( sumuc−sumac)
Biso=(Ba+Bb+Bc )/ 3 .

end i f
RETURN
END

SUBROUTINE GETAV( xat , natm , l s xyz , xx , yy , zz )
c Composes a l i s t o f atom po s i t i o n s ’ xat ( ) ’ f o r a s i t e po s i t i o n
c (xx , yy , zz ) . There are ’natm ’ p o s i t i o n s returned and the s e l i e
c i n s i d e uni t c e l l s with c en t e r s i n s i d e an e l i p s o i d with major
c axes ( a long the c r y s a l l o g r a ph i c ( a , b , c ) d i r e c t i o n s ) o f l s x y z
c uni t c e l l s .

parameter (MAT=6000)
r e a l xat (MAT, 3 )
i n t e g e r l s x y z (3 )

x01=r e a l ( l s x y z ( 1 ) ) / 2 .
x02=r e a l ( l s x y z ( 2 ) ) / 2 .
x03=r e a l ( l s x y z ( 3 ) ) / 2 .
natm=0

c Loop over a l l c e l l s that might be in the e l i p s o i d but only
c keep those c e l l s that have a cente r i n s i d e the e l i p s o i d .

do 20 , kk=0, l s x y z (3)−1
x te s t3=( r e a l ( kk)−x03+0.5 )∗∗2/ x03∗∗2
do 20 , j j =0, l s x y z (2)−1
x te s t2=( r e a l ( j j )−x02+0.5 )∗∗2/ x02∗∗2
do 20 , i i =0, l s x y z (1)−1
x te s t1=( r e a l ( i i )−x01+0.5 )∗∗2/ x01∗∗2
x t e s t=xte s t1+xte s t2+xte s t3
i f ( x t e s t . l e . 1 . ) then
natm=natm+1
xat (natm,1)= r e a l ( i i )+xx
xat (natm,2)= r e a l ( j j )+yy
xat (natm,3)= r e a l ( kk)+zz

end i f
20 cont inue

RETURN
END

SUBROUTINE GETATM( xat , natm , lbeg , c s i z e , l s xyz , i s i t e , cat , n c e l l )
c Composes a l i s t o f ’natm ’ atom po s i t i o n s ’ xat ( ) ’ f o r a s i t e
c po s i t i o n ’ i s i t e ’ and atom l a b e l ’ cat ’ that l i e i n s i d e i n s i d e
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c uni t c e l l s with c en t e r s i n s i d e an e l i p s o i d with major axes
c ( a long the c r y s a l l o g r a ph i c ( a , b , c ) d i r e c t i o n s ) o f l s x y z uni t
c c e l l s . The e l l i p s o i d cente r i s p laced us ing the va r i a b l e
c ’ lbeg ( ) ’ . The c r y s t a l s i z e ’ c s i z e ( ) ’ i s used to avoid over−
c running the ar ray and the number o f un i t c e l l s ’ n c e l l ’
c conta ined in the e l i p s o i d i s a l s o returned so that we know
c what to normal i ze to l a t e r .

parameter (MAT=6000)
r e a l xat (MAT, 3 )
i n t e g e r lbeg ( 3 ) , c s i z e ( 3 ) , l s x y z ( 3 ) , natm
in t e g e r l (3 )
cha ra c te r ∗4 cat

c I n i t i a l i z e a few v a r i a b l e s . . .
x01=r e a l ( l s x y z ( 1 ) ) / 2 .
x02=r e a l ( l s x y z ( 2 ) ) / 2 .
x03=r e a l ( l s x y z ( 3 ) ) / 2 .
natm=0
n c e l l=0

c Loop over a l l c e l l s that might be i n s i d e the e l l i p s o i d . . .
do 100 , kk=0, l s x y z (3)−1

l (3)=kk+lbeg (3 )
i f ( l ( 3 ) . gt . c s i z e ( 3 ) ) l (3)= l (3)− c s i z e (3 )
x te s t3=( r e a l ( kk)−x03+0.5 )∗∗2/ x03∗∗2
do 100 , j j =0, l s x y z (2)−1
l (2)= j j+lbeg (2 )
i f ( l ( 2 ) . gt . c s i z e ( 2 ) ) l (2)= l (2)− c s i z e (2 )
x te s t2=( r e a l ( j j )−x02+0.5 )∗∗2/ x02∗∗2
do 100 , i i =0, l s x y z (1)−1
l (1)= i i+lbeg (1 )
i f ( l ( 1 ) . gt . c s i z e ( 1 ) ) l (1)= l (1)− c s i z e (1 )
x te s t1=( r e a l ( i i )−x01+0.5 )∗∗2/ x01∗∗2

c I s i t i n s i d e the e l l i p s o i d ?
x t e s t=xte s t1+xte s t2+xte s t3
i f ( x t e s t . l e . 1 . ) then

n c e l l=n c e l l+1
c a l l READAT( l , i s i t e , cat , inum , x , y , z )
i f ( inum . eq . 1 ) then

natm=natm+1
xat (natm,1)= r e a l ( i i )+x
xat (natm,2)= r e a l ( j j )+y
xat (natm,3)= r e a l ( kk)+z

e l s e i f ( inum . ne . 0 ) then
stop ’The va r i a b l e inum from readat must be 0 or 1 ’

end i f
end i f

100 cont inue
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RETURN
END

SUBROUTINE CEXPT( cex )
c This r out ine computes a t ab l e o f exp ( i ∗2 pi ∗ de l t a ) that i s used
c to save time in computing t r i g f un c t i o n s in the rout ine STRUCF.
c The spac ing o f the va lue s in the t ab l e i s 1/2∗∗N where N i s
c chosen to compromise between p r e c i s i o n and the s i z e o f the
c t ab l e . Too l a r g e o f a t ab l e s i z e w i l l s low down the computation
c cons ide r ab ly .

parameter ( i 2 p i =2∗∗14 ,MASK=2∗∗14−1)
complex cex ( 0 :MASK)
double p r e c i s i o n twopi , xmult , xarg , xt

xt=1.d0/ i 2 p i
twopi=8.d0∗datan ( 1 . d0 )
do 10 , i =0,MASK

xmult=r e a l ( i )∗ xt
xarg=twopi∗xmult
cex ( i )=cmplx ( cos ( xarg ) , s i n ( xarg ) )

10 cont inue

RETURN
END

SUBROUTINE STLTAB( i s t l , c e l l , nw)
c Ca l cu la t e s the va lue o f s i n ( theta )/ lambda f o r each element
c o f the d i f f u s e s c a t t e r i n g ar ray . The c e l l parameters ( a , b , c ,
c cos ( bc ) , cos ( ac ) , co s ( ab ) ) , computation spac ing s and dimmensions ,
c and the r e c i p r o c a l s e c t i o n must be provided . This t ab l e i s
c used f o r quick lookup o f the s c a t t e r i n g f a c t o r curves .
c The output t ab l e i s i n t e g e r with i s t l=nint ( s t l ∗1000 ) .

parameter (MI=400 ,MJ=400)
i n t e g e r i s t l (MI ,MJ)
r e a l ah o ( 3 ) , c e l l ( 6 )
r e a l uin ( 3 ) , v in ( 3 ) , win (3 )

common/ s i z e s /ah o , uin , vin , win , numu, numv ,numw, stlmax

c The c e l l parameters . . .
a1=c e l l ( 1 )
a2=c e l l ( 2 )
a3=c e l l ( 3 )
c1=c e l l ( 4 )
c2=c e l l ( 5 )
c3=c e l l ( 6 )
s1=s i n ( acos ( c1 ) )
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s2=s i n ( acos ( c2 ) )
s3=s i n ( acos ( c3 ) )

c I got t h i s out o f Cul i ty . . .
V=a1∗a2∗a3∗ s q r t (1.− c1∗∗2−c2∗∗2−c3 ∗∗2+2.∗c1∗ c2∗c3 )
S11=(a2 ∗∗2)∗ ( a3 ∗∗2)∗ ( s1 ∗∗2)
S22=(a1 ∗∗2)∗ ( a3 ∗∗2)∗ ( s2 ∗∗2)
S33=(a1 ∗∗2)∗ ( a2 ∗∗2)∗ ( s3 ∗∗2)
S12=(a1 )∗ ( a2 )∗ ( a3 ∗∗2)∗ ( c1∗c2−c3 )
S23=(a2 )∗ ( a3 )∗ ( a1 ∗∗2)∗ ( c2∗c3−c1 )
S13=(a1 )∗ ( a3 )∗ ( a2 ∗∗2)∗ ( c1∗c3−c2 )

c Loop over the a l l e lements in the output image . . .
do 10 , j j =1,Numv

do 10 , i i =1,Numu
xh1=ah o (1)+ r e a l ( i i −1)∗uin (1)+ r e a l ( j j −1)∗vin (1)+nw∗win (1 )
xh2=ah o (2)+ r e a l ( i i −1)∗uin (2)+ r e a l ( j j −1)∗vin (2)+nw∗win (2 )
xh3=ah o (3)+ r e a l ( i i −1)∗uin (3)+ r e a l ( j j −1)∗vin (3)+nw∗win (3 )
s t l=sq r t ( S11∗xh1∗∗2+S22∗xh2∗∗2+S33∗xh3 ∗∗2

∗ +2.∗S12∗xh1∗xh2+2.∗S13∗xh1∗xh3+2.∗S23∗xh2∗xh3 )
s t l =0.5∗ s t l /V
i s t l ( i i , j j )=nint ( s t l ∗1000 . )
i f ( i s t l ( i i , j j ) . gt . 1 999 ) then

wr i t e (∗ ,∗ ) i i , j j , i s t l ( i i , j j )
stop ’ s i n ( theta )/ lambda i s g r e a t e r than 2 ! ’

end i f
10 cont inue

RETURN
END

SUBROUTINE SCATF( c fa c t , i type )
c This r out ine computes the complex atomic s c a t t e r i n g f a c t o r as
c a func t i on o f s i n ( theta )/ lambda f o r the element i type g iven
c the parameters in the common block . I f t h i s has a l r eady been
c computed f o r t h i s atom type then t h i s r out ine j u s t r e tu rns the
c p r e v i o u s l y computed va lue s . (That i s what the extra ar ray
c c f tab ( ) ho lds and what the t e s t i s a l l about . )

parameter ( x inc =0.001)
parameter (MT=10)
complex c f a c t (0 : 1999 )
r e a l a1 (MT) , b1 (MT) , a2 (MT) , b2 (MT) , a3 (MT) , b3 (MT)
r e a l a4 (MT) , b4 (MT) , c1 (MT) , fp (MT) , fpp (MT)
complex c f tab (0 : 1999 ,MT)
i n t e g e r i t e s t (MT)

common/ s c a t t e r /a1 , b1 , a2 , b2 , a3 , b3 , a4 , b4 , c1 , fp , fpp
data i t e s t /10∗0/
save c f tab , i t e s t
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c Test i f I have a l r eady computed i t f o r t h i s element
i f ( i t e s t ( i type ) . eq . 1234 ) then

do 5 , i =0 ,1999
c f a c t ( i )=c f tab ( i , i type )

5 cont inue
e l s e

c I haven ’ t done t h i s element yet so compute i t . . .
do 10 , i =0 ,1999
s t l=f l o a t ( i )∗ x inc
s t l 2=s t l ∗∗2
s f = a1 ( i type )∗ exp (−1.∗b1 ( i type )∗ s t l 2 )
s f = s f + a2 ( i type )∗ exp (−1.∗b2 ( i type )∗ s t l 2 )
s f = s f + a3 ( i type )∗ exp (−1.∗b3 ( i type )∗ s t l 2 )
s f = s f + a4 ( i type )∗ exp (−1.∗b4 ( i type )∗ s t l 2 ) + c1 ( i type )
s fp=fp ( i type )
s fpp=fpp ( i type )
c f a c t ( i )=cmplx ( s f+sfp , s fpp )
c f tab ( i , i type )= c f a c t ( i )

10 cont inue
c Now I have computed i t so l e t fu tur e c a l l know th i s . . .

i t e s t ( i type )=1234
end i f

RETURN
END

SUBROUTINE DEBYE( c fa c t , Biso ,wx)
c Mu l t i p l i e s a t ab l e o f s c a t t e r i n g l eng ths ’ c f a c t ( ) ’ by a
c s t a t i c d i sp lacement Debye f a c t o r and by a we ight ing f a c t o r
c ’wx ’ which i s u sua l l y a s i t e occupancy f r a c t i o n .

parameter ( x inc =0.001)
complex c f a c t (0 : 1999 )

c Loop over the whole t ab e l c f a c t ( ) . . .
B=−1.∗Biso
do 10 , i =0 ,1999
s t l=f l o a t ( i )∗ x inc
s t l 2=s t l ∗∗2
c f a c t ( i )=wx∗ c f a c t ( i )∗ exp (B∗ s t l 2 )

10 cont inue

RETURN
END

SUBROUTINE RANLOC( c s i z e , lbeg )
c Returns a pseudo−random c e l l from with in the s imulated c r y s t a l
c which i s ’ c s i z e ( ) ’ c e l l s on edge .
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i n t e g e r c s i z e ( 3 ) , lbeg (3 )
r e a l xran (3 )

c a l l rannum( xran , 3 )
lbeg (1)= in t ( xran (1)∗ c s i z e (1))+1
lbeg (2)= in t ( xran (2)∗ c s i z e (2))+1
lbeg (3)= in t ( xran (3)∗ c s i z e (3))+1

RETURN
END

SUBROUTINE RSEED( i j , k l )
c This i s the i n i t i a l i z a t i o n rout ine f o r the random number
c g ene ra to r rannum ( ) and must be c a l l e d once p r i o r to rannum ( ) .
c NOTE: The seed v a r i a b l e s must have va lue s between :
c 0 <= IJ <= 31328 0 <= KL <= 30081

r e a l U(97 ) , C, CD, CM
in t e g e r I97 , J97

common / r a s e t 1 / U, C, CD, CM, I97 , J97
SAVE

i f ( IJ . l t . 0 . or . IJ . gt . 31328 . or .
∗ KL . l t . 0 . or . KL . gt . 30081 ) then

pr in t ’ (A) ’ , ’ The f i r s t random number seed must have a ’ ,
∗ ’ va lue between 0 and 31328 ’

p r in t ’ (A) ’ , ’ The second seed must have a va lue between ’ ,
∗ ’0 and 30081 ’

stop
end i f

i = mod( IJ /177 , 177) + 2
j = mod( IJ , 177) + 2
k = mod(KL/169 , 178) + 1
l = mod(KL, 169)

do 2 i i = 1 , 97
s = 0 .0
t = 0 .5
do 3 j j = 1 , 24

m = mod(mod( i ∗ j , 179)∗k , 179)
i = j
j = k
k = m
l = mod(53∗ l +1, 169)
i f (mod( l ∗m, 64) . ge . 32) then

s = s + t
end i f
t = 0 .5 ∗ t
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3 cont inue
U( i i ) = s

2 cont inue

C = 362436.0 / 16777216.0
CD = 7654321.0 / 16777216.0
CM = 16777213.0 /16777216.0

I97 = 97
J97 = 33

RETURN
END

SUBROUTINE RANNUM( rvec , l en )
c in F lo r ida State Un ive r s i ty Report : FSU−SCRI−87−50.
I t was
c s l i g h t l y modi f i ed by F . James to produce an ar ray o f pseudo−
c random numbers .

r e a l rvec (∗ )
r e a l U(97 ) , C, CD, CM
in t e g e r I97 , J97
i n t e g e r i v e c

common / r a s e t 1 / U, C, CD, CM, I97 , J97
save

do 100 i v e c = 1 , LEN
uni = U( I97 ) − U( J97 )
i f ( uni . l t . 0 . 0 ) uni = uni + 1 .0
U( I97 ) = uni
I97 = I97 − 1
i f ( I97 . eq . 0) I97 = 97
J97 = J97 − 1
i f ( J97 . eq . 0) J97 = 97
C = C − CD
i f ( C . l t . 0 . 0 ) C = C + CM
uni = uni − C
i f ( uni . l t . 0 . 0 ) uni = uni + 1 .0
RVEC( i v e c ) = uni

100 cont inue

RETURN
END

SUBROUTINE READINF
c This r out ine reads in a l l the in fo rmat ion nece s sa ry to run
c t h i s program from the f i l e ’ d i f f u s e . in ’ and pa s s e s a l l o f t h i s
c in fo rmat ion , through common blocks , back to the main rout ine
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c f o r use as i t s e e s f i t .

parameter (MI=400 ,MJ=400)
parameter (MT=10 ,MS=155)
r e a l ah o ( 3 ) , ah u (3 ) , ah v (3 ) , ah w (3 )
r e a l c e l l ( 6 ) , uin ( 3 ) , v in ( 3 ) , win (3 )
i n t e g e r c s i z e ( 3 ) , l s x y z (3 )
r e a l a1 (MT) , b1 (MT) , a2 (MT) , b2 (MT) , a3 (MT) , b3 (MT)
r e a l a4 (MT) , b4 (MT) , c1 (MT) , fp (MT) , fpp (MT)
cha ra c te r ∗70 de s c r i p
cha ra c te r ∗4 c a t (MT)
cha ra c te r ∗1 qa la t , qbnd

cha ra c te r ∗32 d i f f i n

common/ s i z e s /ah o , uin , vin , win , numu,numv ,numw, stlmax
common/ s c a t t e r /a1 , b1 , a2 , b2 , a3 , b3 , a4 , b4 , c1 , fp , fpp
common/ c r y s t a l / c s i z e , c e l l
common/ in f o 1 / l s xyz , i s eed , j s eed , n lo ts , n s i t e s , ntypes
common/ in f o 2 /ah u , ah v , ah w
common/ in f o 3 / c at , descr ip , qa la t , qbnd

c Find out everyth ing we need to know to run the program . . .
p r in t ∗ , ’ ’
p r in t ∗ , ’DIFFUSE − Ver . 2 . 1 a − May 11 , 1995 ’
p r in t ∗ , ’ ’

c open ( uni t =1, f i l e =’ d i f f u s e . in ’ , s t a tu s=’old ’ )
wr i t e ( 6 ,∗ ) ’ d i f f u s e . in f i l ename ? ’
read (5 ,∗ ) d i f f i n

open ( uni t =1, f i l e=d i f f i n , s t a tu s=’old ’ )
c Get the run d e s c r i p t i o n

read (1 ,∗ ) d e s c r i p
c Random Number Seeds [ < 31328 and 30081 r e s p e c t i v e l y ]

read (1 ,∗ ) i s eed , j s e ed
c Get the La t t i c e Parameter In fo ( Axia l l engths , Cos ines )

read (1 ,∗ ) ( c e l l ( i ) , i =1 ,6)
c Get the Crysta l S i z e in Unit Ce l l s

read (1 ,∗ ) ( c s i z e ( i ) , i =1 ,3)
c Does t h i s c r y s t a l conta in a pe r i o d i c boundary?

read (1 , ’ (A1 ) ’ ) qbnd
c Get the o r i g i n o f the image computation

read (1 ,∗ ) ( ah o ( i ) , i =1 ,3)
c Get the maximum ho r i z on ta l po int and number o f d i v i s i o n s

read (1 ,∗ ) ( ah u ( i ) , i =1 ,3) ,numu
c Get the maximum v e r t i c a l po int and Number o f d i v i s i o n s

read (1 ,∗ ) ( ah v ( i ) , i =1 ,3) ,numv
c Get the maximum w−ax i s po int and Number o f d i v i s i o n s

read (1 ,∗ ) ( ah w ( i ) , i =1 ,3) ,numw
i f ( (Numu. gt .MI ) . or . (Numv. gt .MJ) ) then

stop ’ Your image i s too b ig ! ’
end i f
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c Get maximum s in ( theta )/ lambda
read (1 ,∗ ) stlmax

c Get the Lot S i z e ( S i z e o f Lots << c s i z e ( ) )
read (1 ,∗ ) ( l s x y z ( i ) , i =1 ,3)

c Get the Number o f Lots
read (1 ,∗ ) n l o t s

c How many Atom S i t e Po s i t i o n s are the r e per Ce l l ?
read (1 ,∗ ) n s i t e s
i f ( n s i t e s . gt .MS) stop ’ Too many s i t e s ! ’

c How many Atom Types are we to Deal With? (<10)
read (1 ,∗ ) ntypes
i f ( ntypes . gt .MT) stop ’ Too many atom types ! ’

c Do we Want to Subtract an Average La t t i c e (Y/N) ?
read (1 , ’ (A1) ’ ) qa l a t

c Read in the S ca t t e r i n g Factor In fo . . .
do 10 , k=1,ntypes

c Get the s e from Table 2 . 2B, p . 99 , Vol . 3 , Int . Tables
read (1 ,∗ ) c a t ( k )
read (1 ,∗ ) a1 (k ) , b1 (k ) , a2 (k ) , b2 (k )
read (1 ,∗ ) a3 (k ) , b3 (k ) , a4 (k ) , b4 (k ) , c1 ( k )

c And the Di spe r s i on Cor r e c t i ons
read (1 ,∗ ) fp ( k ) , fpp (k )

10 cont inue
c l o s e ( un i t =1)

c Compute the increments a long the u , v ,w d i r e c t i o n s
c This statement prevents a d iv ide by zero on the vp2200
∗ voc l loop , nopreex

do 20 , i =1 ,3
uin ( i )=0.d0
vin ( i )=0.d0
win ( i )=0.d0
i f (numu . gt . 1 ) uin ( i )= ( ah u ( i )−ah o ( i ) )/ r e a l (numu−1)
i f (numv . gt . 1 ) vin ( i )= ( ah v ( i )−ah o ( i ) )/ r e a l (numv−1)
i f (numw. gt . 1 ) win ( i )= ( ah w ( i )−ah o ( i ) )/ r e a l (numw−1)

20 cont inue
RETURN
END

SUBROUTINE WRITEINF
c Takes the in fo rmat ion that was read from the f i l e ’ d i f f u s e . in ’
c and wr i t e s i t back out to standard output so that a record o f
c the run can be kept .

parameter (MT=10)
r e a l ah o ( 3 ) , ah u (3 ) , ah v (3 ) , ah w (3 )
r e a l c e l l ( 6 ) , uin ( 3 ) , v in ( 3 ) , win (3 )
i n t e g e r c s i z e ( 3 ) , l s x y z (3 )
r e a l a1 (MT) , b1 (MT) , a2 (MT) , b2 (MT) , a3 (MT) , b3 (MT)
r e a l a4 (MT) , b4 (MT) , c1 (MT) , fp (MT) , fpp (MT)
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cha ra c te r ∗70 de s c r i p
cha ra c te r ∗4 c a t (MT)
cha ra c te r ∗1 qa la t , qbnd

common/ s i z e s /ah o , uin , vin , win , numu,numv ,numw, stlmax
common/ s c a t t e r /a1 , b1 , a2 , b2 , a3 , b3 , a4 , b4 , c1 , fp , fpp
common/ c r y s t a l / c s i z e , c e l l
common/ in f o 1 / l s xyz , i s eed , j s eed , n lo ts , n s i t e s , ntypes
common/ in f o 2 /ah u , ah v , ah w
common/ in f o 3 / c at , descr ip , qa la t , qbnd

pr in t ∗ , d e s c r i p
pr in t ∗ , ’ ’
p r in t ∗ , ’ The computation volume i s de f ined by : ’
p r in t 101 , ( ah o ( i ) , i =1 ,3) ,( ah u ( i ) , i =1 ,3)
pr in t 101 , ( ah o ( i ) , i =1 ,3) ,( ah v ( i ) , i =1 ,3)
pr in t 101 , ( ah o ( i ) , i =1 ,3) ,( ah w ( i ) , i =1 ,3)
pr in t ∗ , ’ Image s i z e i s ’ ,numu, ’ X ’ ,numv , ’ X ’ ,numw
pr in t ∗ , ’ s i n ( theta )/ lambda maximum = ’ , stlmax
pr in t ∗ , ’ Random number s e eds are : ’ , i s eed , j s e ed
pr in t ∗ , ’ Crysta l s i z e i s : ’ , ( c s i z e ( i ) , i =1 ,3)
pr in t ∗ , ’ P e r i od i c boundary? ’ , qbnd
pr in t ∗ , ’ Number o f atom s i t e s per c e l l : ’ , n s i t e s
p r in t ∗ , ’ Number o f Atom types : ’ , ntypes
pr in t ∗ , ’ Lot S i z e i s : ’ , ( l s x y z ( i ) , i =1 ,3)
pr in t ∗ , ’ Number o f Lots to Compute : ’ , n l o t s
p r in t ∗ , ’ Subtract Average La t t i c e ? ’ , qa l a t
p r in t ∗ , ’ ’

101 format (5x , ’ ( ’ , 2 ( f 6 . 2 , ’ , ’ ) , f 6 . 2 , ’ ) => ( ’ , 2 ( f 6 . 2 , ’ , ’ ) , f 6 . 2 , ’ ) ’ )

RETURN
END

SUBROUTINE STRUCF( c s f , xat , n ,nw)
c Computes the complex s tuc tur e f a c t o r ’ c s f ( ) ’ o f n i d e n t i c a l
c atoms at the p o s i t i o n s ’ xat ( ) ’ on the r e c i p r o c a l plane ’nw ’ .
c This i s the work−horse r out ine o f the program DIFFUSE. Any
c r e a l speed improvement w i l l come from improving the inne r loop
c o f t h i s subrout ine .

parameter (MI=400 ,MJ=400 ,MAT=6000)
parameter ( i 2 p i =2∗∗14 ,MASK=2∗∗14−1)
complex c s f (MI ,MJ)
complex cex ( 0 :MASK) , c f a c t (0 : 1999 )
r e a l ah o ( 3 ) , uin ( 3 ) , v in ( 3 ) , win (3 )
r e a l xat (MAT, 3 ) ,xm(3 )
double p r e c i s i o n xarg0 , xincu , x incv
i n t e g e r i s t l (MI ,MJ)

common/ s i z e s /ah o , uin , vin , win , numu,numv ,numw, stlmax
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common/ tabe l s /cex , i s t l , c f a c t

c Compute the o r i g i n o f t h i s r e c i p r o c a l plane . . .
do 10 , i =1 ,3
xm( i )=ah o ( i )+(nw−1)∗win ( i )

10 cont inue

c Zero the complex s c a t t e r i n g f a c t o r ar ray ’ c s f ( ) ’ . . .
do 20 , j =1,Numv
do 20 , i =1,Numu
c s f ( i , j )=cmplx ( 0 . d0 , 0 . d0 )

20 cont inue

i f (n . eq . 0 ) RETURN

c Loop over a l l o f the atoms we are handl ing now . . .
do 100 k=1,n

c Get i n i t i a l argument to the exponent and increments a long
c the two ax i e s ’u ’ and ’v ’

xarg0= xm(1)∗ xat (k , 1 ) + xm(2)∗ xat (k , 2 ) + xm(3)∗ xat (k , 3 )
xincu= uin (1)∗ xat (k , 1 ) + uin (2)∗ xat (k , 2 ) + uin (3)∗ xat (k , 3 )
xincv= vin (1)∗ xat (k , 1 ) + vin (2)∗ xat (k , 2 ) + vin (3)∗ xat (k , 3 )

c Convert to high p r e c i s i o n i n t e g e r s (64∗ i 2 p i =2ˆ20) . . .
i a r g0=nint ( 64∗ i 2 p i ∗( xarg0−a in t ( xarg0 )+1.d0 ) )
i i n cu=nint ( 64∗ i 2 p i ∗( xincu−a in t ( xincu )+1.d0 ) )
i i n c v=nint ( 64∗ i 2 p i ∗( xincv−a in t ( xincv )+1.d0 ) )
i a r g=ia rg0

c Loop over a l l image p i x e l s . ’ iadd ’ i s the addres s o f the
c argument to the complex exponent ( in the t ab l e ’ cex ( ) ’ ) .
c The ISHFT opera t i on d i v i d e s out the 64 and the IAND
c i s e qu i v e l e n t to a MOD and i s used so that the argument to
c the complex exponent i s i n s i d e our t ab l e which has range
c 0=>2pi . 99.5% o f the time the CPU w i l l be busy with one o f
c the four s ta tements i n s i d e loop 210 .

do 200 , j =1,Numv
do 210 , i =1,Numu
iadd=ISHFT( iarg ,−6)
iadd=IAND( iadd , mask )
c s f ( i , j )= c s f ( i , j )+cex ( iadd )
i a r g=i a r g+i i n cu

210 cont inue
i a r g=ia rg0 + j ∗ i i n c v

200 cont inue
100 cont inue
c We are through with a l l N atoms . . .

c Mult iply the complex s c a t t e r i n g f a c t o r by the atomic
c s c a t t e r i n g f a c t o r f o r t h i s atom type and return . . .
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do 40 , j =1,Numv
do 40 , i =1,Numu
c s f ( i , j )= c s f ( i , j )∗ c f a c t ( i s t l ( i , j ) )

40 cont inue

RETURN
END
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Appendix B

readat.f.

This appendix includes the code for readat.f, a Fortran 77 version of atom
reading-in subroutine that is required by the diffuse scattering calculation pro-
gram DIFFUSE [3] as shown in appendix A. This readat is suitable for the
output file output.txt generated by the example in section 2.2.4.

subrout ine readat (LLL, i s i t e , cat , inum , xxx , yyy , zzz )

PARAMETER (mx = 256)
r e a l xxx , yyy , zzz

CHARACTER∗2 ty1 , ty2 , occc (mx,mx, 1 )
INTEGER i t e s t , LLL(3 ) , i s i t e , inum
CHARACTER∗4 cat

save occc , xx , yy , zz , i t e s t

IF ( i t e s t . eq . 1234 ) goto 657
c a l l g e t coo rds ( occc )

657 i t e s t = 1234

i a=LLL(1 )
ib=LLL(2 )
i c=LLL(3 )

xxx = 0 .0
yyy = 0 .0
zzz = 0 .0

inum = 0
ty1 = occc ( ia , ib , i c )
ty2 = cat ( 1 : 2 )
i f ( ty1 . eq . ty2 ) inum = 1
return
end subrout ine readat
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c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

subrout ine g e tcoo rds ( occc )
PARAMETER (mx = 256)

CHARACTER∗2 occc (mx,mx,mx)
i n t e g e r row (256)

i n t e g e r i , j , k , i i , j j , kk , i type , adim , type f l a g , i r e c
c read in the d a t a f i l e . . .

open ( uni t =1, f i l e =’output . txt ’ )
do i =1 ,256

read (1 , ’ ( 256 i 3 ) ’ ) ( row( j ) , j =1 ,256)
do j = 1 ,256

i f ( row( j ) . eq .−1) then
occc ( i , j , 1 ) = ’Nb’

e l s e
occc ( i , j , 1 ) = ’O ’

end i f
end do

end do
c l o s e ( un i t=1)

return

end subrout ine g e tcoo rds

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



Appendix C

diffuse.in.

The input file for the program DIFFUSE, in this case for calculating the hk0 cut
of the reciprocal space of the model crystal simulated by the code in section 2.2.4.
In this case the two scatters are taken to be Nb and O, plainly an unphysical
model; these were chosen simply because they have strong scattering contrast.

Binary Alloy Example !Run description

12645,9677 !Random number seeds

2.1 2.1 2.1 0.0 0.0 0.0 !Cell

256 256 1 !Simulation Size

Y !Periodic Boundary?

-2.0 -2.0 -0.0 !Bottom left corner

-2.0 2.0 -0.0 200 !Bottom right, pixels

2.0 -2.0 0.0 200 !Top left, pixels

-2.0 -2.0 -0.0 1 !Out of plane, slices

2.315 !sin(theta)/lambda maximum

8,8,1 !Lot size

200 !Number of lots

1 !Number of atom sites per cell

2 !Number of atom types

E !Subtract average lattice?

’Nb’ !Atom label

17.61, 1.1886,12.014,11.766 !Scattering function params

4.04183, 0.204785, 3.53346, 69.7957, 3.75591

0.0,0.0 !fprime, f-double-prime

’O ’

3.0485,13.2771,2.2868,5.7011

1.5463,0.3239,0.8670,32.9089,0.2508

0.0,0.0
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Appendix D

bin2gray.f.

This appendix includes the code for bin2gray.f, a Fortran 77 version of the
program that converts the binary output from DIFFUSE into a .pgm file for
viewing.

PROGRAM BIN2GRAY
c This program w i l l take the f i l e ’ i n t e n s i t y . bin ’ which was
c c r ea ted by the program DIFFUSE and w i l l conver t the computed
c d i f f u s e i n t e n s i t i e s to a s e r i e s o f 8−b i t gray−s c a l e images
c that can be viewed by a range o f s o f twa r e packages .
The output
c w i l l be to a s e r i e s o f f i l e s named img###.pgm where ### i s the
c number o f the r e c i p r o c a l plane i t conta in s . The output format
c i s J e f Poskanzer ’ s po r tab l e graymap (pgm) f i l e format which can
c be read by many programs and conver ted to j u s t about any other
c image format .

parameter (MI=400 ,MJ=400)
parameter (MI2=MI∗2)
r e a l d s i (MI ,MJ) , ah o ( 3 ) , ah u (3 ) , ah v (3 ) , ah w (3 )

r e a l c s i (MI ,MJ)
r e a l s t l (MI ,MJ) , c e l l ( 6 )
cha ra c te r ∗1 inc (MI ,MJ) , chead (MI2)
r e a l uin ( 3 ) , v in ( 3 ) , win (3 )
double p r e c i s i o n xmean , xstd
i n t e g e r c s i z e ( 3 ) , l s x y z (3 )
cha ra c te r ∗1 qa la t , qhorz , qvert , qnorm , qval
cha ra c te r ∗70 de s c r i p
cha ra c te r ∗10 fname

common/ s i z e s /ah o , uin , vin , win , numu,numv ,numw, stlmax

c Open the input f i l e and f i nd out what record s i z e i t i s . . .
open ( uni t =1, f i l e =’ i n t e n s i t y . bin ’ , s t a tu s=’old ’ ,

∗ form=’unformatted ’ , a c c e s s=’ d i r e c t ’ , r e c l =74)
read (1 , r e c=1) i r l e n
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c
wr i t e (6 ,∗ ) ’ F i l e opened and i r l e n = ’ , i r l e n

c
c l o s e ( un i t =1)

c Re−open the f i l e ( r ecord s i z e now known) and read header . . .
open ( uni t =1, f i l e =’ i n t e n s i t y . bin ’ , s t a tu s=’old ’ ,

∗ form=’unformatted ’ , a c c e s s=’ d i r e c t ’ , r e c l=i r l e n )
read (1 , r e c=1) i r l e n , d e s c r i p
read (1 , r e c=2)ah o , ah u , ah v , ah w ,numu,numv ,numw
read (1 , r e c=3) c e l l , stlmax
read (1 , r e c=4) i seed , j s eed , c s i z e , qbnd , n s i t e s , ntypes
read (1 , r e c=5) l s xyz , n lo ts , qa l a t

c l o s e ( un i t =1)

c Now echo to standard output what was in the header . . .
p r in t ∗ , ’ ’
p r in t ∗,’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’
p r in t ∗ , d e s c r i p
pr in t ∗,’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’
p r in t ∗ , ’ ’
p r in t ∗ , ’ The computation volume i s de f ined by : ’
p r in t 101 , ( ah o ( i ) , i =1 ,3) ,( ah u ( i ) , i =1 ,3)
pr in t 101 , ( ah o ( i ) , i =1 ,3) ,( ah v ( i ) , i =1 ,3)
pr in t 101 , ( ah o ( i ) , i =1 ,3) ,( ah w ( i ) , i =1 ,3)
pr in t ∗ , ’ Image s i z e i s ’ ,numu, ’ X ’ ,numv , ’ X ’ ,numw
pr in t ∗ , ’ s i n ( theta )/ lambda maximum = ’ , stlmax
pr in t ∗ , ’ Crysta l s i z e i s : ’ , ( c s i z e ( i ) , i =1 ,3)
pr in t ∗ , ’ Lot S i z e i s : ’ , ( l s x y z ( i ) , i =1 ,3)
pr in t ∗ , ’ Number o f Lots Computed : ’ , n l o t s
p r in t ∗ , ’ Subtract Average La t t i c e ? ’ , qa l a t
p r in t ∗ , ’ ’

101 format (5x , ’ ( ’ , 2 ( f 5 . 2 , ’ , ’ ) , f 5 . 2 , ’ ) => ( ’ , 2 ( f 5 . 2 , ’ , ’ ) , f 5 . 2 , ’ ) ’ )

c Get the increments a long each o f the thr e e axes . . .
∗ voc l loop , nopreex

do 10 , i =1 ,3
uin ( i )=0.d0
vin ( i )=0.d0
win ( i )=0.d0
i f (numu . gt . 1 ) uin ( i )= ( ah u ( i )−ah o ( i ) )/ r e a l (numu−1)
i f (numv . gt . 1 ) vin ( i )= ( ah v ( i )−ah o ( i ) )/ r e a l (numv−1)
i f (numw. gt . 1 ) win ( i )= ( ah w ( i )−ah o ( i ) )/ r e a l (numw−1)

10 cont inue

c Ask some pe r t i n en t que s t i ons about how to do t h i s . . .
p r in t ∗ , ’ Put a bottom ha l f on us ing a mir ror ? ’
read (∗ , ’ ( a ) ’ ) qhorz

pr in t ∗ , ’ Put a l e f t h a l f on us ing a mir ror ? ’
read (∗ , ’ ( a ) ’ ) qver t
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pr in t ∗ , ’ Use the d e f a u l t ave+3∗ s td no rma l i za t i on ? ’
read (∗ , ’ ( a ) ’ ) qnorm
i f ( ( qnorm . ne . ’Y’ ) . and . ( qnorm . ne . ’ y ’ ) ) then

pr in t ∗ , ’ Normalize a l l p lanes by the same va lue ? ’
read (∗ , ’ ( a ) ’ ) qval
i f ( ( qval . eq . ’Y’ ) . or . ( qval . eq . ’ y ’ ) ) then
pr in t ∗ , ’ O.K. , what va lue should I normal i ze to ? ’
read (∗ ,∗ ) anorm

end i f
end i f

c Loop over a l l r e c i p r o c a l p lanes that are in ’ i n t e n s i t y . bin ’
do 100 , nw=1,numw

wr i t e (∗ ,∗ ) ’ Working on plane # ’ ,nw , ’ . . . ’
c Extract from f i l e the va lue s a s s o c i a t ed with plane nw . . .

open ( uni t =1, f i l e =’ i n t e n s i t y . bin ’ , s t a tu s=’old ’ ,
∗ form=’unformatted ’ , a c c e s s=’ d i r e c t ’ , r e c l=i r l e n )

do 110 j =1,Numv
i r e c=numv∗(nw−1)+ j+5
read (1 , r e c=i r e c ) ( d s i ( i , j ) , i =1,Numu)

110 cont inue
c l o s e ( un i t =1)

c
c======================== HERE WE MAKE 2−FOLD ================
c

do i =1,numu
do j =1,numw
i1=numv−i+1
j1=numw−j+1
c s i ( i , j )=( d s i ( i , j )+d s i ( i1 , j 1 ) ) / 2 .
end do
end do
do i =1,numu
do j =1,numw
ds i ( i , j )= c s i ( i , j )
end do
end do

c
wr i t e (6 ,∗ ) ’======= 2−FOLD IMPOSED ========’

c
c======================== HERE WE END MAKE 2−FOLD ================
c
c Find the Max, Min , Ave , and Std Dev o f t h i s image . . .

xmax=−1.e32
xmin=1. e32
xmean=0.d0
xstd=0.d0
do 120 , j =1,numv
do 120 , i =1,numu
i f ( d s i ( i , j ) . gt . xmax) xmax=ds i ( i , j )
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i f ( d s i ( i , j ) . l t . xmin ) xmin=ds i ( i , j )
xmean=xmean+ds i ( i , j )
xstd=xstd+ds i ( i , j )∗∗2

120 cont inue
xmean=xmean/( r e a l (numu)∗ r e a l (numv) )
xstd=xstd /( r e a l (numu)∗ r e a l (numv) ) − xmean∗∗2
xstd=sq r t ( xstd )
pr in t ∗ , ’ Range = ’ , xmin , ’ => ’ ,xmax
pr in t ∗ , ’ Mean , STD = ’ , xmean , xstd

c What do we normal i ze t h i s image to ? . . .
IF ( (qnorm . ne . ’Y’ ) . and . ( qnorm . ne . ’ y ’ ) ) THEN

i f ( ( qval . eq . ’Y’ ) . or . ( qval . eq . ’ y ’ ) ) then
xnorm=anorm
e l s e
pr in t ∗ , ’ Normalize to what? (0 g i v e s ave + 4∗ s td ) ’
read (∗ ,∗ ) xnorm
i f ( xnorm . l t . 1 . e−6) xnorm=xmean+4.∗xstd

end i f
ELSE

xnorm=xmean+4.∗xstd
END IF
pr in t ∗ , ’ Normal iz ing to ’ , xnorm

c Normalize a l l va lue s in the image but s e t to white anything
c out s ide o f the maximum s in ( theta )/ lambda . . .

c a l l s t l t a b ( s t l , c e l l , nw)
do 130 , j =1,numv
do 130 , i =1,numu

c d s i ( i , j )=d s i ( i , j )∗255 ./xnorm ! a l t e r ed to avoid zero ’ s may−
d s i ( i , j )=( d s i ( i , j )∗254 ./xnorm)+1.
i f ( d s i ( i , j ) . gt . 2 5 5 . ) d s i ( i , j )=255.
i f ( s t l ( i , j ) . gt . stlmax ) d s i ( i , j )=255.
inc ( i , j )=char ( n int ( d s i ( i , j ) ) )

130 cont inue

c Bui ld a f i l e name f o r t h i s image . . .
c a l l getname(nw, fname )

c Bui ld a pgm compatible header f o r t h i s image . . .
nu=numu
nv=numv
i f ( ( qhorz . eq . ’Y’ ) . or . ( qhorz . eq . ’ y ’ ) ) nv=2∗numv−1
i f ( ( qver t . eq . ’Y’ ) . or . ( qver t . eq . ’ y ’ ) ) nu=2∗numu−1
c a l l gethead (nu , nv , chead )

c Open the output f i l e and wr i t e the pgm header . . .
open ( uni t =1, f i l e=fname , s t a tu s=’unknown ’ , a c c e s s=’ d i r e c t ’ ,

∗ form=’unformatted ’ , r e c l=nu )
i r e c=1
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wr i t e (1 , r e c=i r e c ) ( chead (k ) , k=1,nu )

c Write gray va lue s appending l e f t and bottom i f asked . . .
IF ( ( qhorz . eq . ’Y’ ) . or . ( qhorz . eq . ’ y ’ ) ) then

i f ( ( qver t . eq . ’Y’ ) . or . ( qver t . eq . ’ y ’ ) ) then
do 170 , j=numv,1 ,−1
i r e c=i r e c+1
wr i t e (1 , r e c=i r e c ) ( inc ( i , j ) , i=numu,1 ,−1) ,

∗ ( inc ( i , j ) , i =2,numu)
170 cont inue

do 175 , j =2,numv
i r e c=i r e c+1
wr i t e (1 , r e c=i r e c ) ( inc ( i , j ) , i=numu,1 ,−1) ,

∗ ( inc ( i , j ) , i =2,numu)
175 cont inue

e l s e
do 180 , j=numv,1 ,−1
i r e c=i r e c+1
wr i t e (1 , r e c=i r e c ) ( inc ( i , j ) , i =1,numu)

180 cont inue
do 185 , j =2,numv
i r e c=i r e c+1
wr i t e (1 , r e c=i r e c ) ( inc ( i , j ) , i =1,numu)

185 cont inue
end i f

ELSE
i f ( ( qver t . eq . ’Y’ ) . or . ( qver t . eq . ’ y ’ ) ) then

do 190 , j=numv,1 ,−1
i r e c=i r e c+1
wr i t e (1 , r e c=i r e c ) ( inc ( i , j ) , i=numu,1 ,−1) ,

∗ ( inc ( i , j ) , i =2,numu)
190 cont inue

e l s e
do 195 , j=numv,1 ,−1
i r e c=i r e c+1
wr i t e (1 , r e c=i r e c ) ( inc ( i , j ) , i =1,numu)

195 cont inue
end i f

END IF

c We need to add one more record to the bottom or e l s e some
c programs that read ’pgm’ f i l e s w i l l g i v e an e r r o r .
I w i l l
c go ahead and wr i t e the run d e s c r i p t i o n f o r l a ck o f anything
c b e t t e r to do .

i r e c=i r e c+1
wr i t e (1 , r e c=i r e c ) d e s c r i p
c l o s e ( un i t =1)

100 cont inue
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c We have f i n i s h e d with a l l o f the r e c i p r o c a l p lanes now .
END

SUBROUTINE STLTAB( s t l , c e l l , nw)
c Ca l cu la t e s the va lue o f s i n ( theta )/ lambda f o r each element
c o f the d i f f u s e s c a t t e r i n g ar ray . The c e l l parameters ( a , b , c ,
c cos ( bc ) , cos ( ac ) , co s ( ab ) ) , computation spac ing s and dimmensions ,
c and the r e c i p r o c a l s e c t i o n must be provided . This t ab l e i s
c used s imply to prov ide a white mask over va lue s that have
c exceeded the parameter stlmax .

parameter (MI=400 ,MJ=400)
r e a l s t l (MI ,MJ)
r e a l ah o ( 3 ) , c e l l ( 6 )
r e a l uin ( 3 ) , v in ( 3 ) , win (3 )

common/ s i z e s /ah o , uin , vin , win , numu, numv ,numw, stlmax

c The c e l l parameters . . .
a1=c e l l ( 1 )
a2=c e l l ( 2 )
a3=c e l l ( 3 )
c1=c e l l ( 4 )
c2=c e l l ( 5 )
c3=c e l l ( 6 )
s1=s i n ( acos ( c1 ) )
s2=s i n ( acos ( c2 ) )
s3=s i n ( acos ( c3 ) )

c Some cons tant s that I need ( r e f e r e n c e Cu l l i t y ) . . .
V=a1∗a2∗a3∗ s q r t (1.− c1∗∗2−c2∗∗2−c3 ∗∗2+2.∗c1∗c2∗ c3 )
S11=(a2 ∗∗2)∗ ( a3 ∗∗2)∗ ( s1 ∗∗2)
S22=(a1 ∗∗2)∗ ( a3 ∗∗2)∗ ( s2 ∗∗2)
S33=(a1 ∗∗2)∗ ( a2 ∗∗2)∗ ( s3 ∗∗2)
S12=(a1 )∗ ( a2 )∗ ( a3 ∗∗2)∗ ( c1∗c2−c3 )
S23=(a2 )∗ ( a3 )∗ ( a1 ∗∗2)∗ ( c2∗c3−c1 )
S13=(a1 )∗ ( a3 )∗ ( a2 ∗∗2)∗ ( c1∗c3−c2 )

c Loop over a l l p i x e l s in the image . . .
do 10 , j j =1,Numv
do 10 , i i =1,Numu

xh1=ah o (1)+ r e a l ( i i −1)∗uin (1)+ r e a l ( j j −1)∗vin (1)+nw∗win (1 )
xh2=ah o (2)+ r e a l ( i i −1)∗uin (2)+ r e a l ( j j −1)∗vin (2)+nw∗win (2 )
xh3=ah o (3)+ r e a l ( i i −1)∗uin (3)+ r e a l ( j j −1)∗vin (3)+nw∗win (3 )
s t l ( i i , j j )= sq r t ( S11∗xh1∗∗2+S22∗xh2∗∗2+S33∗xh3∗∗2

∗ +2.∗S12∗xh1∗xh2+2.∗S13∗xh1∗xh3+2.∗S23∗xh2∗xh3 )
s t l ( i i , j j )=0.5∗ s t l ( i i , j j )/V

10 cont inue

RETURN
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END

SUBROUTINE GETNAME(nw, fname )
c Bui lds the cha ra c te r constant ’ img###.pgm’ where ###=nw

cha rac te r ∗10 fname
ihun=nw/100
i t e n=nw/10 − ihun ∗10
ione=nw − 100∗ ihun − 10∗ i t e n
ihun=ihun+48
i t en=i t en+48
ione=ione+48
fname=’img ’// char ( ihun )// char ( i t e n )// char ( ione ) / / ’ . pgm’

RETURN
END

SUBROUTINE GETHEAD(nu , nv , chead )
c Bui lds a va l i d ’pgm’ header . This i s j u s t a cha ra c te r s t r i n g
c with the ”magic number” P5 fo l l owed by the width then the
c he ight o f the image . The va lue 255 must be r i g h t j u s t i f i e d in
c t h i s r ecord f o r t e c hn i c a l r ea sons .

parameter (MI=400)
parameter (MI2=MI∗2)
cha ra c te r ∗1 chead (MI2)

c The magic number . . .
chead (1)= ’P’
chead (2)= ’5 ’
chead (3)= ’ ’

c The image width . . .
i tho=nu/1000
ihun=nu/100 − 10∗ i tho
i t e n=nu/10 − i tho ∗100 − ihun ∗10
ione=nu − i tho ∗1000 − 100∗ ihun − 10∗ i t e n
chead (4)= char ( i tho +48)
chead (5)= char ( ihun+48)
chead (6)= char ( i t e n +48)
chead (7)= char ( ione+48)
chead (8)= ’ ’
i f (nu . l t . 1 000 ) chead (4)= ’ ’
i f (nu . l t . 1 0 0 ) chead (5)= ’ ’
i f (nu . l t . 1 0 ) chead (6)= ’ ’

c The image he ight . . .
i tho=nv/1000
ihun=nv/100 − 10∗ i tho
i t e n=nv/10 − i tho ∗100 − ihun ∗10
ione=nv − i tho ∗1000 − 100∗ ihun − 10∗ i t e n
chead (9)= char ( i tho +48)
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chead (10)= char ( ihun+48)
chead (11)= char ( i t e n +48)
chead (12)= char ( ione+48)
i f ( nv . l t . 1 000 ) chead (9 )= ’ ’
i f ( nv . l t . 1 0 0 ) chead (10)= ’ ’
i f ( nv . l t . 1 0 ) chead (11)= ’ ’

c A bunch o f ”white space ” . . .
do 10 , i =13 ,nu−3
chead ( i )= ’ ’

10 cont inue

c A r i g h t j u s t i f i e d ’255 ’ . . .
chead (nu−2)= ’2 ’
chead (nu−1)= ’5 ’
chead (nu)= ’5 ’

RETURN
END



Appendix E

ZMC −−help.

This does not at present mention the (experimental) −−discus option for out-
putting a DISCUS-compatible file.

|---------------------------------------------------------------------|

| Usage: |

| |

| zmc [--option_1] [--option_2] ... [--option_n] infile [outfile] |

| |

| infile contains the parameters and additional filenames to run |

| the MC simulation. |

| |

| outfile is the root name for most output; if not given the root |

| name will be infile (i.e., outfile = infile) |

| |

| Options always begin with two dashes, and if the option can be |

| passed a value, the value must be indicated with an equals sign |

| and there must be no spaces. E.g.: --summary=inline is right, |

| "--summary inline" is wrong, "--summary = inline" is wrong. |

| |

| Items enclosed in square brackets are optional. |

| |

| Options are: |

| |

| --crystal[=filename] |

| Causes program to output a text file referred to as a |

| "ZMC crystal file" which contains the variables for each |

| molecule. Can be analysed and/or read back in via |

| --reread[=filename] to resume simulation. If filename |

| not given, will write to outfile.crystal. |

| |

| --diffuse[=filename] |

| Causes program to output a file designed to be read into |

| diffuse scattering calculation program DIFFUSE. |

| Butler and Welberry J.Appl.Cryst.(1992)25 391-399 |

| If filename not given, will write to outfile.diffuse. |
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| If outfile not given, will write to infile.diffuse |

| |

| --summary[=inline] |

| Prints out some information about the model crystal at |

| the end of the simulation. If no argument passed, sends |

| output to outfile.summary. inline writes output to stdout.|

| |

| --pairs Outputs variables for pairs of molecules connected by |

| each contact vector to files pairs_L_C_outfile.out |

| where L is the location number of the origin molecule |

| C is contact number. Many of these files will be |

| duplicates. |

| |

| --fracs Outputs fractional coordinates of every atom in the model |

| crystal to outfile.fracs |

| |

| --cartsn Outputs Cartesian coordinates of every atom in the model |

| to outfile.cartsn. Does not add on unit cell translations.|

| |

| --cartst Outputs Cartesian coordinates of every atom in the model |

| to outfile.cartst. Adds on unit cell translations. |

| |

| --reread=filename |

| Reads in a crystal file and uses it as starting point for !

| the simulation. Reads in from filename. !

| |

| --corro Calculates correlation ("peanut") diagrams and writes |

| them to files r_C_o_XX_outname.out where C is the |

| contact vector and XX is the plane (xy, yz, zx). !

| Uses the position of the origin atom of each molecule !

| in the calculation. Many of these files will be |

| duplicates. |

| |

| --corra As for --corro except file names are r_C_a_XX_outname.out |

| and it uses the average over all atoms in the molecule. |

| |

| --energy Outputs the MC energy of each molecule to outfile.energy |

| |

| --cif Outputs a crude CIF file to outfile.cif. |

| |

| --quiet ZMC sends nothing to the screen except error messages and |

| summary information if --summary=inline is set. |

| |

| --help Prints this information and exits. |

| |

| --help2 Prints more help and exits. |

| |

| --version Prints version information and exits. |

| |

| --plot Runs interactive plotting of the simulation; crude but |
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| sometimes useful. Exits after producing plots. |

| |

| --getcontacts |

| Runs a simple routine to generate contact vectors |

| based on parameters specified in keyword file. |

| Then exits. |

| |

| --help, --help2 and --version can be run without infile |

| or outfile.out being specified. --quiet does not work with --help, |

| --help2 or --version. If --getcontacts is given, will not do MC |

| or plot. If --plot is given, will not proceed to MC. |

| |

|---------------------------------------------------------------------|
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Appendix F

ZMC −−help2.

|---------------------------------------------------------------------|

| |

| The main input file is a series of keywords and values. Some |

| are mandatory, some are not. The order in the keyword file does |

| not matter. The details are outlined below. |

| |

| It is best to begin all filenames called within the keyword file |

| with alphaetical characters, not with numbers or other characters. |

| |

| ZMC uses a z-matrix to describe a molecule. If carefully |

| constructed, this allows segmented motion of the molecules in a |

| simple way. The convention for naming these files is to give |

| them the extension ".zmat". While a z-matrix defines the |

| molecular geometry, the molecule must be oriented and positioned |

| within the unit cell. This is done using a 3-vector (x, y, z) |

| to specify the origin of the molecule (the position of the first |

| atom) and a quaternion (a normalised 4-vector (q1,q2,q3,q4)) to |

| give the orientation. This information is in files with |

| extension ".qxyz". If one uses a third vector to hold the values |

| of the internal degrees of freedom for the molecule (this will |

| be an n-vector if there are n internal d.f.) then the molecule |

| is completely specified by the 3-vector, the 4-vector and the n- |

| vector. Given that a substantial molecule may have 50 atoms in |

| it, requiring 150 coordinates, this is a great economy of |

| variables. |

| |

| A molecule is said to occupy a location rather than a site |

| simply because site is a word commonly attached to atomic |

| position, and there is a desire to avoid confusion by using a |

| word (hopefully) without connotations. |

| |

| A single Monte Carlo (MC) step consists of choosing a molecule |

| at random, calculating its energy by summing over any |

| interactions pertaining to it (whether internal to the molecule |

| or between the molecule and its environment), then randomly |
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| altering the molecules configuration (putting random shifts on |

| the three vectors noted above), calculating the new energy and |

| then accepting or rejecting the new configuration based on a MC |

| algorithm. |

| |

| Hence the keywords allow the user to specify what the degrees of |

| freedom are, what the force constants (spring constants) acting |

| in the system are, and how wide the distribution of random |

| shifts can be (referred to as various kinds of widths). |

| |

| It is my intention that a fuller manual for ZMC will become |

| available with time, and that it will be distributed with |

| example input files and simulations that work. Also, some |

| documentation exists in the reviewed literature, as noted in |

| the messages on running the program. |

| |

| -------------------------------------------------------------- |

| |

| CRYSTAL Specifies the size of the model crystal in unit |

| cells. Must be followed by three integers. |

| e.g. CRYSTAL 32 16 5 |

| |

| HEADER Specifies (if given) a header (up to 100 |

| characters long) for the keyword file and which |

| is then written into the output file. |

| e.g. HEADER This is the header. |

| |

| TEMPERATURE Specifies the temperature of the Monte Carlo |

| simulation. This affects how likely it is that a |

| MC move which increases the system energy will be |

| accepted. Must be followed by one real. |

| e.g. TEMPERATURE 1.0 |

| |

| MCCYCLES Specifies number of Monte Carlo cycles to do. One |

| cycle consists of a number of MC steps sufficient |

| to visit every location in the crystal once. |

| Must be followed by one integer. |

| e.g. MCCYCLES 500 |

| |

| INCUPDATE Specifies how many MC cycles between adjusting |

| the sizes of the increments (widths) that govern |

| the shifts put on the variables in the |

| simulation. The initial randomness is governed |

| by XYZINITW, QINITW and ININITW, while the sizes |

| of the random shifts applied to the variables |

| during the MC are governed by XYZWIDTH, QWIDTH |

| and INWIDTH. These latter parameters can be |

| dynamically adjusted to give a rejection ratio of |

| about 50% (half moves rejected) which is a rule |

| of thumb often applied to MC simulation. |
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| Further, the subroutine adjusts the shifts on the |

| individual variables to ensure that all are |

| having approximately equal influence on the |

| acceptance/rejection ratio. If it turns out that |

| one variable (for example the x position of the |

| origin) has a very big width, this indicates that |

| the simulation is only weakly sensitive to shifts |

| in this direction. This may reflect reality, or |

| may imply more or stronger constraints |

| (interactions) are needed. Must be followed by a |

| single integer. e.g. INCUPDATE 1 |

| |

| BADJUST Specifies how many MC cycles between adjusting |

| the strengths of the interactions in the system |

| to achieve a specified average B-factor across |

| ALL atoms. Interactions are scaled globally, so |

| this is analogous to changing the simulation |

| temperature. It is helpful because it gives a |

| good indication of the scale of the interactions. |

| Since it scales them all at once their relative |

| values do not change. The B-factor specified |

| (B = 8pi^2U) is an average across all atoms in |

| the z-matrix, so is a very crude number, and is |

| calculated as isotropic, which is also a crude |

| approximation. Must be followed by one integer |

| and one real, where the real is the desired |

| B-factor. e.g. BADJUST 1 2.5 |

| |

| NUMSPRCON Specifies the number of different spring |

| constants (interaction constants) acting on |

| contact vectors in the model. Will be deduced |

| from other inputs if not given. Must be followed |

| by one integer. e.g. NUMSPRCON 23 |

| |

| NUMINSPRCON Specifies the number of different spring |

| constants (interaction constants) acting on |

| internal degrees of freedom in the model. |

| Will be deduced from other inputs if not given. |

| Must be followed by one integer. |

| e.g. NUMINSPRCON 23 |

| |

| NUMLOCS Specifies the number of locations in the unit |

| cell. Location is used instead of site because |

| site tends to be used to refer to atoms; a |

| location is a position in the unit cell which is |

| occupied by a molecule. The occupation of a |

| given location may vary from cell to cell -- the |

| type or orientation of z-matrix on the location |

| may vary. Will be deduced from other inputs if |

| not given. Must be followed by one integer. |
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| e.g. NUMLOCS 23 |

| |

| NUMZMATS Specifies the number of different z-matrices |

| present in the simulation. Will be deduced from |

| other inputs if not given. Must be followed by |

| one integer. e.g. NUMZMATS 2 |

| |

| NUMINTERNAL Specifies the number of internal degrees of |

| freedom a given z-matrix is given. Must be |

| followed by the sub-keyword ZMAT then two |

| integers, the ZMAT number (as given in the |

| ZMATRIX lines of the keyword file) and how many |

| internal degrees of freedom that z-matrix has |

| been given. Will be deduced from other inputs if |

| not given. To specify that z-matrix 2 has 3 |

| internal degrees of freedom, write: |

| NUMINTERNAL ZMAT 2 3 |

| |

| NUMCROSS Specifies the number of cross-terms a given |

| z-matrix is given. A cross-term is an interaction |

| between internal degrees of freedom. Must be |

| followed by the sub-keyword ZMAT then two |

| integers, the ZMAT number (as given in the |

| ZMATFILE lines of the keyword file) and how many |

| cross terms that z-matrix has been given. Will |

| be deduced from other inputs if not given. To |

| specify that z-matrix 2 has 3 internal cross |

| terms, write: NUMCROSS ZMAT 2 3 |

| |

| OCCFILE Specifies the name of the file the occupancies |

| are to be read from. If not given it is assumed |

| that it is not needed (a model in which there is |

| no occupancy disorder, generally). |

| e.g. OCCFILE occupancies.txt |

| |

| ZMATFILE Specifies the file containing a z-matrix. Must |

| be followed by an integer, which is the z-matrix |

| number, and a filename. |

| e.g. ZMATFILE 1 paraterphenyl.zmat |

| |

| QXYZFILE Specifies the file containing the variables |

| describing the average origin of the z-matrix |

| (xyz) and its orientation (quaternion, q). Must |

| be followed by an integer, which is the z-matrix |

| number, and a filename. |

| e.g. QXYZFILE 1 paraterphenyl.qxyz |

| |

| CELL Specifies unit cell parameters (angles in |

| degrees). Must be followed by 6 reals. |

| e.g. CELL 12.34 5.126 8.902 90.0 109.35 90.0 |
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| |

| CONTACTFILE Specifies the file containing the contact |

| vectors. e.g. CONTACTFILE Contacts.txt |

| |

| SPRCON Specifies value of spring constants (interaction |

| constants). If given with a single real |

| (e.g. SPRCON 12.0) sets a default value that |

| applies to all springs. Subsequent invocations, |

| with a real followed by integers, |

| (e.g. SPRCON 50.2 1 2 3 4 5 6 7) sets the spring |

| constants for those contact vectors specified. |

| The two invocations here would set all springs to |

| be 12.0, then set the spring constants on vectors |

| 1 to 7 to be 50.2, leaving the others, if any, at |

| 12.0. |

| |

| SIZE Specifies value of size-effects on contact |

| vectors. Invocation rules are the same as for |

| SPRCON. |

| |

| INSPR Specifies spring constants on internal degrees of |

| freedom. An example would be: |

| INSPR 50.0 ZMAT 1 INT 1 ZMAT 2 INT 2 3 |

| This would set the spring constant (interaction |

| constant) for internal degree of freedom 1 on |

| z-matrix 1 to be 50.0 and internal spring |

| constants 2 and 3 of z-matrix 2 would also be |

| 50.0. These must all be set explicitly; there is |

| no defaulting invocation as for SPRCON. |

| |

| INTERNAL Specifies the nature of an internal degree of |

| freedom. To specify internal degree of freedom |

| number 1 for z-matrix number 2 to be the |

| dihedral angle of atom 17, type: |

| INTERNAL ZMAT 2 INT 1 dihedral 17 |

| The types of internal d.f. are bond lengths (use |

| "length" instead of "dihedral"), bond angle |

| (sub-keyword "angle") or dihedral angle as shown. |

| |

| CROSSSPR Specifies spring constants on cross terms. An |

| example would be: |

| CROSSSPR 50.0 ZMAT 1 CROSS 1 ZMAT 2 CROSS 2 3 |

| Implemented much like INSPR |

| |

| CROSSDEF Specifies cross-terms. For example: |

| CROSSDEF ZMAT 1 CROSS 1 INT 1 2 |

| would define the first cross-term of z-matrix 1 |

| is an interaction between internal d.f. 1 and 2. |

| |

| XYZWIDTH Sets the sizes of the random increments on x, y |
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| and z coordinates of z-matrices. Can be invoked |

| in several ways. "XYZWIDTH 0.2" would set widths |

| to be 0.2 for all x,y and z on all z-matrices. |

| "XYZWIDTH X 0.1" would set the widths on the |

| x-shifts on all z-matrices to be 0.1. |

| "XYZWIDTH 1 0.15" would set widths on x, y and z |

| for all of x, y and z on z-matrix 1 to be 0.15 |

| and (lastly) "XYZWIDTH 1 Y 0.4" would set the |

| width of the y coordinate on z-matrix 1 to |

| be 0.4. |

| |

| XYZINITW Sets the initial randomness on the variables; |

| invocation as for XYZWIDTH. |

| |

| QWIDTH Sets the sizes of the random increments on |

| quaternion components. As for XYZWIDTH but refer |

| to Q1, Q2, Q3 and Q4 rather than X, Y and Z. |

| |

| QINITW See QWIDTH and XYZINITW |

| |

| INWIDTH Sets the sizes of the random increments on |

| internal degrees of freedom. As for XYZWIDTH but |

| refer to I1, I2, ..., IN rather than X, Y and Z. |

| |

| ININITW See previous couple of entries. |

| |

| VMIN When creating some contact vectors, this is the |

| minimum length (Angstrom). e.g. VMIN 1.9 |

| |

| VMAX When creating some contact vectors, this is the |

| maximum length. |

| |

| NEWCONTACTS Specifies the new contact vector file name. |

| e.g. NEWCONTACTS newfilename.out |

| |

| CONTATOMS Specified which atoms to look at when generating |

| contact vectors. "CONTATOMS ZMAT 1 17 25" would |

| look for contacts between atoms 17 and 25 on |

| ZMAT 1. To look for contacts involving more than |

| one z-matrix type, use multiple instances of |

| CONTATOMS. |

| |

|---------------------------------------------------------------------|


