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Two-dimensional (2D) layered materials such as graphene and transition metal dichalcogenides are emerging candidates for
spintronic applications. Here, we report magnetoresistance (MR) properties of a black phosphorus (BP) spin valve devices
consisting of thin BP flakes contacted by NiFe ferromagnetic (FM) electrodes. The spin valve effect has been observed from room
temperature to 4K, with MR magnitudes of 0.57% at 4K and 0.23% at 300K. In addition, the spin valve resistance is found to
decrease monotonically as temperature is decreased, indicating that the BP thin film works as a conductive interlayer between the
NiFe electrodes.

1. Introduction

Two-dimensional (2D) nanomaterials such as single-layer
graphene and transition metal dichalcogenides (TMDs)
have attracted great attention as building blocks for future
(opto)electronic technologies due to their specific layered
structures and novel physical properties [1–3]. Recently, the
2D nanomaterials have also been demonstrated to have
potential for application in the field of spintronics [4–11].The
2D materials have been largely researched as nonmagnetic
interlayer of spin valve, which is similar to traditional mag-
netic tunneling junctions consisting of two ferromagnetic
(FM) layers separated by a nonmagnetic insulating spacer,
usually Al2O3 and MgO, and the resistance depends on the
magnetization orientation of two ferromagnetic electrodes
[12, 13]. The first experimental work for realization of spin-
transport phenomenon is reported by Tombros et al. in
graphene-based planar spin valve structure [4]. Later on,
magnetoresistance (MR) was measured at room temperature
in graphene vertical spin valve [7, 8]. Subsequent works

reported spin-dependent transport in h-BN and transition
metal dichalcogenides (TMDs), such as MoS2 and WS2 [9–
11]. These studies suggest that the 2D nanomaterials may be
promising for spintronic applications. Recently, a few-layer
black phosphorus (BP), a newly identified 2D nanomaterial,
has been demonstrated to be an appealing candidate material
owing to its exotic physical properties such as thickness-
dependent tunable band gap and high carrier mobility [14–
18]. Interestingly, theoretical study predicted a relatively
large MR ratio in the BP-based spin valve structure [19–21].
However, so far, there have been no reports of MR effect in
BP-based spin valve.

In this work, we report on the fabrication and spin valve
effect in the BP-based device. 2D BP is sandwiched by two
permalloy electrodes (Py and Ni81Fe19) and the BP layer
serves as nonmagnetic spacer layer as shown in Figure 1(a).
The devices show spin valve effect from room temperature to
low temperature with a MR of 0.57% at 4K. The temperature
dependence of the device resistance reveals that the BP layer
works as a metallic layer between two FM electrodes.
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Figure 1: ((a) and (b)) Structure and measurement structure of BP-based vertical spin valve device, consisting of bottom NiFe electrode,
2D-BP spacer, and top NiFe electrode. (c) Optical macrograph of NiFe/BP/NiFe spin valve device. (d) AFM graph of device.

2. Methods

2.1. Material and Device Fabrication. The BP crystals were
synthesized from red phosphorus under high temperature
of 1000∘C and high pressure of 2GPa. Thin BP flake was
obtained by mechanically exfoliating BP crystal using adhe-
sive tape (scotch tape), and then the flakewas transferred onto
the prepatterned Py (bottom) electrodes on SiO2/Si substrate.
The bottom electrodes were fabricated by e-beam lithography
(EBL) and a lift-off procedure after e-beam evaporating Py
with thickness of ∼30 nm. In the subsequent process, top
Py electrodes with thickness of ∼50 nm were fabricated by
another run of EBL, metal deposition and lift-off process.
Finally, the bottom and top FM electrodes were connected
with large electrodes by EBL and Cr (5 nm)/Au (60 nm)
deposition.

2.2. Device Characterization and Measurement Setup. The
devices were measured with a four-terminal setup, where the

bias currents flow perpendicular to the device plane of the
spin valve. The magnetic field was applied in-plane at 45∘ to
the direction of the Py ferromagnetic electrodes as shown in
Figure 1(b). The BP flake was initially identified by optical
microscopy in Figure 1(c) and then further confirmed by
atomic forcemicroscopy (AFM). Figure 1(d) shows an atomic
force microscope (AFM) image of one device, revealing that
the thickness of BP for the device is ∼6.5 nm. The transport
measurements for the BP-based spin valve devices were
performed using Physical Properties Measurements System
(PPMS) made by Quantum Design.

3. Results and Discussion

3.1. Current-Voltage Characteristics and Spin Valve Effect.
Figure 2(a) displays the current-voltage (I-V) curves of one
typical device for various temperatures.The linear I-V curves
indicate the Ohmic contact characteristics of the BP flake
and FM electrodes. At room temperature, the resistance-area
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Figure 2: Characterizations of NiFe/BP/NiFe spin valve device. (a)The current-voltage curves of device at different temperature from 4K to
300K and resistance curve as a function of temperature at zeromagnetic field in inset figure (a). (b) Resistance curves of device when external
magnetic field is applied at 300K and the value of MR is 0.23% for the structure of Py/BP/Py spin valve.

(RA) product of the device is on the order of ∼10−11Ω⋅m2,
which is smaller than that in the monolayer MoS2 device
(∼10−10Ω⋅m2 [10]). This difference may be related to the
different band gaps (∼0.5 eV in our device while ∼1.87 eV
in [10]). Note that the resistance decreases with reducing
temperature, indicating that the BP behaves as a metal in
the spin valve structure as shown in inset of Figure 2(a). The
results suggest that the thin BP flake behaves as a conducting
thin film rather than a tunnel barrier between the two FM
electrodes, which is consistent with the previous works in
MoS2 and WS2 based spin valve [10, 11].

Spin valve effect is characterized by measuring the
resistance as a function of magnetic field. By sweeping the
magnetic field, the resistance can be tuned into the high-
resistance (𝑅AP) state and low-resistance (𝑅P) state since it
depends on the orientation of the magnetization of the FM
electrodes. The magnetoresistance is defined as MR = 100 ×
(𝑅AP−𝑅P)/𝑅P, where𝑅AP and𝑅P are the resistances when the
magnetization vectors of two Py electrodes are antiparallel
and parallel to each other, respectively. Note that the widths
of the top and bottom electrodes were designed to be 500 nm
and 2 𝜇m as shown in Figure 1(c), respectively. This yields
a large difference in coercivity between two FM electrodes.
Thus the bottom electrode is easier to magnetize than the
top one under the application of magnetic field owing to
weaker shape anisotropy. The resistance as a function of
magnetic field for a representative Py/BP/Py spin valve at
room temperature is shown in Figure 2(b). As the magnetic
field scan from −400Oe to 400Oe, the top and bottom
electrodes switch in sequence, resulting in the observation of
a resistance plateau.TheMRvalue of the device is determined
to be 0.23% at RT.

3.2. Temperature Dependence of the Spin Valve Effect. Fig-
ure 3(a) shows a series of MR curves for a representative

Py/BP/Py spin valve at various temperatures ranging from
4.2 K to 300K. The maximum MR value is 0.57% at 4K.
A simple relation between the MR and the polarization of
the FM electrodes for a junction can be approximated as
MR = 2𝑃1𝑃2/(1−𝑃1𝑃2), where 𝑃1 and 𝑃2 are the electron spin
polarization of the two FM metals, respectively [10]. Assum-
ing that two FM electrodes have the same composition, then
the polarization (𝑃1 ≈ 𝑃2 = 𝑃) of the two Py electrode is
estimated to be ∼5%, which is comparable to the other values
reported previously [10], but smaller than that (𝑃 ∼ 0.3) in
the Py/Al2O3 interface. A possible reason for this reduced
polarization is the exposure to air of the Py surface prior
to the application of the BP layer. Some contaminants are
inevitably adsorbed on the surface and air exposure of Py
may produce antiferromagnetic NiO, significantly decreasing
the spin polarization [22]. Future well-controlled fabrica-
tion process in situ without air exposure of the interfaces
may improve the interface quality, maximizing the MR
effect.

The magnitude of the MR monotonically decreases as
the temperature is increased, as shown in Figure 3(b). The
decrease in MR amplitude at higher temperature may be
attributed to the inelastic scattering with phonons, magnetic
impurity scattering, surface states, and thermal smearing of
electron energy distribution in the FM metals [23]. The data
are found to follow Bloch’s law, where the spin polarization
is described by 𝑃(𝑇) = 𝑃(0)(1 − 𝛼𝑇3/2). By fitting the data
withMR relation by considering the temperature dependence
of spin polarization, the material-dependent constant 𝛼 can
be estimated to be 5.9 × 10−5 K−3/2. This value is comparable
to that of 3∼5 × 10−5 K−3/2 reported in the literature [24].
Temperature-dependent relation of parallel and antiparallel
resistance are showed in Figure 3(c), which further indicated
BP not as insulting barrier layer in the MTJ, but as metallic
layer in vertical spin valve.
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Figure 3: Temperature dependence of spin valve effect in NiFe/BP/NiFe device. (b) Normalized MR ratio as a function of temperature and
the solid line is the fitting to Bloch’s law. (c) Resistance of device, corresponding to low resistance (𝑅P) and high resistance (𝑅AP).
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Figure 4: (a) Magnetoresistance curve at various bias currents. (b) MR ratio as a function of bias current.

3.3. Bias Current Dependence of the Spin Valve Effect. Finally,
we investigated the bias current dependence of the spin
valve effect. Figure 4(a) shows the resistance as a function of
magnetic field at various bias currents from 10 𝜇A to 50 𝜇A
at 4K. The amplitude of MR value is found to be decreased
as the bias current increases as shown in Figure 4(b). We
attribute the decrease in MR value at larger bias current to
the spin excitations localized at the interfaces between the FM
electrodes and the BP interlayer [25] as well as the localized
trap states in the BP interlayer [26] at the BP interlayer
played a metallic property role in vertical spin valve. The
results provide a possible approach to use the emerging
BP nanomaterials for future spintronics applications such as
magnetic memory and logic devices.
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