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A geometric potential from the kinetic term of a constrained to a curved hyperplane of space-time quantum superconducting
condensate is derived. An energy conservation relation involving the geometric field at every material point in the superconductor
is demonstrated. At a Josephson junction the energy conservation relation implies the possibility of transforming electric energy
into geometric field energy, that is, curvature of space-time. Experimental procedures to verify that the Josephson junction can act

as a voltage-to-curvature converter are discussed.

1. Introduction

The success of the Laser Interferometer Gravitational Wave
Observatory (LIGO) and its sister collaboration, VIRGO
[1, 2], in observing the geometric field’s ripples in space-
time has, in addition to opening a new experimental method
of astrophysical observation, proved a practical scheme for
measuring the space-time metric; that is, LIGO had seen the
death spiral of a pair of black holes, through the dislocation
and the associated change in optical (and physical) path
travelled by light beams in the arms of an interferometer
as the gravitational perturbation travels between the reflec-
tion points. In theory, the geometry of space-time, that is,
the components of the Riemann curvature tensor, can be
reconstructed by taking measurements of the deviation of two
adjacent light paths (geodesics) [3, 4].

Bearing in mind this spectacular success in experimental
astrophysics, we pose the following questions: (i) Are there
other experimentally relevant strategies for detecting space-time
geometry? (i) Is there other extremely sensitive measurement
technique besides two-light beam interference that can poten-
tially sense the geometric field? The present paper aims to
answer both questions and is organised as follows. The first
section discusses the appearance of a geometric potential
term from the kinetic energy term in the Schrédinger
equation. In order to improve on the detection possibili-
ties we assume this constrained to a hyperplane quantum
dynamics to concern a superconducting condensate. The

second section focuses on the hydrodynamic interpretation
of the governing quantum equation and reveals that the
geometric field enters it on an equal footing with the
“quantum potential” (in Bohm’s views), thus making its way
as a real force moving the condensate superfluid. The third
section contains the proof that the emergent geometric field
enters an energy conservation relation valid at each point of
the superconducting condensate. Based on this conservation
relation applied to a Josephson junction, an experimentally
verifiable voltage-to-curvature conversion effect is proposed
in the fourth section. The fifth section discusses possible
experimental methodologies to test the reality of the effect.

2. The Geometric Field in
the Schrodinger Equation

The general theory of relativity conveyed an understanding
of phenomena such as the distortion of time-space by a
gravitational or acceleration field [5]. However, the manner
in which the curvature of space-time, that is, the Riemannian
space, affects the electronic properties of condensed matters
systems on a microscopic scale is largely unknown and due
to its experimental accessibility is of great interest [6, 7].
Riemannian geometric effects in a quantum system,
which can either be free or constrained, stem from the
dependance of the kinetic term on the metric of the embed-
ding space or the metric of the submanifold onto which the
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quantum system is constrained by a confining potential (rigid
chemical bond; electrostatic attraction).

The problem of constraining particle motion to a curved
submanifold embedded in a Euclidean space R" can be
resolved in one of two alternative ways. (i) In the intrinsic
quantization approach, the motion is constrained to the
curved submanifold in the first place. A Hamiltonian is con-
structed from generalised coordinates and momenta intrinsic
to the submanifold and the system is quantized canonically.
As a result, the embedding space is inaccessible and the
quantum system depends only on the geometry intrinsic
to the submanifold/hyperplane [8-11]. (ii) In the confining
potential approach, a free in the embedding space quantum
particle is subjected by a normal force to the submanifold
force that in effect confines the dynamics in it. The effective
Hamiltonian depends on the intrinsic geometry and on the
way this submanifold is immersed in the embedding space.

On one hand, the intrinsic quantization procedure is
plagued with ordering ambiguities that allow for multiple
consistent quantization procedures different by a term pro-
portional to the curvature of the submanifold [10-14]. On
the other hand, the confining potential procedure leads to a
unique effective Hamiltonian that depends on the constraint.
In real microscopic quantum systems, constrained motion is
a result of a strong confining force (electrostatic, rigid chem-
ical bonds, etc.). Therefore, confining potential formalism
seems a physically more realistic approach to constraints [15-
25].

The nonrelativistic quantum mechanics in a three-
dimensional hyperplane of the four-dimensional curved
space-time can be treated in a well established manner [14].
In this case the embedding space-time is non-Euclidean but
equipped with a metric. This four-dimensional metric is
related to the matter distribution by the Einstein equation.
Suppose the four-dimensional space-time M is topologically
the product M = R x Z, where X represents a space-like
three-dimensional hyperplane. We can then foliate M by a
one-parameter family of embeddings given by the map 7, :
Y — M such that %, = 7,(¥) ¢ M, which means that Z, is
the image of the map 7 in M for a fixed “time” t. We assume
that the leaves X, are space-like with respect to the metric in
M. As a result, there exists in M a time-like field normal to
the leaves Z,, and therefore there is a notion of future and
past. This time evolution vector field, t* = (3/0t)", satisfies
t°V,t = 1, so that local coordinates ¢, x", x*, x° (satisfying
t°V x? = 0, for b = 1,2,3) can be introduced. In effect, the
space-time is splittable into 3 + 1 dimensions and the induced
Riemannian metric g;; onto the three-dimensional %, can be
used to write the Laplace-Beltrami operator A g, which is
the kinetic energy term in the Schrodinger equation for the
subjected to the geometric field quantum particle or quantum
condensate:

AV =

1 *
\Maj (Viglg™ o) .

= g’0,0,¥ - ¢TI, 0¥

Advances in Condensed Matter Physics

The emergence of the geometric field from the kinetic
term can be made clearer in the vicinity of the origin where
the following Taylor expansion of the induced metric in
normal coordinates applies: g; = §; — (1/3)R,-kjlxkxl +
O(|x]?) (in fact, Riemann used the expansion of a metric in
normal coordinates to originally define the curvature tensor;
in normal coordinates there is no necessity to distinguish
between co- and contravariant indices; see [26, 27]), and
expanding the square root of the determinant of the metric
yields

1 .
lg|=1- gRjkx]xk + O(|x|3). (2)

Using a standard renormalisation of the wave-function ¥ =

v/|g|""* and keeping the lowest order terms (the only relevant
for the quantum dynamics) in the Taylor expansion we get for
the kinetic term in the Schrédinger equation

W v

T om g

1 R +h_291kazak\MW
R N L [ 3)
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Here A is the Laplacian on flat space. Adding an additional
potential U(x', x*, x°) that may act in the system we convey
the complete symbolic equation with which we will further
work:

2

h .
—o v+ (Vgeom + U) v = ihd,y. (4)
Here
2
Veeom = —h—ocR, (5)
2m

where R is the three-dimensional Ricci scalar curvature and
a = 1/12 is a numeric coefficient. The emergence of a
geometric potential from the kinetic term is obvious. Such
a term is a standard coupling term between curvature and a
quantum field in quantum field theory in curved space-time.
Note that the particular form of the geometric potential
may vary and in the case of a constraining potential approach
it takes the expressions: (i) V.o = —(h/8m)i?, where « is
the principle curvature of a space curve embedded in R* [17,
18, 20, 21]; (ii) Vieor = —(H*/8m)(x, — x,)*, where «;, for i =
1,2, are the principle curvatures of a surface embedded in R?
[15-18]; (iil) Vgeom = —(H*/8m) [1e5 (165 —2( +5,)) + (1, —Kz)z],
wherek;, fori = 1,2, 3, are the principle curvatures of a three-
dimensional manifold embedded in R* [23-25].
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When electric field (defined with the potential V) and

magnetic field, defined through the vector potential A, are
present the Schrodinger equation takes the following form:

1 (h — h —
—(Zv-qA)-(=v-q4 %
o (Bv-ad)-(Bv-gd )y avy

(6)
+ (VGeom + U) W = lhatvj

3. Hydrodynamic Interpretation of the
Condensate Wave-Function

Suppose that we deal with a Cooper pair condensate inside
a superconductor. The Schréodinger equation for the Cooper
pair will be (6) with g = 2e, that is, twice the charge of the
electron. This equation will describe the state of the entire

condensate. Therefore, we may write y = \/p(7 )eiem), where

p(? ) is the charge density of the condensate and 0(7) is its
phase. Upon substitution of this form of the wave-function
into (6) we can separate the real and imaginary part of the
equation to arrive at slightly modified standard result:

aP_ - - 5 1 —
E__V.], ]_vp—a(hve—qA)p, 7)
00 1 —\?
fla = —qV— %<hve—qA)
(8)
2 (A
+h—<—\//_) +ocR).
2m \ \p

=
Here ] is the current density, which in the case of a
superconducting condensate stands also for the probability
current. The generalised momentum is contained in the

expression for J P = hvl - q?\), and therefore the current
density is just the velocity of the superconducting current
times the charge density.

Taking the gradient of the whole equation (8) and
expressing VO from (7) (akin to [28]) we obtain the modified
version of the hydrodynamic interpretation of the quantum
condensate dynamics:

A

_— = — 4 . V_)
a "o
1 1 _[w (A ©
1 L[ ()]
m m | 2m\ ./p
vx7=-1B, (10)
m
= =1 - . .
where F; = gqE + qv x B is the Lorentz force acting

on the charged Cooper pairs. These two equations are the
equations of motion of the superconducting Cooper pair fluid
in the presence of an induced curvature (from the embedding
space-time), which in this paper is referred to as geometric
field. Note that the geometric field enters the gradient of the
mystical quantum mechanical potential, recognised by Bohm
as a unique interaction with the y-field itself [29, 30]. As a

result, the geometric field and the y-field (in view of Bohmian
quantum mechanics) have similar and competing action.

Next we recall the London equations for the quantum
superconducting current density [31]

T = TiA, ()

where TI = —pg/m (see eq. (21.20) in [28]). For brevity
we will call the introduced quantity IT, which can be either
of scalar or tensorial character, the polarisation operator. A
correct microscopic theory of superconductivity can produce
an expression for it in terms of the energy gap and critical
temperature [32, 33].

Note that an important issue needs to be addressed,
namely, to what extent the London equations hold in curved
space-time. The above London equation is implicitly con-
tained in the Schrodinger equation within the form of the
canonical momentum. However, in the curved space case,
the canonical momentum (7) coincides with the flat space
case (see [28]); therefore we will not seek any generalisation
of (11). An additional reinforcement of this choice comes
from the original London brothers’ derivation; namely, the
supercurrent is being accelerated under the influence of
external electromagnetic fields as if made up of free charged
particles. Therefore in curved space-time J” = 0,/~gF"’,
where F*” is the electromagnetic tensor [34]. Reducing the
above to the space part and using (2) within the zero-th
order in the vicinity of the origin (the same approximation
as the one used in the derivation of (6)) we obtain J” =
0,(1+0(x*))F*" ~ 9,F*”, which coincides with the flat space
case; therefore the second London equation (produced by
taking a curl from this one) should also coincide with the flat
space one, that is, (11). London equations are grounded in the
electrodynamics of the superconductor and more specifically
the phenomenological description of its ideal diamagnetism.
We do not have any indication that this material property is
rendered invalid in curved space-time.

In addition, the London theory can be viewed as a
limit (the London limit) of the phenomenological Ginzburg-
Landau theory, which in the case of curved space-time is
extended with an extra term encoding the interaction with
the geometric field, besides the standard extension of the
covariant derivatives, to include the Christoffel symbols [35,
36]. The supercurrent operator emerging from this approach
coincides with (7) (see eq. (24) from [35, 36]); therefore the
above conclusion on the validity of the London theory in
curved space-time is preserved. London theory remains valid
also in the case of the gravitoelectromagnetic approximation
to the Einstein field equations [37, 38].

Next, we divide both sides of (11) by the current density p
and then differentiate with respect to time

av _dj _dTA
dt dtp dt p’
only to equate the r.h.s. of (9) with the r.h.s. of (12):

2 A =
?L+V[h—(£+aR)]=imE. (13)
2m \ /fp dt p

(12)



4. The Geometric Effect

In the case when the superconducting state is robust, we may
assume that

dil
— =0,
dt
dp (14)
£ =0,
dt
Avp = 0;

the current density in the superconductor is approximately
constant as well as the polarisation operator (no internal
changes in the microscopic mechanism). The ideal diamag-
netism of the superconducting state reduces the Lorentz force
to its electrostatic part, which is nonvanishing only in the
case when a Josephson junction is present (two separated
conducting domains at different electrostatic potentials).
Finally, the above simplifications yield

& —  TdA
\Y [—(xR] =—qE +m——, (15)
2m p dt

which is simply an expression for the conservation of energy.
Let us take a line integral of the above along an open path
from point A to point B:

2 B B 7 B IA
h—(xj VR -d7=—J qTE) -d7+mgj aa
2m  Ja A pJa dt (16)
—
-dl.
Next we introduce the geometric field energy
2

— h —
Wg(r)=oc%R(r). (17)

— B— —
Recall that E; ; = —0A/0t, which means that g JA Eiqdl =

&Eina(B) — &,,4(A) is the electromotive potential difference
between the two points and

— —
dA 0A _ —

E = E +v - -VA
(18)
da; oA, 0r;dA,
dt ot ot or;’
Finally (16) can be rewritten using (7) as
Wg (B) - Wg (A) = q [Ustat (B) - Ustat (A)]
m 11
- —— |8 (B) — &g (A
qp [ md( ) md( )] (19)

I [ (5 vA) dT.

Now, suppose the Cooper pair charge velocity is constant
at the two adjacent points; then the last integral quantity
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measures the difference in the interaction energy W,
between the Cooper pairs and the vector potential at the two
points:

B
qj (V-VA)-dl =qv - A®B) - 47 -4 (4)

A (20)
= avvint'
Introducing the electrostatic energy W, = qUy(7') We can
put (16) in its final form
m I
Wy (B) = Waga (B) + =2 [Ena (B) = Wi (B)]
= W, (A) = Wyy (4) 1)

8 [ () - W ().
qp

As a result of introducing the scalar polarisation operator
from (11) and [39], the following conserved quantity at each
material point of the superconductor emerges:

Wy

(7) -& (7) + Wine (7) = const. (22)
Here &(7) = W,,(7) — &,,4(7) is the electrical energy of
the Cooper pairs.

5. Direct and Reversed Effect

In the previous section we have seen that the geometric field is
equivalent to an electric field in the superconductor (15) the
statement of which is analogous to the law of conservation
of energy (25). Therefore, provided the superconducting
element is homogeneous, we can expect W, (7') = const and
as a result of the perfect conductor aspect of the supercon-
ducting state, we can also expect a redistribution of the shift
by the geometric field charges inside the superconductor in
order to maintain the superconductor at a constant potential.

A completely different behaviour can be expected at the
Josephson junction. We will discuss two cases of the junction,
one between superconducting sides made from the same
superconductor (symmetric) and one between two different
superconductors (asymmetric).

Clearly, in the symmetric junction, the interaction energy
W,,.(7) will be the same on both sides. However the elec-
trostatic potential on the two sides can be different and the
voltage drop U can be equated to the geometric potential,
that is, the curvature scalar R itself. In effect, the difference
in the geometric field between the two sides 6R can produce
a voltage drop at the junction (direct effect) or the voltage
drop across the junction can produce curvature difference
(reversed effect):

hZ
a—0OR = qU. (23)
2m
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In this case, we may regard the Josephson junction as a
curvature-to-voltage converter with the following ratio (m is
the free electron mass):

1[V] = 63x10% [m™]. (24)

Note, the only difference the asymmetric junction can intro-
duce is the difference in the interaction energy dW,,,, between
the supercurrent and the electromagnetic field at the two
sides of the junction. Suppose the supercurrent flows in the
junction at vanishing potential difference U — 0; then
the interaction energy gradient can produce rippling in the
geometric field according to
hZ
a—OR = —6W,

u (25)

The interaction energy (20) is a function of the supercurrent
drift velocity and one may view the asymmetric effect as
produced by a sharp change in momentum, which converts
into rippling of the geometric field. We may expect a back-
reaction on the entire junction as well. The kinetic energy
of the bulk material can certainly be included in (25). The
backreaction will increase with the increase in the difference
between the interaction energy of the supercurrent with the
electromagnetic field on both sides.

6. Proposed Experimental Verification

An argument that the Josephson junction can act as a
reversible curvature-to-voltage converter was presented in
the previous section. In effect, the argument is prone to
experimental testing and now we will discuss how and to
what extent. Note that the conversion factor (25) points to
the impossibility to observe the travelling ripples in space-
time, that is, gravitational waves, with a Josephson junction.
Along the span of the junction (few angstrom [A]) the
expected difference in the induced scalar curvature is very
small SR > 1072 [m™2]; therefore according to (25) we
may not hope for potential difference greater than 107 [V]
which is unmeasurable. We are in a position to answer the
questions from the introduction. We are unable to sense
the geometric field produced by a gravitational wave at the
Josephson junction.

However, since we expect that the effect is reversible, we
may attempt to create a geometric field at the junction by an
electric discharge between its sides. The greater the potential
difference that can be created between the sides, the greater
the geometric field that could be created. We are unaware of
the dynamics of the created geometric field and do not have
any governing equations at the present stage of discussion on
its propagation. Nevertheless, we can propose two detection
methods which in theory can confirm the proposed effect.

The first approach stems from the reversibility argument;
see Figure 1(a). Suppose we have two junctions in close
proximity. We have no firm reason to choose a particular
set-up but choose to discuss the idea of the experiment with
the two junctions placed along a line in such a way that the
plane of the junctions (the insulating layer) is normal to the

imaginary line connecting them. Both junctions should be
magnetically and electrically shielded from each other and
the surrounding environment. One of them will serve as an
emitter and the other as detector. A high-voltage discharge
should be conducted in the emitter and an induced voltage
drop should be recorded at the detector. Provided such an
electric potential difference is recorded via proper coinci-
dence scheme (an additional detector junction involved),
we may confirm that the geometric effect at the Josephson
junction is a physical reality.

The second approach involves the ability of the geometric
field to impart motion to objects with inertia; see Figure 1(b).
In the geometric field a measure of the curvature of space-
time is an acceleration field as well or better induces force
(in the lab frame) on a free object of inertia via the Newton’s

second law F = ma, where d is the imparted acceleration.
We can give a rough estimate of the imparted acceleration
in order to come up with an experimental procedure to
verify the effect. There are two possibilities to arrive at an
estimate. The first approach involves the use of Gauss’s law
for gravitation V - @ = —47Gp,,e; and the (¢, ) component
of Einstein’s field equations for a perfect fluid (where T, =
~PmatterC€): Gur = 8TGP e/ Here ¢ is the velocity of light
in vacuum, G is Newton’s gravitation constant, and p,er
is the matter density. Next we make use of an exact result
valid for a 3 + 1 decomposition of space-time: G,, = R/2,
where R is the scalar Ricci curvature of the three-dimensional
hypersurface [40]. Combining these relations we end up with
V.4 =R /4, which is equivalent to

2
a= RTC(Sx, (26)

in the case when the imparted acceleration is in one dimen-
sion along the span of dx. Interestingly, a similar result is
obtained if one takes up the geodesic deviation equation
D*x* /dT2 = R’:jvTizjv, where T' is the 4-velocity of an
object travelling along the geodesic and x* is the deviation
vector. Note, the Riemann tensor enters the relation directly.
The geodesic deviation measures the acceleration with which
two neighbouring geodesics deviate from each other in the
curved geometry. Suppose T' is a unit vector in the time
direction and x” = x;+a 2/2+0(t), where x, is a constant;
then the geodesic deviation equation in one dimension
is approximately @ =~ Rc*0x upon a substitution of the
Riemann tensor component with the Ricci scalar curvature.
Most importantly, the two expressions agree in the order of
magnitude and the expected acceleration in a geometric field
pulse with a magnitude of R ~ 10%° [m™?] and a width of the
size of the Josephson junction 107'° [m] that can be imparted
to an object along its path is enormous a ~ 10*g. The
dislocation such a pulse can cause is proportional to the time
of its duration squared. However, we have no estimate of this
quantity, but given the large value for the acceleration even a
femtosecond pulse can lead to substantial dislocation of the
order of meters. We also have no estimate of the spread with
distance of this geometric field pulse and believe the assumed
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FIGURE 1: Detection schemes. (a) Detection based on the reversibility of the effect. Here a discharge with e.m.f. U is conducted in one of the
junctions as the circuit is closed via key K. The emitted geometric field R is detected with the second Josephson junction with the voltage
induced between its sides as the geometric pulse impinge on it. (b) Detection based on the dislocation induced by the geometric pulse R on

a mirror M part of an interferometer measurement circuit.

value for the scalar curvature and imparted to a material body
acceleration to be largely exaggerated.

Now suppose we conduct a high-voltage discharge in a
Josephson junction and try to measure the dislocation of
a mirror, mechanically shielded from the junction. Such a
dislocation will be induced by the emitted geometric field (at
the junction). The position of the mirror with respect to the
junction is unknown; therefore few geometric set-ups should
be tried. Next, in order to increase the sensitivity of the exper-
iment, we suggest the inclusion of the detection mirror as a
primary or secondary mirror in a Michelson interferometer.
Provided a dislocation in the mirror is recorded, we may
confirm the generation of a geometric field in a Josephson
junction.

7. Conclusion

In conclusion we would like to point out the origin of the
geometric potential from the kinetic term of a constrained to
a curved three-dimensional hyperplane of space-time quan-
tum mechanical condensate (superconductor). This potential
makes its way into the hydrodynamic interpretation of the
Schrédinger equation and enters it on an equal footing with
Bohm’s “quantum potential.” When external electromagnetic
field is included in the dynamics and suitable simplifications

are applied, one is able to derive an obvious energy conserva-
tion relation at every material point in the superconductor.
This conservation relation includes a geometric field part
associated with the curvature of the hyperplane. It turns out
that at a tunnelling junction (Josephson junction) the energy
conservation relation implies the possibility to transform
electric energy into geometric energy, that is, create curvature
in the hyperplane and vice versa. In effect, it turns out that
the Josephson junction can act as a voltage-to-curvature
converter. Experimental procedures are discussed in hope the
present study invites experimental effort to verify the effect.
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