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The tunnelling current through an oscillating resonance level is thoroughly investigated exactly numerically and with several
approximations—analytically. It is shown that while the oscillations can increase the tunnelling current (and in several cases the
increase is exponentially large), their main effect is to reduce it dramatically at certain energies. In fact, the current in the presence
of the oscillations cannot increase the maximum current of the adiabatic solution. That is why, while the elevator effect does occur
in this system, the Sisyphus effect is the more dominant and prominent one.

1. Introduction

Resonant tunnelling (RT) is a surprising quantum effect
despite being common in quantum heterostructures [1–7].
When a quantum particle propagates through an opaque
barrier, it tunnels, that is, penetrates the barrier, with low
probability [8]. However, if the barrier has a local quasi-
bound state, as a result of an attractive point impurity, that is,
a local potential well, and the particle’s energy is equal to the
resonance energy, the particle can resonantly pass through
the barrier via the local well with a very high probability,
which in principle can be as high as unity [9–11]. This effect
occurs in any number of dimensions (for 2D see [12, 13]). It
was natural that this peculiar conduct would be utilized for
the generation of quantum transistor, where small variations
in the resonance energy level (the gate) can dramatically
change the current through the barrier [7, 10, 14]. It was
then realized that when the well varies during tunnelling,
the particle can absorb vibrating quanta from the well. As
a consequence, the particle can be activated to much higher
energies (close to the barrier’s height) and penetrates through
the well withmuch higher probability.This dynamic resonant
tunnelling was investigated in a variety of fields: from the
foundations of quantum mechanics [15–30] via nano- and
microelectronics [14, 31–33] to biochemistry and biology [34–
40].

But it was then realized that dynamic resonant tunnelling
is even more interesting. For example, when the perturba-
tion’s (the changing well) time-scale is shorter than the quasi-
bound-state’s life-time, the particle can be trapped inside the
well, at the resonance level. As a result, when the potential
well changes, the particle can be lifted energetically. This
process was termed eigenstate assisted activation (EAA) and
the elevator effect (EE) by Azbel [15, 17]. However, recently,
it has been shown that the eigenstate’s presence can suppress
the activation and reduce the transmission [20, 30, 41].
Despite the fact that an additional energy is introduced to
the system via the potential oscillations, the net effect is
current reduction; therefore, the Sisyphus effect (after the
mythological hero) is a more adequate name for the effect.
In fact, when there is a destructive interference between
the two time events, in which the well’s eigenenergy crosses
the incoming particles energy, the particle cannot dwell in
the well and activation is suppressed. This effect occurs
for specific energies, and in very narrow spectral bands,
and therefore it was suggested that it can be used for a
frequency effect transistor, where the current is controlled by
the frequency of the gate [20, 41].

It is the object of this paper to investigate the current (and
not only the activation energy) dependence on the resonance
energy and oscillation’s frequency and to show that current
suppression is the main effect of the varying eigenstate. The
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Figure 1: Schematic illustration of the system’s dynamics. For most
energies activation occurs; that is, Ωact > Ω; however, for specific
energies, that is, Ω = Ω𝑚, activation is suppressed and then Ωact ≅Ω.

largest current increase occurs when the incoming particle’s
energy is lower than the minimum resonance energy level.
But even then the activated current is always lower than the
maximumadiabatic current. Beyond themaximumpoint, the
main effect is current reduction at certain energies due to the
Sisyphus effect.

2. The Model

The system is presented in Figure 1. It consists of an opaque
potential barrier with an oscillating delta functionwell−(𝑓0+Δ𝑓 cos(𝜔𝑡))𝛿(𝑥 − 𝑥0) in its center.

The system’s Schrödinger equation is then

− 𝜕2𝜕𝑥2𝜓 (𝑥, 𝑡)
+ [𝑈 (𝑥) − (𝑓0 + Δ𝑓 cos (𝜔𝑡)) 𝛿 (𝑥 − 𝑥0)] 𝜓 (𝑥, 𝑡)
= 𝑖𝜕𝜓 (𝑥, 𝑡)𝜕𝑡 .

(1)

Hereinafter for simplicity we adopt the units, where the
electronmass is half and the reduced Planck constant is unity;
that is, 𝑚 = 1/2 and ℏ = 1. 𝑈(𝑥) is the barrier potential,
which can in principle have an arbitrary shape provided it
is bounded in space, but for simplicity in the simulations we
adopt the well-known rectangular barrier

𝑈 (𝑥) = {{{
𝑈 |𝑥| < 𝐿
0 |𝑥| ≥ 𝐿. (2)

Let 𝜑±𝜔(𝑥) be the solutions of the stationary homogenous
(without the delta function well) Schrödinger equation; that
is,

− 𝜕2𝜕𝑥2𝜑±𝜔 (𝑥) + [𝑈 (𝑥) − 𝜔] 𝜑±𝜔 (𝑥) = 0, (3)

which can be written as “right going” 𝜑+𝜔(𝑥) and “left going”𝜑−𝜔(𝑥) solutions:
𝜑+𝜔 (𝑥)

= {{{
exp (𝑖√𝜔𝑥) + 𝑟𝜔 exp (−𝑖√𝜔𝑥) 𝑥 󳨀→ −∞
𝑡𝜔 exp (𝑖√𝜔𝑥) 𝑥 󳨀→ ∞,

(4)

𝜑−𝜔 (𝑥)

= {{{
𝑡𝜔 exp (−𝑖√𝜔𝑥) 𝑥 󳨀→ −∞
exp (−𝑖√𝜔𝑥) + 𝑟𝜔 exp (𝑖√𝜔𝑥) 𝑥 󳨀→ ∞,

(5)

where 𝑡𝜔 and 𝑟𝜔 are the transmission and reflection coeffi-
cients for the energy 𝜔, respectively.
3. The General Solution

Given the initial energy of the incoming particle isΩ, we seek
a solution for (1) of the form

𝜓 (𝑥, 𝑡) =
{{{{{{{{{

𝜑+Ω+𝑛𝜔 (𝑥) exp (−𝑖Ω𝑡) +
∞∑
𝑛=−∞

𝑅𝑛 𝜑
−
Ω+𝑛𝜔 (𝑥)𝜑−Ω+𝑛𝜔 (𝑥0) exp (−𝑖 (Ω + 𝑛𝜔) 𝑡) 𝑥 < 𝑥0

∞∑
𝑛=−∞

𝑆𝑛 𝜑
+
Ω+𝑛𝜔 (𝑥)𝜑+Ω+𝑛𝜔 (𝑥0) exp (−𝑖 (Ω + 𝑛𝜔) 𝑡) 𝑥 > 𝑥0.

(6)

Aftermatching the wave function and its derivative at 𝑥 = 𝑥0,
that is, for 𝜀 → 0

𝜓 (𝑥0 + 𝜀, 𝑡) = 𝜓 (𝑥0 − 𝜀, 𝑡) ,
𝜓󸀠 (𝑥0 + 𝜀, 𝑡) − 𝜓󸀠 (𝑥0 − 𝜀, 𝑡)
= − (𝑓0 + Δ𝑓 cos (𝜔𝑡)) 𝜓 (𝑥0, 𝑡)

(7)

(the tags stand for spatial derivatives), then it is straight-
forward to see that the coefficients 𝑆𝑛 satisfy the difference
equation

𝑆𝑛 2𝑞𝑛 − [𝑆𝑛+1 + 𝑆𝑛−1] = 2𝜑
+
Ω (𝑥0) [ 𝑓0Δ𝑓 +

1
𝑞0 ] 𝛿 (𝑛) , (8)

where

𝑞𝑛 ≡ Δ𝑓
1/𝐺+Ω+𝑛𝜔 (𝑥0, 𝑥0) − 𝑓0 (9)

and𝐺+𝜔(𝑥, 𝑥󸀠) is the outgoing Green function; that is, in terms
of the eigenstates (4) it can be written as

1
𝐺+𝜛 (𝑥0, 𝑥0) =

𝜑−󸀠𝜛 (𝑥0)𝜑−𝜛 (𝑥0) −
𝜑+󸀠𝜛 (𝑥0)𝜑+𝜛 (𝑥0) . (10)
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With this terminology the mean activation energy ⟨𝜔act⟩ and
the mean current

⟨𝑗⟩ = ⟨2I(𝜓∗𝜕𝜓𝜕𝑥 )⟩ (11)

can be derived:

⟨𝜔act⟩
= ∑∞𝑛=−∞ (Ω + 𝑛𝜔) 󵄨󵄨󵄨󵄨𝑆𝑛󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝜑+Ω+𝑛𝜔 (𝑥) /𝜑+Ω+𝑛𝜔 (𝑥0)󵄨󵄨󵄨󵄨2
∑∞𝑛=−∞ 󵄨󵄨󵄨󵄨𝑆𝑛󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨𝜑+Ω+𝑛𝜔 (𝑥) /𝜑+Ω+𝑛𝜔 (𝑥0)󵄨󵄨󵄨󵄨2 , (12)

⟨𝑗⟩ = 2 ∞∑
𝑛=−∞

󵄨󵄨󵄨󵄨𝑆𝑛󵄨󵄨󵄨󵄨2 I (𝜑
+∗
Ω+𝑛𝜔 (𝑥) 𝜑+󸀠Ω+𝑛𝜔 (𝑥))󵄨󵄨󵄨󵄨𝜑+Ω+𝑛𝜔 (𝑥0)󵄨󵄨󵄨󵄨2

= ∞∑
𝑛=−∞

󵄨󵄨󵄨󵄨𝑆𝑛󵄨󵄨󵄨󵄨2 𝑗𝑛󵄨󵄨󵄨󵄨𝜑+Ω+𝑛𝜔 (𝑥0)󵄨󵄨󵄨󵄨2 ,
(13)

respectively, where

𝑗𝑛 ≡ 2I (𝜑+∗Ω+𝑛𝜔 (𝑥) 𝜑+󸀠Ω+𝑛𝜔 (𝑥)) = 2𝑘𝑛 󵄨󵄨󵄨󵄨𝑡𝑛󵄨󵄨󵄨󵄨2 (14)

is the current of the 𝑛th dynamic mode.

4. The Adiabatic Solution

The stationary state solution for (1) when the point defect’s
potential varies adiabatically [when 𝑓(𝑡) ≡ 𝑓0 + Δ𝑓 cos(𝜔𝑡)]
is

𝜓 (𝑥) = 𝜑+𝜔 (𝑥 > 𝑥0)1 − 𝑓 (𝑡) 𝐺+𝜔 (𝑥0, 𝑥0)
= 𝜑+𝜔 (𝑥 > 𝑥0)1 − 𝑓 (𝑡) / (𝜑−󸀠𝜔 (𝑥0) /𝜑−𝜔 (𝑥0) − 𝜑+󸀠𝜔 (𝑥0) /𝜑+𝜔 (𝑥0)) .

(15)

Therefore, the wave function beyond the barrier in the
adiabatic approximation is

𝜓 (𝑥 > 𝐿, 𝑡) = 𝑡Ω exp (𝑖√𝜔𝑥)1 − (𝑓0 + Δ𝑓 cos (𝜔𝑡)) 𝐺+Ω (𝑥0, 𝑥0) . (16)

That is, the quasi-bound-state energy varies in time

Ω∗ (𝑡) ≅ 𝑈 − (𝑓0 + Δ𝑓 cos (𝜔𝑡))
2

4 , (17)

and therefore the instantaneous current is equal to

𝑗 (𝑥, 𝑡) = 𝑗𝑠I {(1/𝑞0) / (1 − 𝑞∗0 cos (𝜔𝑡))}
I {1/𝑞0} , (18)

where

𝑗𝑠 ≡ 2√Ω 󵄨󵄨󵄨󵄨𝑡Ω󵄨󵄨󵄨󵄨2󵄨󵄨󵄨󵄨1 − 𝑓0𝐺+Ω (𝑥0, 𝑥0)󵄨󵄨󵄨󵄨2 (19)

is the stationary current and (following (9))

𝑞0 = Δ𝑓
1/𝐺+Ω (𝑥0, 𝑥0) − 𝑓0 . (20)

From (18) the average current, that is, ⟨𝑗⟩ = 𝑇−1 ∫
𝑇
𝑗(𝑥, 𝑡)𝑑𝑡,

where the average is taken over the period𝑇 = 2𝜋/𝜔, is finally

⟨𝑗⟩ = 𝑗𝑠I {(1/𝑞0) /√1 − 𝑞
∗
0
2}

I {1/𝑞0} . (21)

Therefore, the ratio between the average current and the
stationary one depends on a single complex parameter 𝑞0
(20).

Themaximum average current (⟨𝑗⟩max) is reached, within
this adiabatic approximation, when the lower value of the
resonance eigenbound state is equal to the incoming particle’s
energy, that is, for Ω = 𝑈 − (𝑓0 + Δ𝑓)2/4, or Δ𝑓 = 2𝐾 − 𝑓0,
for which case

⟨𝑗⟩max𝑗𝑠 ≅ exp (3𝐾𝐿)
8 sin (atan (𝑘/𝐾))

= exp (3𝐾𝐿)
8

√1 + (𝑘/𝐾)2
𝑘/𝐾

= exp (3𝐾𝐿)
8

√𝑈
𝑘 .

(22)

This current is exponentially larger than the stationary
tunnelling current (18).

Below and above the resonance, the current can be
approximated by the following.

Below the resonance value, that is, for Δ𝑓 < 2𝐾 − 𝑓0,
the current can be approximated by

⟨𝑗⟩ ≅ 𝑗𝑠 1
[1 − (Δ𝑓/ (2𝐾 − 𝑓0))2]3/2

. (23)

Beyond the resonance, that is, for Δ𝑓 > 2𝐾 − 𝑓0, the
current can be approximated by

⟨𝑗⟩
≅ 𝑗𝑠 (1 − 𝑓0/2𝐾) exp (2𝐾𝐿)
2 sin (2 atan (𝑘/𝐾)) [(Δ𝑓/ (2𝐾 − 𝑓0))2 − 1]1/2

. (24)

In Figure 2 the adiabatic solution is plotted with these
approximations.

These approximations are very useful, especially for the
lower values of the amplitude, since it is independent of the
exact shape of the barrier and even independent of its width.

5. Resonances and Antiresonances

In Figure 3 the exact numerical solution of (1) and (13)
is plotted (solid curve) along with the adiabatic solution
(dashed curve). Three regimes appear.
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Figure 2:The adiabatic approximation (solid curve) and its approx-
imations (the dotted and dashed curves).The lower panel is a zoom-
in of the transition zone.The simulations parameters were 𝐿√𝑈 = 7,𝑓0/√𝑈 = 0.5, Ω/𝑈 = 0.8, 𝜔/𝑈 = 0.01, and Δ𝑓𝑟 = 2𝐾 − 𝑓0 ≅ 0.3944,
presented by the vertical line.
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Figure 3: The exact numerical solution of the current (solid curve)
and the adiabatic approximation (dotted curve). The simulations
parameters were 𝐿√𝑈 = 7, 𝑓0/√𝑈 = 0.5, Ω/𝑈 = 0.5, 𝜔/𝑈 = 0.01,
and Δ𝑓𝑟 = 2𝐾 − 𝑓0 ≅ 0.9142.

In the weak modulation regime, that is, 0 < Δ𝑓 < Δ𝑓𝑐,
activation is negligible where the particle tunnels out with its
initial energy; that is, ⟨Ωact⟩ ≅ Ω. In this regime the adiabatic
approximation is an excellent evaluation of the current.

Beyond the transition threshold Δ𝑓 > Δ𝑓𝑐, the current
exceeds the adiabatic value, but it cannot reach the resonance
of the adiabatic approximation at Δ𝑓𝑟. In fact, beyond Δ𝑓𝑟 <Δ𝑓 the exact current is lower than the adiabatic value for
most modulation values Δ𝑓. When Ω > 𝑈/2 the adiabatic

approximation can be used as an upper bound value for the
real current.

This fact suggests a peculiar behaviour that an EAA
occursmainly when the incoming particle’s energyΩ is lower
than theminimum eigenenergy of the quasi-bound state; that
is, Ω < 𝑈 − (𝑓0 + Δ𝑓)2/4. That means that the particle did
not experience an ordinary resonant tunnelling to the well
and only then elevated to higher energies, but rather gained
energy quanta from the oscillations tomitigate the tunnelling.

When the oscillations amplitude increases beyond the
resonance level, that is, when the minimum value of the
eigenstate energy is lower than the incoming energy, then the
quasi-eigenstate mostly decreases the current. When there is
a destructive interference inside the well, then the particle
cannot dwell there and the current is substantially reduced.

It was shown [30] that the destructive interference occurs
for

∫𝑡2
𝑡1

𝑑𝑡󸀠 [Ω∗ (𝑡󸀠) − Ω] = 𝜋(2𝑚 + 32)
for 𝑚 = 0, 1, 2, . . .

(25)

when Ω∗(𝑡) ≅ 𝑈 − (𝑓0 + Δ𝑓 cos(𝜔𝑡))2/4 is the instantaneous
resonance state, and 𝑡1 and 𝑡2 are the time events, in which the
incoming particle’s energy crosses the resonance state; that is,Ω = Ω∗(𝑡1) = Ω∗(𝑡2). Therefore, after substituting (17) in
(25) and calculating for 𝑡1 and 𝑡2, the amplitude values Δ𝑓min
for which activation suppression occurs, and a corresponding
substantial decrease in current, are

Δ𝑓(𝑚)min = 2𝐾 − 𝑓0
+ [ 3𝜔4𝐾√2 (2𝐾 − 𝑓0) (𝑚 +

3
4)𝜋]

2/3 .
(26)

The four first minima, that is, 𝑚 = 0, 1, 2, and 3, are marked
with arrows in Figure 3.

Using the same logic, themaxima of the current occur for

Δ𝑓(𝑚)max ≅ 2𝐾 − 𝑓0
+ [ 3𝜔4𝐾√2 (2𝐾 − 𝑓0) (𝑚 +

1
4)𝜋]

2/3 .
(27)

And the largest maximum Δ𝑓(𝑚=0)max is marked as Δ𝑓𝑚 in
Figure 3.

Since, beyond the resonance value Δ𝑓𝑟, the adiabatic
approximation is a good approximation for the current
maxima, we can substitute Δ𝑓𝑚 ≡ Δ𝑓(𝑚=0)max in (24) to achieve
a compact expression for the maximum current

⟨𝑗max⟩ = 𝑗𝑠
⋅ (1 − 𝑓0/2𝐾) exp (2𝐾𝐿)
2 sin (2 atan (𝑘/𝐾))√2 [3𝜋𝜔√2/16𝐾 (2𝐾 − 𝑓0)]1/3

. (28)

Clearly, this expression is exponentially larger than the
stationary current 𝑗𝑠 but is exponentially smaller than the
adiabatic maximum (22).
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The curve stands forΩ∗(𝑡), its minimum value isΩ𝑟, andΩ0 −Ω𝑟 =Ω𝑟 − Ω𝑐.

It is also of interest to mention that the smaller the oscil-
lating frequency 𝜔, the larger the maximum current. Clearly,
this agrees with the fact that the adiabatic maximum is larger.
However, this approximation fails when 𝜔 is exponentially
small and the adiabatic approximation is restored.

The deviation from the adiabatic approximation occurs
when the oscillation amplitude reaches the quasi-resonanceΩ𝑐, where Ω0 − Ω𝑟 = Ω𝑟 − Ω𝑐 (see Figure 4). In terms of the
amplitude,

Δ𝑓𝑐 = 2𝐾 − 𝑓0 − [ 3𝜔4𝐾√2 (2𝐾 − 𝑓0)
5
4𝜋]
2/3 . (29)

At this amplitude value the current can be evaluated by
substituting (29) in (23):

𝑗𝑐 = ⟨𝑗⟩ (Δ𝑓𝑐) ≅ 𝑗𝑠 4𝐾 (2𝐾 − 𝑓0)15𝜔𝜋 . (30)

This increase is relatively mild and depends on the energy
distance from the resonance energy level.

From this reasoning it is possible to formulate an approx-
imation for the frequency dependence of the mean current.
The main contributions to the wave function (and therefore,
for the current) come from the points, in which the incoming
energy Ω crosses the resonance energy Ω∗(𝑡). Since in this
regime the particle is trapped to the well, the phase difference
between the two contributions is

ΔΦ ≡ 𝐶𝜔 +
𝜋
2 , (31)

where𝐶 ≡ ∫𝜉0
−𝜉0
𝑑𝜉󸀠[Ω∗(𝜉󸀠)−Ω] is a constant,Ω∗(𝜉) ≅ 𝑈−(𝑓0+

Δ𝑓 cos(𝜉))2/4 is the resonance energy, and 𝜉0 = arccos[(2𝐾−𝑓0)/Δ𝑓] is the crossing normalized time.
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Figure 5: The dependence of the mean current on the oscillating
frequency. The solid line represents the exact numerical solution,
while the dashed (red) curve stands for the approximation. Equation
(32) is multiplied by 1.1. The simulations parameters were 𝐿√𝑈 = 6,𝑓0/√𝑈 = 0.8,Ω/𝑈 = 0.5, and Δ𝑓/√𝑈 = 1.1.

Therefore,

⟨𝑗max⟩ ≅ 𝑗𝑠 (exp (𝑖ΔΦ/2) + exp (−𝑖ΔΦ/2))
2

4
= 𝑗𝑠 cos2 ( 𝐶2𝜔 +

𝜋
4 ) .

(32)

Thus, the phase is inversely proportional to the oscillating
frequency. This simple property is clearly seen in Figure 5,
where there is a high agreement between the exact solution
and the approximation (32).

6. The Convergence to the Adiabatic Regime

The process, in which the solution converges to the adiabatic
one, is illustrated in Figure 6.When𝜔 decreases the deviation
point from the adiabatic solution (Δ𝑓𝑐) and the largest
maximum (Δ𝑓𝑚) converges both toward Δ𝑓𝑟.

Similarly, the oscillations frequencies, for which activa-
tion is suppressed, are

𝜔𝑚 = 4 (Ω − 𝑈 + (𝑓0 + Δ𝑓)
2 /4)3/2

3𝜋 (𝑚 + 3/4)√Δ𝑓 (𝑓0 + Δ𝑓)
for 𝑚 = 0, 1, 2, . . . ,

(33)

where full activation occurs for

𝜔(act)𝑚 = 4 (Ω − 𝑈 + (𝑓0 + Δ𝑓)
2 /4)3/2

3𝜋 (𝑚 + 1/4)√Δ𝑓 (𝑓0 + Δ𝑓)
for 𝑚 = 0, 1, 2, . . . .

(34)

These minima and maxima are clearly shown in Figure 7.
Moreover, it is clearly shown that when the frequency is
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Figure 6: The average current as a function of the oscillation’s
amplitude for different oscillation’s frequencies (same numerical
parameters as in Figure 3).
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Figure 7: The ratio between the mean current and the stationary
current as a function of the perturbation frequency in linear (b)
and logarithmic (a) scales. The parameters are 𝐿√𝑈 = 6, 𝑓0/√𝑈 =0.5, Ω/𝑈 = 0.5, and Δ𝑓/√𝑈 = 1.2. The adiabatic transition is
approximately at 𝜔/𝑈 ∼ 10−4.

lower than the adiabatic threshold, that is, for 𝜔/𝑈 ≪
exp(−𝐾𝐿), which is approximately∼10−4 in the case presented
in Figure 7, the average current is very close to the adiabatic
approximation; that is, ⟨𝑗⟩ ≅ 𝑗0. When the frequency
increases beyond this value the average begins to oscillate
with the frequency. Within this activation zone, the current
can exceed the adiabatic value considerably ⟨𝑗⟩ > 𝑗0;
however, as the frequency increases even further the maxima
converges again to ⟨𝑗⟩ → 𝑗0.

7. Physical Realization

Due to the sensitivity of the current on the oscillating fre-
quency, it is natural to identify such processes in microscopic
tunnelling structure, such as odour receptors (see, e.g., [40,
41]).

However, current nanoscopic electronics allow fabricat-
ing such devices, where the current is controlled by the
bias frequency. A possible realization of this device is a
semiconductors heterostructure, where AlGaAs and GaAs
are used alternately for the wells and the conductors/well.
When the aluminium mole fraction is about 0.4, then the
barrier height (between the two materials) is approximately
0.4 eV (see, e.g., [7]). Therefore, since the effective electron
mass in AlGaAs is approximately 𝑚 ≅ 0.07𝑚0 (where 𝑚0 is
the free electronmass), then if a 3 nmwidth well is connected
to an ac voltage source, an approximately Δ𝑉 ≅ 0.3V
amplitude is sufficient to reach the resonance level (note thatΔ𝑉 = Δ𝑓/𝑤, where 𝑤 is the width of the well, which we
took to be 𝑤 ≅ 3 nm). In this case, if the well is modulated
at frequency 𝜔/2𝜋 ≅ 10GHz, then (26) and (27) can be
approximated (measured in volts):

Δ𝑉(𝑚)min ≅ 0.3 [1 + 0.003 (𝑚 + 34)
2/3] [V] ,

Δ𝑉(𝑚)max ≅ 0.3 [1 + 0.003 (𝑚 + 14)
2/3] [V] ,

(35)

respectively.
Thus, an approximately 1mVvariation in the amplitude of

the oscillating voltage will increase/decrease the current by at
least a factor of ∼ exp(2𝐾𝐿) ≅ 8000 (for a barrier’s width of2𝐿 ≅ 10 nm).

These performances suggest that such a device can be
used as a frequency effect transistor. These devices can be
much more accurate than ordinary transistors since fre-
quency is a parameter, which can be controlled with great
precision (much greater than voltage, e.g.).

8. Summary

The current through an opaque barrier with an oscillating
well was calculated both exactly numerically and approxi-
mately analytically for different regimes. In particular the
exact solution was compared to the adiabatic solution. The
main conclusions are as follows.

Despite the fact that the adiabatic analysis neglects
activation processes, the adiabatic approximation is a good
evaluation of the upper limit for the current. In fact, it is
shown that the presence of the quasi-bound eigenstate usually
suppresses the activation and therefore decreases the current.
A substantial current increase beyond the adiabatic level
occurs mainly when the incoming energy is lower than the
minimum resonance energy. In this regime the activation is
not due to the elevator effect [15, 17] since the particle cannot
be trapped in the well in this energy regime. Moreover, the
current is always smaller than the maximum value of the
adiabatic approximation.
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When the incoming energy crosses the resonance energy,
the incoming particle can be trapped in the well and then
activated to higher energies (EE); however, when it comes to
the current, the increase is relatively small. The main effect
of the eigenbound state is current reduction when there is a
destructive interference inside the well (the Sisyphus effect).

In general, the dependence of the mean current on
the oscillation amplitude Δ𝑓 follows the adiabatic solution,
except for few regimes, which can be fully characterized
by the following values: the point where the two solutions
depart, that is, Δ𝑓𝑐; the resonance value (i.e., the maximum
value) of the adiabatic approximation Δ𝑓𝑟, and the activation
minima Δ𝑓(𝑚)min and maxima Δ𝑓(𝑚)max.

These results suggest that activation is not an optimal
method to increase the mean current; however, they do show
that the current can easily be controlled by changes in the
frequency and therefore may be used in frequency effect
devices [20, 41].
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