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Amorphization Effect for Kondo Semiconductor CeRu2Al10
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We measured the magnetic susceptibility 𝜒, electrical resistivity 𝜌, and specific heat 𝐶𝑝 of a sputtered amorphous (a-)CeRu2Al10
alloy. 𝜒 value for a-CeRu2Al10 alloy follows a Curie-Weiss paramagnetic behavior in the high-temperature region, and magnetic
transition was not observed down to 2K.The effective paramagnetic moment 𝑝eff is 1.19 𝜇𝐵/Ce-atom.The resistivity shows a typical
disordered alloy behavior, that is, small temperature dependence for the whole temperature range. We observed an enhancement
of 𝜌 and 𝐶𝑝/𝑇 in the low-temperature region of 𝑇 < 10K. The enhancement in 𝜌 is suppressed by applying a magnetic field. It is
suggested that this behavior is caused by the Kondo effect.

1. Introduction

The ternary rare-earth compound, CeRu2Al10, exhibits an
unusual antiferromagnetic phase transition at 𝑇0 ≈ 27K
[1, 2].The resistivity for CeRu2Al10 exhibits a semiconducting
behavior in the paramagnetic phase. However, this behavior
is suppressed by substituting La in Ce-site of CeRu2Al10.
In addition, 𝑇0 decreases rapidly with an increase in La
concentration and disappears when about half of Ce is
substituted by La. The resistivity for Ce dilute region of La-
substituted CeRu2Al10 exhibits a metallic behavior at high
temperatures, and the resistivity exhibits a minimum in the
low-temperature region. Tanida et al. proposed that the long-
range magnetic order was suppressed randomly in Ce dilute
region for La substitution of CeRu2Al10. The authors pointed
out that the resistivity minimum can be explained by a
typical impurity Kondo effect, where Ce exists as a magnetic
impurity [3, 4]. Moreover, the semiconducting band gap of
CeRu2Al10 is broken by La substitution.

However, several studies on the Kondo effect of struc-
tural-disordered Ce-alloys such as bulk metallic glasses and
amorphous alloys, where Ce-atom is arranged randomly,
have been recently performed. For example, in Ce-Al bulk
metallic glasses, the tunable competition between the Kondo

effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY)
interaction with the variation in Ce-concentration and the
magnetic field [5] is suggested. We studied the low-tem-
perature properties of several binary amorphous Ce-alloys.
Amorphous (a-)Ce-Mn and a-Ce-Ru alloys in Ce high-
concentration region exhibit a large electronic specific heat
coefficient 𝛾 (>200mJ/molK2) and 𝑇2 law with a large coef-
ficient A (>0.02 𝜇Ωcm/K2) in the low-temperature resistivity
[6–10]. From these results, we show that an itinerant heavy-
fermion state occurs at low temperatures as a Fermi-liquid
ground state in the structure-disordered system after the
formation of a dense Kondo state.

In this study, to investigate the influence of the structural-
disordered effect on the electrical resistivity and magnetic
properties for CeRu2Al10, we prepared a-CeRu2Al10 alloy
and measured its magnetic susceptibility, resistivity, and
specific heat. In addition, we prepared a-LaRu2Al10 alloy
that does not have 4f -electrons with a rare-earth element for
comparison.

2. Experimental

Bulk ingots of CeRu2Al10 and LaRu2Al10 were prepared
by using the arc-melting method with a stoichiometric
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composition of Ce 99.9%, La 99.9% (Nippon Yttrium Co.,
Ltd.), Ru 99.95% (Rare Metallic Co., Ltd.), and Al 99.99%
(Mitsuwa Chemicals Co., Ltd.), in Ar atmosphere. The
amorphous alloy was prepared using a dc high-rate sput-
tering method with arc-melt ingots on a water-cooled Cu
substrate (30mm𝜙). The sample thickness was ∼200𝜇m.The
structure of the obtained samples was confirmed using X-ray
diffraction measurements. Measurements were performed
with an as-sputtered film. The chemical compositions of the
present amorphous alloys were determined using scanning
electron microscope energy dispersive X-ray spectroscopy
(SEM-EDS) to be Ce10Ru15Al75 and La8Ru17Al75 (suffixes
represent at%). Thus, we will use the notations a-CeRu2Al10
and a-LaRu2Al10 for the samples, hereafter. The magnetic
susceptibility was measured using a commercial SQUID
magnetometer (Quantum Design MPMS) from 2 to 300K.
The electrical resistivity was measured by using a typical
four-terminal method (Quantum Design PPMS) from 2 to
300K. The resistivity measurements of a-CeRu2Al10 alloy
were performed in a magnetic field (0, 20 kOe, 40 kOe, and
60 kOe) and the temperature range was 2–60K. The specific
heat was measured by PPMS from 2 to 300K.

3. Results and Discussion

Figure 1 shows the X-ray diffraction patterns for a-CeRu2Al10
and a-LaRu2Al10 alloys. The diffraction patterns for both
alloys exhibit two broad peaks at the center at about 25∘ and
42∘, and definite Bragg peaks are not observed.Therefore, the
samples are identified as amorphous materials.

Figure 2 shows the temperature dependence of the mag-
netic susceptibility 𝜒 (left axis) and the inverse susceptibility
1/(𝜒−𝜒0) (right axis) for a-CeRu2Al10 and a-LaRu2Al10 alloys
at H = 10 kOe. We calculated 𝜒 using the composition ratio
of Ce10Ru15Al75 obtained by SEM-EDS as 1mol. 𝜒 value for
a-CeRu2Al10 alloy increases monotonically with decreasing
temperature, and a magnetic transition is not observed in
the measurement temperature region. However, 𝜒 value for
a-LaRu2Al10 alloy is almost independent of the temperature
and is very small value (<10−6 emu/mol). 1/(𝜒 − 𝜒0) value
for a-CeRu2Al10 alloy exhibits a linear behavior in the high-
temperature region of 𝑇 > 30K following the Curie-Weiss
law,

1

(𝜒 − 𝜒0)
=
1

𝐶
(𝑇 − 𝜃) , (1)

where 𝜒0 is a constant for the independence of temperature,
𝐶 is the Curie constant, and 𝜃 is the Weiss temperature. 𝜒0
value for a-CeRu2Al10 alloy obtained from (1) was ∼1.0 ×
10−6 emu/mol. The value of 𝜃 is −20K. 𝐶 is obtained as

𝐶 =
𝑁Ce𝜇eff

2

3𝑘𝐵
, (2)

where𝑁Ce is the number of Ce atoms,𝜇eff is the paramagnetic
effective magnetic moment, and 𝑘𝐵 is the Boltzmann con-
stant. Here, 𝜇eff is calculated from Ce-concentration (10 at%)
of composition ratio Ce10Ru15Al75 obtained from SEM-EDS.
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Figure 1: X-ray diffraction pattern of a-CeRu2Al10 and a-LaRu2Al10
alloys.
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Figure 2: Temperature dependence of the magnetic susceptibility 𝜒
and inverse susceptibility 1/(𝜒−𝜒0) for a-CeRu2Al10 alloy.The green
points and line are the temperature dependence of the magnetic
susceptibility 𝜒 for a-LaRu2Al10 alloy.

The estimated 𝜇eff obtained using (2) is 1.19𝜇𝐵/Ce-atom.
Since the effective magnetic moment expected for trivalent
Ce (J =5/2) is 2.54 𝜇𝐵, the obtained value of 1.19𝜇𝐵/Ce is about
half this value.Therefore, it is expected that about half of Ce of
a-CeRu2Al10 alloy exists as nonmagnetic tetravalent Ce and
the remaining half exists as magnetic trivalent Ce in the alloy.
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Figure 3: Temperature dependence of the resistivity 𝜌 for
𝑎-CeRu2Al10 and a-LaRu2Al10 alloys.

Figure 3 shows the temperature dependence of the
resistivity 𝜌 for a-CeRu2Al10 and a-LaRu2Al10 alloys. The
value of 𝜌 at 300K for a-CeRu2Al10 alloy is about 2 times
greater than that of a-LaRu2Al10 alloy. 𝜌 value for both alloys
exhibits small temperature dependence less than 10% in the
whole temperature region, and it increases with decreasing
temperature. Such temperature dependence is one of the
characteristics of disordered alloys. In contrast to 𝜌 value
of a-LaRu2Al10 alloy, which increases monotonically with
decreasing temperature,𝜌 value of a-CeRu2Al10 alloy exhibits
an increase in the low-temperature region. Generally, in
the case of disordered alloys, the resistivity is larger than
that for the crystalline counterparts owing to the random
arrangement of atoms. However, the absolute value of the
low-temperature 𝜌 in a-CeRu2Al10 alloy is on about the same
order as that for the polycrystalline CeRu2Al10. In addi-
tion, although 𝜌 value of a-CeRu2Al10 alloy increases with
decreasing temperature, a small temperature dependence
similar to that for the typical disordered alloy was observed.
Therefore, it is considered that the semiconductor band for
crystalline CeRu2Al10 exhibited ametallic behavior as a result
of amorphization.

Figure 4 shows the low-temperature specific heat 𝐶𝑝 over
𝑇 versus 𝑇2 plots for a-CeRu2Al10 and a-LaRu2Al10 alloys.
The inset shows the temperature dependence of 𝐶𝑝 for the
alloys. 𝐶𝑝 values of both alloys are almost in agreement in
the whole temperature region, as shown in the inset.The low-
temperature specific heat of a usual metal can be expressed by

𝐶𝑝 = 𝛾𝑇 + 𝛽𝑇
3, (3)

where 𝛾𝑇 is the electronic specific heat term and 𝛽𝑇3 is
the phonon specific heat term. This relation can also be
applied to amorphous alloys [11]. As shown in Figure 4,𝐶𝑝/𝑇
of a-LaRu2Al10 alloy follows a linear relation as a function
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Figure 4: 𝐶𝑝/𝑇 versus 𝑇
2 plot for a-CeRu2Al10 and a-LaRu2Al10

alloys. The inset shows the temperature dependence of the specific
heat 𝐶𝑝 for a-CeRu2Al10 and a-LaRu2Al10 alloys.

of 𝑇2 below 50K2. However, 𝐶𝑝/𝑇 of a-CeRu2Al10 alloy
increases rapidly with decreasing 𝑇2 below 100K2. The value
of 𝐶𝑝/𝑇 at the lowest temperature is ∼54mJ/molK2. The
temperature region where the enhancement in 𝐶𝑝/𝑇 occurs
agrees with the temperature region of the upturn for 𝜌. Such
enhancement in 𝐶𝑝/𝑇 and 𝜌 at low-temperature does not
occur for a-LaRu2Al10.Therefore, it is considered to be due to
the magnetic contribution of the 4f -electron of Ce. In order
to clarify the magnetic contribution of the 4f -electron of Ce
for a-CeRu2Al10, we measured the magnetoresistance of a-
CeRu2Al10.

Figure 5 shows the magnetic field dependence of the
transverse magnetoresistance Δ𝜌/𝜌 at 2 K, 10 K, and 60K for
a-CeRu2Al10 alloy. We calculated Δ𝜌/𝜌 as follows:

Δ𝜌

𝜌
=
𝜌 (𝐻) − 𝜌 (0)

𝜌 (0)
, (4)

where 𝜌(𝐻) is the resistivity in the magnetic field and 𝜌(0)
is the resistivity at zero field. Δ𝜌/𝜌 increases negative with
increasing magnetic field strength. Δ𝜌/𝜌 at 2 K exhibits a
large negative enhancement compared with that at other
temperatures. Figure 6 shows the temperature dependence
of Δ𝜌/𝜌 at 20 kOe, 40 kOe, and 60 kOe for a-CeRu2Al10
alloy. The Δ𝜌/𝜌 in the high-temperature region (𝑇 > 10K)
is almost independent of the temperature for all the mag-
netic fields. However, Δ𝜌/𝜌 in the low-temperature region
increases rapidly with decreasing temperature at𝑇 < 10K for
all the fields.Thus, the enhancement of 𝜌 at low temperatures
is suppressed by the applied magnetic field.

The present a-CeRu2Al10 alloy seems reasonable that
the magnetic order of the crystalline counterpart have dis-
appeared because they lose a long-range crystallographic
order by amorphization. However, the local structure of
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Figure 5: Field dependence of the magnetoresistance Δ𝜌/𝜌 at
various temperatures for a-CeRu2Al10 alloy.
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Figure 6: Temperature dependence of the magnetoresistance Δ𝜌/𝜌
under various magnetic fields for a-CeRu2Al10 alloy.

the amorphous alloy is generally considered to be similar
to that of the crystalline counterpart. Even in a-CeRu2Al10
alloy, a local structure similar to that of the crystalline
CeRu2Al10 is expected to be realized. In addition, based
on 𝜇eff , we have shown that half of Ce in a-CeRu2Al10
alloy is in the trivalent state. Ce3+ ions in a-CeRu2Al10
alloy are distributed randomly in the amorphous sample.
In this case, it is considered that the random distribution
of Ce3+ in the disordered structure realizes the impurity
Kondo effect at low temperatures. Thus, the enhancement of

𝜌 and 𝐶𝑝/𝑇 is observed in the low-temperature region for
a-CeRu2Al10 alloy. Since the Kondo scattering is suppressed
by the applying a magnetic field, Δ𝜌/𝜌 increases negatively.
Therefore, the negative increase of Δ𝜌/𝜌 for a-CeRu2Al10
alloy at low temperatures and high magnetic fields indicates
that the scattering center of the resistivity is due to Kondo
scattering.

4. Conclusion

We prepared a-CeRu2Al10 and a-LaRu2Al10 alloys and mea-
sured their susceptibility, resistivity, and specific heat. 𝜒 value
for a-CeRu2Al10 alloy follows the Curie-Weiss law in the
high-temperature region of 𝑇 > 30K with no magnetic
transition.The effective paramagnetic moment and theWeiss
temperature are 1.19 𝜇𝐵/Ce-atom and –20K, respectively. 𝜌
value for a-CeRu2Al10 and a-LaRu2Al10 alloys shows a small
temperature dependence. However, an enhancement of 𝜌
was observed in the low-temperature region for a-CeRu2Al10
alloy. 𝐶𝑝/𝑇 value of a-CeRu2Al10 alloy increases rapidly
with decreasing 𝑇2 below 100K2. The magnetoresistance
Δ𝜌/𝜌 for a-CeRu2Al10 alloy increases rapidly with decreasing
temperature for 𝑇 < 10K. Therefore, it is considered that a-
CeRu2Al10 alloy is formed the impurity Kondo state in the
low-temperature region.
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