Research Article

Structural and Morphological Properties of Single and Mixed Halide Pb-Based Perovskites

Kanij Fatema (1,2), Mohammad Tanvir Ahmed (1), Md. Kamal Hossain (1), and Farid Ahmed (1)

1Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
2Department of Electrical and Electronic Engineering, Bangladesh University of Business and Technology (BUBT), Dhaka-1216, Bangladesh

Correspondence should be addressed to Kanij Fatema; priankajun@gmail.com

Received 5 July 2022; Accepted 27 September 2022; Published 11 October 2022

1. Introduction

Nowadays, organic-inorganic perovskite solar cells (PSCs) based on organometallic halides are an emerging photovoltaic technology. Perovskites are attractive, highly crystalline hybrids because of their unity of organic and inorganic materials [1]. These hybrid perovskites take advantage of combining distinct properties of inorganic and organic components within a single molecular material [2, 3]. Compared with other solar cells, PSCs have low production costs because of their simple synthesis procedure, mainly solution-based process [4, 5], and fabrication without any complexity by using spin coating process [6, 7]. Lead-based perovskites, mainly CH$_3$NH$_3$PbI$_3$ (MAPbI$_3$), are the most harvested material for PSCs [8, 9]. The MAPbI$_3$ material has a better excitation coefficient with excellent external quantum efficiency until 800 nm of wavelength, and this material shows the highest efficiency [10, 11].

The general chemical formula of organometalllic perovskite compound is ABX$_3$, where A and B are organic cation and divalent metal cation, respectively, and X is the halogen anion [12].

PSCs were first reported in 2009, achieving 3.81% power conversion efficiency (PCE). A breakthrough came in 2012, Lee et al. obtained a PCE of 10.9% perovskite mixed-halide CH$_3$NH$_3$PbI$_2$Cl using a “mesoporous device architecture.” By 2013, a simple planar heterojunction solar cell combining vapor-deposited perovskite (MAPbI$_{3-x}$Cl$_x$) as an absorbing layer was reported to have a PCE over 15% [13] which proved that nanostructure is not required to obtain high efficiency. They used a perovskite absorber and mesoporous TiO$_2$ as n-type transporter materials. They replaced mesoporous n-type TiO$_2$ with Al$_2$O$_3$, acting as a “scaffold,” which improved the efficiency, and the perovskite film was 150 nm thick [14]. Although Pb is a toxic element, Pb-based perovskite shows better performance in various fields compared to other metal-based perovskites [15–24]. Jeong et al. reported high-efficiency PSCs with a PCE of 17% by size-controlled growth of MAPbI$_3$ cuboids [17]. Nie et al. synthesized a millimeter-sized grain of MAPbI$_{3-x}$Cl$_x$ perovskite via the spin coating method resulting in a PCE of 18% [18]. Perovskite-based solar cells’ PCE achieved 19.3% using a planar geometry without an
antireflective layer. They used the perovskite absorber CH3NH3PbI3-XClX [19]. PCE up to 20.4% was reported in 2016 to achieve reproducible MAPi perovskite solar cells through the grain boundary healing process [20]. According to the NREL chart, the efficiency of Pb-based perovskite solar cells recently reached 25.2% based on single-junction architectures and 29.1% in silicon tandem cells in 2020 [25]. Mo et al. synthesized Zirconia coated Pb-based perovskite nanocrystals for light emitting diode (LED) applications, which showed enhanced stability and better luminescence [16]. Wang et al. developed CsPbBr3@Polymethyl methacrylate composite which showed improved performance as X-ray scintillators [21]. Zhou et al. studied superalkali introduced perovskites’ solar cell performance and obtained up to 22.83% PCE with H2O2PbBr3 [23].

A material’s optical and electrical properties are heavily influenced by its crystal structure and surface morphology. A material can have varied crystal shapes and phases depending on the crystal development conditions. Dopings, heating, concentration variation, and other means can also be used to alter the crystal structure and surface morphology.

Here, Lead-based perovskite materials CH3NH3PbI3 (MAPi3), CH3NH3PbI2Cl (MAPi2Cl), CH3NH3PbI2Cl2 (MAPi2Cl2), and CH3NH3PbI3Cl (MAPi3Cl) were synthesized via one-step spin coating method. In this work, the synthesized materials’ basic structural and morphological properties are studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively.

2. Experimental

2.1. Reagents. CH3NH2 (40%), HI (67% in H2O), HCl (32% in H2O), lead (II) chloride (99%, Merck), and lead (II) iodide (99%, Sigma–Aldrich).

2.2. Synthesis of the Perovskite Structures. Methylamine (MA, CH3NH2) was reacted with Hydroiodic acid (HI) with a molar ratio of 1:1 to produce CH3NH3I. Similarly, CH3NH2 and HCl were reacted with a 1:1 molar ratio to synthesize CH3NH3Cl26.

0.01 mole CH3NH3Cl and CH3NH3I were dissolved separately into 10 mL N, N-dimethylformamide (DMF). An Equimolar ratio of PbCl2 and PbI2 dissolved in DMF containing CH3NH3Cl and CH3NH3I, respectively, to produce CH3NH3PbCl3 and CH3NH3PbI3 precursor solution [27, 28]. Similarly, an equimolar ratio of PbCl2 and PbI2 were reacted with CH3NH3I and CH3NH3Cl, respectively, to synthesize CH3NH3PbCl3 and CH3NH3PbI3Cl2, respectively [29, 30]. Figure 1 shows the prepared perovskite precursor solutions.

The precursor solutions of CH3NH3PbI3, CH3NH3ClPbI2, CH3NH3PbCl2, and CH3NH3PbCl3 were spin coated on glass substrates at 1500 rpm for 30 sec (Figure 2). Then, deposited films were annealed at 60° for 20 minutes.

2.3. Characterizations. The structural properties were obtained by X-ray diffraction analysis via the GBC EMMA diffractometer. Surface morphology was studied by ZEISS Evo18 SEM.

3. Results and Discussion

3.1. Structural Analysis. XRD pattern of MAPi3 (Figure 3) satisfies previous research showing peaks at 2θ=14.48°, 28.72°, 32.19°, and 43.47° which correspond to (100), (200), (210), and (211), respectively [12, 31]. MAPi2Cl depicts peaks at 2θ=11.13°, 13.14°, 31.72°, 39.03°, 52.55° which correlate to (100), (110), (211), (221), and (400) planes, respectively. (001), (100), and (111) planes of MAPi2Cl2 perovskites are identified at 2θ=14.38°, 28.57°, and 43.54°, respectively [24]. For MAPi3Cl, peaks are procured at 2θ=16.0°, 32.02°, 48.51° correlating to (002), (103), and (211) planes, respectively [32, 33]. Higher 2θ values correspond to decreasing interplaner spacing and increasing peak width [34, 35].

The lattice parameters of the prepared crystals were calculated via “FullProf” software and listed in Table 1. It is observed that all the synthesized perovskites possess a tetragonal crystal phase with a variation in lattice parameters which is caused by the structural deformation due to the variation of halide ion stoichiometry. The alteration of halide ions can generate residual stress in the lattice due to the variation of X-site ion radius, which can vary the lattice constants as well as the interplaner spacing of the crystals. As a result, the variation of unit cell parameters is observed.

The grain size of synthesized materials has been calculated from the X-ray diffraction pattern using the Debye–Scherrer equation [36].

\[
\text{Crystallite size, } L = \frac{K\lambda}{\beta \cos \theta} \tag{1}
\]

where \(\beta\), \(\lambda\), and \(K\) are full-width half-maxima (FWHM), X-ray wavelength, and Scherrer constant (0.89), respectively.

The average crystallite sizes of MAPi3, MAPi2Cl, MAPi2Cl2, and MAPi3Cl structures are listed in Table 2. The crystallite size is related to the dislocation density (\(\delta\)) by the following equation:

\[
\delta = \frac{1}{L^2} \tag{2}
\]

Which represents the number of dislocations per unit length [12]. Since \(\delta\) makes an inverse square relation with \(L\), smaller crystallite size possesses higher dislocations. The crystallite size and dislocation density suggest that the periodicity of perovskites increases with decreasing iodine content and increasing chlorine content.

The lattice strain (\(\varepsilon\)) is a measure of deformation in the crystal structure and can be obtained from the following equation [12],
The strains of MAP\textsubscript{3}, MAP\textsubscript{12}Cl\textsubscript{2}, MAP\textsubscript{12}Cl\textsubscript{3}, and MAPCl\textsubscript{3} are 0.0087, 0.0081, 0.0067, and 0.0043, respectively. The strain decreases with iodine reduction in the perovskite structure (Figure 4). The lattice strain can vary due to the difference in different halide ionic radii and the variation in the thermal expansion coefficient of the substrate and deposited crystals [12, 37]. The reduction of lattice strain represents less deformation in the crystal structure, which can offer higher periodicity. As a result, the crystallite size has increased with decreasing iodine content.
3.2. Morphological Structure of Synthesized Perovskite Film.

Figure 5 shows the SEM image of MAPI$_3$, MAPI$_2$Cl, MAPICl$_2$, and MAPCl$_3$ perovskites. These images confirmed the crystal formation of perovskite structure and obtained microrod shape for MAPI$_3$ and MAPI$_2$Cl in Figures 5(a) and 5(b), respectively. As observed in previous reports, the dendrite growth of iodine halide perovskite allows them to form in rods or wires [12, 38]. The grain structure changes drastically with decreasing iodine content and increasing chlorine in the perovskite. The microrods tend to break down with a decreasing iodine concentration in the sample. The breakdown of microrods is observed in Figure 5(b), whereas Figure 5(c) shows the growth of cuboid clusters. Finally, for MAPCl$_3$ structure (Figure 5(d)), cubic grains are observed, which satisfies previous research [39]. The average grain size of MAPI$_3$, MAPI$_2$Cl, MAPICl$_2$, and MAPCl$_3$ are 2.81 µm, 3.98 µm, 7.12 µm, and 7.2 µm, respectively. The structural deformation arises due to the change in the ionic radius of the X-site. This deformation can oppose the growth of microrods in various directions, which may cause the breakage of the rod structure into smaller cuboids. Although all the images show a poor film coverage, which can affect the optical as well as electrical properties of the materials. In order to improve the film coverage, higher DMF content can be used [40].
Figure 4: Crystallite size and lattice strain of the synthesized crystals.

Figure 5: SEM morphological structure of (a) MAPI₃, (b) MAPI₂Cl and (c) MAPICl₂, (d) MAPCl₃.
4. Conclusions

The MAP13, MAPICl2, MAPICl3, and MAPCl3 perovskite thin films were successfully synthesized via the one-step spin coating method. The XRD analysis shows fine crystallinity of all the perovskite with average grain sizes of 20.77 nm, 30.01 nm, 31.11 nm, and 40.23 nm, for MAP13, MAPICl2, MAPICl3, and MAPCl3 structures, respectively, signifying that reduction of iodine and increase of chlorine content in the halide ion site can increase crystal periodicity. All the structures showed a tetragonal phase with a variation of lattice parameters due to the lattice deformation. The grain shape also changes from rod to cube structure with the alteration of halide ions. The average grain diameter of MAP13, MAPICl2, and MAPCl3 are 2.81 µm, 3.98 µm, 7.12 µm, and 7.2 µm, respectively. This article deals only with the structural and morphological properties of the perovskites. However, more characterizations (i.e., optical, electrical, elemental, etc.) can be observed for these structures in future studies.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

Acknowledgments

This work was supported by the Condensed Matter Physics lab, Department of Physics, Jahangirnagar University, Dhaka 1342, Bangladesh. The authors also acknowledge M. S. Bashar, Principle Scientific Officer, Bangladesh Council of Scientific and Industrial Research, for providing necessary characterization techniques. This research was funded by the National Science and Technology (NST) fellowship under the Ministry of Science and Technology, Bangladesh.

References

