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In this study, amino-functionalized magnetic graphene-based composite TEPA-GO/CoFe2O4 (TGOM) was prepared by a simple
one-step hydrothermal reaction and applied to the removal of Cr (VI) from wastewater. e removal of Cr (VI) by TGOM has the
characteristics of high removal e�ciency and excellent cycle performance. e maximum adsorption capacity is 114.81mg/g, and
the adsorption e�ciency can still reach 62% after four cycles. e mass percentage of amino in TGOM material is about 1.97%
according to thermogravimetric analysis. e modi�cation by TEPA increased the adsorption sites and improved the adsorption
capacities due to the synergistic e�ect of chelation with Cr (VI).e e�ects of pH, contact time, and temperature on the removal of
Cr (VI) were studied. e removal process accorded with the pseudo-second-order kinetics and Langmuir isotherm model, and
the thermodynamic parameters showed that the adsorption process was exothermic and spontaneous. e characterization
analysis before and after adsorption showed that there were complexation reaction, electrostatic adsorption, and reduction
mechanism in the removal process.e above results indicate that TGOM is an e�ective adsorption material for the removal of Cr
(VI) in wastewater.

1. Introduction

e rapid development of industry in modern society brings
not only economic development but also many pollution
problems, one of which is water pollution. In the water
pollution system, heavymetal pollution cannot be ignored. It
is highly toxic and will pose a major threat to human health
and environmental safety even at a very low level [1, 2]. Cr
(VI) is a heavy metal ion that exists in many industrial
wastewaters and has very high toxicity. It is known that the
toxicity of chromium will change with the change of valence
[3]. ere are mainly two valence states of chromium in
nature, namely, Cr (III) and Cr (VI) [4]. As we all know, the
toxicity of Cr (VI) is very high, so it is imperative to remove
Cr (VI) from wastewater. A variety of methods to remove Cr
(VI) in wastewater can be found in previous studies, such as
precipitation, adsorption, �ltration, and ion exchange. [5–9].
Adsorption is considered as one of the most e�ective

removal methods because of its unique advantages such as
low cost, high economic bene�t, and safe operation. To this
end, scholars have prepared a variety of adsorbents to
remove toxic Cr (VI) such as activated carbon [10], related
nanomaterials [11], and metal materials [12, 13].

Previous studies have shown that graphene oxide (GO)
works well in adsorption material because it is a good two-
dimensional structure material with a high surface area and a
variety of oxygen-containing functional groups on the
surface [14, 15], which can provide a lot of adsorption sites.
However, we know that GO is a kind of hydrophilic material,
and it may be di�cult to separate from water when it is used
as an adsorbent [16]. erefore, the combination of nano-
magnetic particles and GO to form a new magnetic ad-
sorption material which can be well separated from water
has become a research hotspot in recent years. For example,
a magnetic Fe3O4/GO nanocomposite was prepared for the
adsorption of Cr (VI) in wastewater [17]. It has been
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reported that some functional groups (such as amine) can be
grafted on the GO surface to improve the adsorption effi-
ciency of GO [18].

According to past experience, CoFe2O4 magnetic
nanoparticles are intended to be loaded on GO to enable
rapid separation after adsorption [19]. In order to further
increase the adsorption performance of the material, tet-
raethylenepentamine (TEPA) containing more amino
groups can be grafted on the surface of GO to provide more
adsorption sites through amino protonation to improve the
adsorption of Cr (VI) [18, 20, 21].

In this study, TGOM magnetic nanomaterials were
successfully prepared by a simple one-step hydrothermal
method, and the morphology, structure, and performance
characteristics of the materials were studied through a series
of characterizations. -e adsorption capacity of Cr (VI) was
studied, which is the effect on the adsorption performance
under the conditions of different initial pH, adsorption time,
and reaction temperature. And on this basis, the recycling
ability of the TGOM was further studied.

-is study provides a simple preparation method to
prepare material (TGOM), and CoFe2O4 and TEPA are
loaded on the GO surface as carrier material, which provides
more choices for magnetic and amino group-containing
materials that can be loaded. Meanwhile, TGOM also has a
good adsorption effect, which can provide a new solution for
removing Cr (VI) pollution in water.

2. Experiment Section

2.1. Materials. Graphite powder (30 μm, 99.85%) was pro-
duced by the Shanghai Colloid Chemical Plant in China.
Concentrated sulfuric acid (H2SO4, AR, 98%), phosphoric
acid (H3PO4, AR, 98%), potassium permanganate (KMnO4,
GR, 99.8%), hydrogen peroxide (H2O2, AR), ethylene glycol
(EG), sodium acetate (NaAc), cobalt chloride hexahydrate
(CoCl2·6H2O, AR), iron trichloride hexahydrate
(FeCl3·6H2O, AR, 99%), and tetraethylenepentamine
(TEPA) were purchased from Shanghai Mike Lin Bio-
chemical Co., Ltd. All the reagents were of analytical grade,
and all the water used in the experiment was deionized
water.

2.2. Synthesis of TGOM. GO was produced by oxidizing
graphite powder. -e method of preparing GO in this study
is further improved on the basis of the Hummers method
[22, 23]. TGOM was prepared by a simple one-step hy-
drothermal method. Specifically, 0.1 g GO was sonicated for
3 h to make it fully dispersed in 50mL of EG. -en, 0.54 g of
FeCl3·6H2O, 0.24 g of CoCl2·6H2O, 3.69 g NaAc, and 0.42 g
TEPA were added to the above solution and stirred con-
tinuously for 45min at room temperature. After that, put the
mixed solution into a 100mL Teflon-lined stainless steel
autoclave and keep it at 180°C for 24 hours. Finally, the
obtained product was washed, dried, and ground to get the
product TGOM. Chen et al. also used the hydrothermal
method to synthesize CoFe2O4-TETA-GO material in
previous literature [24], but the process of preparation is

divided into two steps. Compared with the preparation route
in literature, the synthesis method in this study is more
convenient. -e composite material MGO (GO/CoFe2O4)
was also prepared by this method for a contrast study.

2.3. Characterization. -e morphology of the material was
studied by transmission electron microscope (FEI-JSM
6320F, TEM) image (imaging voltage of 200 kV) and
scanning electron microscope (JEM-2010, SEM) image
(imaging voltage of 10 kV). -e functional groups of the
material were measured by Fourier transform infrared
spectroscopy (FTIR-1500, China; Nicolet 6700, USA) in the
range of 400∼4000 cm−1 by the KBr tablet test. -e X-ray
diffraction (XRD) was measured on a Bruker D8 X-ray
diffraction analyzer, and the diffraction spectrum was
recorded in the 2-theta angle range of 10°–80°.-e elemental
composition and chemical state of the surface changes were
analyzed by XPS spectroscopy (PHI-5300, UK) (Mg-Kα
X-ray excitation source, corrected binding energy C1 s is
284.8 eV). Raman spectra were recorded by a Raman
spectrometer (INVIA, England) with holographic notch
filter and CCD detector. -ermogravimetric analysis
(Mettler TGA/DSC3+, Switzerland) of the material was
carried out in an N2 atmosphere and at a temperature
ranging from room temperature to 600°C (10°C/min).

2.4. Batch Experiments. -e prepared TGOM material was
used as the adsorbent for the adsorption experiments. -e
effects of pH, adsorption time, and reaction temperature on
the adsorption test were studied. TGOM was dispersed
uniformly in deionized water by ultrasonic treatment to
make a certain concentration of adsorbent suspension.-en,
it was transferred to a PE tube with a known concentration
(50mg/L) of Cr (VI) solution. After adjusting the pH (range
2–10) with 0.1M HCl and 0.1M NaOH solution, the tem-
perature was kept at 298K and oscillated (180 rpm) for 24 h
to study the influence of pH on the adsorption experiment. A
solution of Cr (VI) to be adsorbed with a certain concen-
tration (20mg/L, 30mg/L) was prepared, it was adjusted to
the optimal pH value, and then the samples were taken at the
same temperature (298K) and different reaction time (time
interval: 0–150min) for measurement to study the effect of
time on adsorption test. -e effect of reaction temperature
on the experiment is similar to the previous process, only
changing the experimental conditions to different temper-
atures (298 K, 308K, and 318K). -e adsorbent concen-
tration in all adsorption experiments was 0.1 g/L, and the
concentration of Cr (VI) in the adsorbed solution was de-
termined by UV-Vis spectrophotometer (T6 New Century,
China). All the experiments in this study are set parallel
experiments to ensure the accuracy of experimental data.

Adsorption capacity (qe) is calculated according to the
following formula:

qe � c0 − ce( ∗
V

m
, (1)

where C0 (mg/L) is the initial concentration of Cr (VI) in the
solution, Ce (mg/L) is the equilibrium concentration,V (L) is
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the volume of the solution, and m (g) is the mass of the
adsorbent TGOM.

3. Results and Discussion

3.1. Characterization. Figure 1 shows the morphology of the
sample. It can be observed that GO appears as a sheet with a
large number of wrinkles on the surface (Figure 1(a)), which
provides a higher surface area and facilitates the loading of
nanoparticles on its surface. After loading CoFe2O4 and
TEPA (Figure 1(b)), it can be seen that the granular
nanoparticles are uniformly distributed on the GO surface,
and the GO surface still maintains a wrinkled morphology,
which effectively prevents the aggregation of nanoparticles
[25]. Figures 1(c) and 1(d) show the TEM image of the
composite TGOM. It can be seen that the metal nano-
particles are effectively distributed on the GO surface, and

the particles are uniform. Figure 1(e) shows the EDS energy
spectrum analysis diagram of the composite material. It can
be seen that there are elements such as Fe, Co, and N on the
surface of the material, which further proves that CoFe2O4
and TEPA are successfully loaded on the surface of GO. -e
crystal plane spacing measured in the HRTEM diagram
(Figure 1(f )) of TGOM is 0.26 nm, which corresponds to the
(311) crystal plane of CoFe2O4 and demonstrates the suc-
cessful loading of CoFe2O4.

-e XRD pattern of TGOM is shown in Figure 2(a).
From Figure 2(a), it can be observed that TGOM has seven
distinct characteristic peaks located at 2θ�18.33, 30.17,
35.48, 43.16, 53.54, 57.01, and 62.68°, respectively. Com-
paring with the standard patterns (JCPDS 22–1086), the
seven characteristic peaks correspond to the (111), (220),
(311), (400), (422), (511), and (440) planes of CoFe2O4 [26].
-e results indicate that the composite materials TGOM
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Figure 1: (a, b) SEM images of GO and TGOM; (c, d) TEM images of TGOM; (e) EDS of TGOM; (f) HR-TEM image of TGOM.
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contain CoFe2O4 magnetic nanoparticles. According to the
Bragg equation (2dsinθ � nλ), the crystal plane spacing of
(311) is 0.253 nm, which is similar to the HRTEM result
(0.26 nm).

-e FT-IR spectrum of the composite TGOM is shown
in Figure 2(b), and the functional group changes of TGOM
can be seen. In Figure 2(b), the sample has an obvious
characteristic peak at about 3438 cm−1, which is the O-H
tensile vibration, indicating that the sample contains a small
amount of water molecules [27, 28]. In the TGOM spectrum,
it can be observed that there is a characteristic peak at
1109 cm−1, corresponding to the tensile vibration of the C-N,
and the peak at 1560 cm−1 is the bending vibration of N-H
[29, 30]. It indicates that the GO surface was successfully
loaded with amino groups (TEPA). -e characteristic peak
at 580 cm−1 corresponds to the vibration of the metal-ox-
ygen bond (tetrahedron) [31], which indicates that CoFe2O4
was also successfully loaded onto the GO surface.-e overall
FT-IR analysis results show that amino groups were suc-
cessfully introduced on the surface of GO during the

functionalization of GO, and the material is magnetically
and easy to separate from the solution. Reading the relevant
literature shows that there is no interaction between amino
and magnetic particles composited on the surface of GO,
such as the amino acid-modified graphene oxide magnetic
nanocomposite (AMGO@Fe3O4) in the study of Yan et al.
[32].

Figure 2(c) shows the Raman spectrum of TGOM, which
can be used to further observe the structural changes of the
sample. It can be seen from Figure 2(c) that TGOM has two
characteristic peaks near 1345 cm−1 and 1600 cm−1, which
are the D peak (related to disordered vibration of carbon
atom sp3) and G peak (related to in-plane vibration of
carbon atom sp2), respectively [22, 33].-e intensity ratio of
the D peak and the G peak represents the degree of structural
defects. -e ID/IG value of the composite TGOM is 1.184
(Figure 2(c)), and the ID/IG value of GO reported in the
literature is less than 1 [14, 16], which indicates that GO
increases the defect density and disorder degree of the
material due to the combination of TEPA and CoFe2O4.
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Figure 2: (a) XRD pattern of TGOM; (b) FT-IR spectrum of TGOM; (c) Raman spectrum of TGOM; (d) TGA thermogram of GO, MGO,
and TGOM.
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Figure 2(d) shows the thermal stability study of materials
(GO, MGO, and TGOM). In Figure 2(d), the weight of the
three samples lost in the first 100°C came from the evap-
oration of water molecules in the material. For GO, the
weight loss at temperatures between 100 and 300°C is due to
the decomposition of oxygen-containing functional groups
in the sample, while above 300°C is due to the carbon
skeleton decomposition [34]. At 600°C, the total weight loss
of GO is 61.47 wt%. -e weight loss rates of MGO and
TGOM were 14.65wt% and 12.92wt%, respectively. -is
proves that both materials have good thermal stability. It can
be seen from the illustration that TGOM has higher thermal
stability than that of MGO, and its thermal decomposition
weight loss is attributed to the evaporation of water in the
material and the thermal decomposition of the carbon
skeleton [34, 35]. -e weight loss process of MGO is similar
to that of TGOM. It can be calculated that the mass

percentage of CoFe2O4 in the two materials is about 54.85%
and the mass percentage of amino in TGOM material is
about 1.97%. It is shown that the thermal stability of the
material is improved by the introduction of CoFe2O4 and
TEPA.

Figure 3 shows the BET analysis of the composite ma-
terial. And the results show that the N2 adsorption-de-
sorption isotherm of TGOM belongs to a typical IV type
curve (Figure 3(a)), indicating that the material has many
mesoporous structures [36]. Figure 3(b) shows the pore size
distribution diagram, and the average pore size of TGOM is
3.827 nm. According to BET analysis, the specific surface
area of TGOM is 64.959m2/g and the pore volume is
0.2385 cm3/g. Figure 3(c) shows the magnetization curve of
TGOM. It can be clearly seen that the magnetization value of
the material is high (55.5 emu/g), and this indicates that the
adsorbent can be recovered using magnetism well after the
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Figure 3: (a, b) N2 adsorption-desorption curves and the pore size distribution curve of TGOM; (c) magnetization curve of TGOM; (d) zeta
potential of TGOM.
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adsorption reaction is completed [37]. -e zeta potential of
TGOM under different pH conditions is shown in
Figure 3(d). It can be seen that the pHzpc is 5.65. And the zeta
potential of TGOM is positive when the pH is before 5.65
and negative after 5.65, which indicates that TGOM can
effectively adsorb anions (HCrO4

−, etc.) through electro-
static action under the condition of pH less than 5.65.

3.2. Factors Affecting Removal of Cr (VI)

3.2.1. Effect of Initial pH. -e pH value of the solution affects
the removal process of Cr (VI). Figure 4(a) shows the ad-
sorption effect of TGOM and MGO on Cr (VI) in an
aqueous solution under different pH conditions (within the
range of 2–10).-e results show that the adsorption capacity
of the material changes with the pH of the solution, and the
adsorption effect of the material is the best when pH� 2.-e
amino groups on the surface of the material can be pro-
tonated to be positively charged at low pH, which can easily
adsorb negatively charged Cr (VI) (HCrO4

−, Cr2O7
2−, and

CrO4
2−) through electrostatic attraction [21, 38]. At pH� 2,

Cr (VI) in the solution exists mostly as HCrO4
−, so there will

be better adsorption. In the range of pH 3–7, although Cr
(VI) exists mainly as HCrO4

− and Cr2O7
2−, the decreased

adsorption effect is due to the gradual weakening of amino
protonation. Under alkaline conditions, Cr (VI) exists
mostly as CrO4

2−, and the deprotonation reaction of the
amino group occurs on the material surface, which will
produce electrostatic repulsion with CrO4

2−, and thereby,
the adsorption effect will gradually decrease [17, 39]. Zhang
et al. pointed out that the composite (Fe3O4-PEI-SERS)
prepared by them has the largest removal of Cr (VI) at
pH� 2 [38]. After the optimum pH was determined, the pH
conditions of all subsequent experiments were optimal
(pH� 2). Figure 4(a) also points out that the removal ability
of TGOM is better than that of MGO.

3.2.2. Kinetics Study. Figure 4(b) shows the effect of reaction
contact time on Cr (VI) removal. From Figure 4(b), the
adsorption of Cr (VI) by TGOM is relatively fast and reaches
equilibrium at about 60min. After that, the adsorption
process is not affected by time and tends to be stable.
Compared with MGO, the composite material TGOM has a
higher adsorption capacity. -e influence of different initial
concentration on the removal effect in different reaction
time (2∼160min) was also studied. As shown in Figure 4(c),
when the initial concentration increases, the adsorption
capacity also increases. -is is because most of the Cr (VI)
ions in the solution are more likely to collide with the active
sites on the adsorbent surface at a higher initial concen-
tration [40]. On this basis, the pseudo-first-order and

pseudo-second-order kinetic models are used to study the
kinetics of adsorption reaction. -e equations are listed
below [41]:

ln qe − qt(  � −K1t + ln qe,

t

qt

�
t

qe

+
1

K2q
2
e

,
(2)

where K1 (min−1) and K2 (g/mg/min) represent the ad-
sorption rate constants of the two models, respectively. t
(min) is the contact time of the adsorption reaction, and qt
(mg/g) and qe (mg/g) represent the t time of the reaction and
the amount of Cr (VI) removed by the material when the
reaction reaches equilibrium, respectively.

-e relevant data obtained by fitting are listed in Table 1.
It is pointed out that compared with the pseudo-first-order
kinetic model, the rate constants of the pseudo-second-order
kinetic model are both more than 0.97 at the two initial
concentrations, which proves that the pseudo-second-order
model can effectively describe the removal process of Cr (VI)
by TGOM. Figure 4(d) shows the fitting curve of the pseudo-
second-order kinetic model, and its degree of fit is signifi-
cantly greater than that of the pseudo-first-order kinetic
(Figure 4(e)), which can also prove the above point.

3.2.3. Adsorption Isotherms. -e adsorption equilibrium of
Cr (VI) on the adsorbent (TGOM) under different initial
concentrations and optimal pH was studied. -ree different
temperatures were investigated in this study. It can be seen
from Figure 5(a) that the lower the experimental temper-
ature, the higher the adsorption capacity, which means that
there is an exothermic phenomenon in the process of re-
moving Cr (VI) [42]. In order to further study its adsorption
behavior, this experiment used Langmuir and Freundlich
two typical isotherm models to investigate.

Langmuir model points out that the adsorption process
is monolayer adsorption, and its equation is expressed as
[42, 43]

Ce

qe

�
Ce

qmax
+

1
qmaxKL

. (3)

Freundlich model points out that the adsorption process
is multimolecular layer adsorption, and its equation is
expressed as [44, 45]

ln qe � ln KF +
ln Ce

n
, (4)

where Ce and qe refer to the concentration (mg/L) and
adsorption capacity (mg/g), qmax (mg/g) refers to the
maximum adsorption capacity, KL (L/mg) and KF

Table 1: Kinetic parameters for the removal of Cr (VI) on TGOM.

Pseudo-first-order Pseudo-second-order
C0 (mg/L) K1 (min−1) qe, mod (mg/g) R2 K2 (g/min/mg) qe, mod (mg/g) R2

20 0.1536 55.56 0.8525 0.0007 88.11 0.9867
30 0.1425 74.12 0.8743 0.0005 105.48 0.9782
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(mg1−n·Ln/g) are the adsorption equilibrium constants of the
Langmuir model and the Freundlich model, respectively,
and n is a constant of the adsorption intensity in the
Freundlich model.

Figures 5(b) and 5(c) show the linear fitting plots of the
two models, and their parameters are listed in Table 2. It is
known from Table 2 that the correlation coefficients (R2) of
the Langmuir model at three temperatures are greater than
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Figure 5: (a) Effect of temperature on Cr (VI) removal (pH� 2,m/V� 0.1 g/L); (b) Langmuir and (c) Freundlich isotherm curves; (d) lnK as
a function of 1/T.

Table 2: Parameters of isotherm for Cr (VI) removal by TGOM.

T (k)
Parameter

Langmuir Freundlich
qmax (mg/g) KL·(L/mg) R2 n KF·(mg1−n·Ln/g) R2

298 114.81 0.3366 0.9847 3.79 44.5851 0.9331
308 83.54 0.5135 0.9979 5.14 41.8977 0.9621
318 66.05 0.8175 0.9984 7.12 40.5150 0.9069

8 Advances in Condensed Matter Physics



those of the Freundlich model. It can be judged that the
removal process of Cr (VI) by TGOM is monolayer ad-
sorption, which is consistent with the Langmuir model [43].
-e data in Table 2 also point out that the maximum ad-
sorption capacity of TGOM at 298K is 114.81mg/g, which is
roughly compared with the adsorption capacity of some
other adsorbents in the literature for Cr (VI) in Table 3
[39, 46–51].

Based on the above experiments, the thermodynamic
properties of Cr (VI) adsorption by the TGOM was further
discussed. And several related thermodynamic parameters
were calculated, namely, the change of Gibbs free energy
(ΔG), the change of entropy (ΔS), and the change of enthalpy
(ΔH). -e relevant calculation formula is as follows [52]:

ΔG � −RT ln K, (5)

ln K � −
ΔH
R

 
1
T

+
ΔS
R

, (6)

where T (K) is the temperature, R is the gas constant
(8.314 J·mol−1·K−1), and Kd is the thermodynamic equilibrium
constant. By finding the linearity between lnKd (Kd� qe/Ce) and
1/T, lnK can be obtained when Ce is 0, and then, ΔG can be
obtained by Equation (5). Similarly, the values of ΔH and ΔS
can be calculated from the slope and intercept of the obtained
line by making the linear relation graph of lnK and 1/T [53].
Table 4 lists the calculation results. In Table 4, ΔG is negative at
the three temperatures and the value of ΔG decreases as the
temperature decreases, indicating that the driving force of the
adsorption process is greater at low temperatures. So, the
TGOM can better remove Cr (VI) at a lower temperature
(298K), which is consistent with the experimental data. -e
value of ΔH is also negative, which indicates that the process of
the adsorption reaction is an exothermic process, and from the
result that ΔS is a negative value, the adsorption process is a
process of reduced chaos (decrease in entropy) [54].

3.3. Removal Mechanism of Cr (VI) by TGOM. Figure 6
shows the change in Cr concentration in the solution af-
ter the reaction. It shows that the change in Cr (VI) and total
Cr is similar, and the solution after the reaction contains Cr

(III), which indicates that a small amount of Cr (VI) is
reduced to Cr (III) during the removal process.

-e XPS spectra of the TGOM before and after the
reaction are shown in Figure 7. Figure 7(a) is the overall
XPS spectra of TGOM before and after the reaction.
Compared with the spectrum before the reaction, the
spectrum after the reaction shows the peak of the Cr el-
ement, which indicates that TGOM successfully adsorbed
chromium on its surface. -e O1 s peaks before and after

Table 3: Comparison of adsorption capacity for removal of Cr (VI) on TGOM with other materials.

Adsorbent materials pH Kinetic model Isotherm model qm (mg/g) Refs.
Amine-functionalized polyacrylonitrile
nanofiber (PAN-NH2)

pH� 2 Pseudo-second-order Langmuir 156 [39]

Graphene-based adsorbent (ED-DMF-RGO) pH� 2 — — 92.15 [46]
-iol-functional carbon (HT-SCY) — Pseudo-second-order Langmuir 15.41 [47]
Carboxyl-functional carbon (HT-AA) — Pseudo-second-order Langmuir 94.52 [47]
Amino-functional carbon (HT-N) — Pseudo-second-order Langmuir 171.23 [47]
Polyethylenimine-functionalized biosorbent (PEI-ESM) pH� 3 Pseudo-second-order Langmuir 160 [48]
Magnetic cyclodextrin-chitosan/graphene oxide (CCGO) pH� 3 Pseudo-second-order Langmuir 21.6 [49]
Graphenes magnetic material (Fe3O4-GS) — Pseudo-second-order Freundlich 17.29 [50]
Magnetite-polyethylenimine-montmorillonite
material (Fe3O4--PEIx-MMT) pH� 3 — Langmuir 8.8 [51]

TGOM pH� 2 Pseudo-second-order Langmuir 114.81 -is work

Table 4: -ermodynamic parameters for Cr (VI) removal by
TGOM.

T (K)
Parameter

ΔG (KJ/mol) ΔH (KJ/mol) ΔS (J/mol/K)
298 −8.0565

−14.92 −22.96308 −7.8921
318 −7.5944
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Figure 6: Residual concentration of Cr (total, VI, and III) after
reaction in solution.
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the reaction were changed (Figure 7(b)). -e characteristic
peaks of O1 s appeared at about 530.5, 531.6, and 536.6 eV
in the spectrum before the reaction, corresponding to
divalent anion oxygen (O2−), hydroxyl (OH−), and oxygen

in the water molecule (H2O) adsorbed by the material [55],
respectively. However, it can be seen that after the reaction,
the O2− had a significantly lower peak strength and OH−

and H2O peaks improved remarkably, which indicates that
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Figure 7: (a) XPS spectra of TGOM before and after adsorption of Cr (VI) and high-resolution XPS survey of (b) O 1 s, (c) C 1 s, (d) Cr 2p,
and (e) N 1 s.
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the oxidation degree of the material is relatively low and the
stability is good after reaction [56].

-ere are three peaks of 284.8, 285.8, and 288.2 eV in the
spectrum of C1 s before reaction (Figure 7(c)), which cor-
respond to the characteristic peaks of C-C/C�C, C-N, and C-
O [57], respectively. It can be seen from the spectrum after
the reaction that the peak of C-C/C�C is strongly weakened,
while the other peaks are enhanced. Moreover, a charac-
teristic peak corresponding to C-O (286.4 eV) is generated,
indicating that a small amount of carbon rings in GO
participated in the reaction during the adsorption process
[58, 59]. Two peaks corresponding to Cr2p3/2 and Cr2p1/2
can be observed at approximately 577.8 and 587.5 eV
(Figure 7(d)), which correspond to the characteristic peaks
related to Cr (III) and Cr (VI), respectively [47, 60, 61]. -is
indicates that TGOM can reduce part of the toxic Cr (VI) to
Cr (III) in the removal of Cr (VI). It can be clear that π
electrons on the six-membered ring of carbon in GO par-
ticipate in the reduction reaction on the basis of the above
analysis [46].

Figure 7(e) shows the XPS spectra before and after the
reaction of N1 s. From Figure 7(e), it can be seen that there
are two peaks at 399.8 and 400.7 eV on the spectrum without
reaction, corresponding to the N element in -N�(imine) and
-NH- respectively, which proves that this study successfully
introduced N onto the GO surface [62]. In the spectrum after
the reaction, the peak intensities of the two peaks are ob-
served to be weakened, which indicates that complexation
occurred during the adsorption process [63]. In addition, a
new characteristic peak appeared at 402.1 eV, which cor-
responds to the protonated amino group (−N� +) [21], and
the protonated amino group (−N� +) can absorb negatively
charged Cr (VI) ions through electrostatic reaction [38].

3.4. Regeneration of TGOM. -e regenerative cycle perfor-
mance of the adsorbent determines whether the adsorbent
can be practically applied in the real environment. And

whether the adsorbent (TGOM) can be regenerated is dis-
cussed by studying the adsorption and desorption process.
-e recovered adsorbent was soaked in 0.1MNaOH solution
for 2-3 h to desorb Cr (VI) adsorbed on the material after the
experiment, and then, repeated washing with deionized
water was used to wash away the alkali attached on the
surface of the material. -e regeneration experiment was
repeated in this way. -e adsorption efficiency of TGOM
decreased slightly from 72.5% to 62% after four regeneration
experiments (Figure 8(a)). -is indicates that TGOM has
good reproducible cycle performance.

In order to explore the changes of TGOM during the
cycle experiment, FT-IR characterization of TGOM was
performed (after adsorption and desorption) as shown in
Figure 8(b). Firstly, it can be observed that compared with
the FT-IR spectrum before adsorption (Figure 2(b)), the
absorption peaks of O-H and metal-oxygen bonds on the
surface of TGOM after adsorption and desorption do not
change much, which indicates that the material has a better
stability. Secondly, compared with before adsorption
(Figure 2(b)), the peaks of C-N and N-H in the spectrum
after adsorption have slight changes, which indicates that the
amino group on the surface of TGOM participates in the
adsorption reaction (complexation reaction) during the
adsorption process. However, in the spectrum after de-
sorption, it can be seen that the peaks of C-N and N-H do
not change much compared with the Figure 2(b), and this
indicates that the desorption of the material is successful,
that is, the material after desorption can continue to carry
out adsorption reaction.

4. Conclusion

In this study, TGOM was successfully prepared by a simple
method (one-step hydrothermal method). Material char-
acterization analysis (SEM, XRD, FT-IR, TGA, etc.) proved
that TGOM is an adsorbent material with many functional
groups on the surface, good thermal stability, and strong
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Figure 8: (a) Cyclic adsorption of Cr (VI) on TGOM (T� 298K pH� 2,m/V� 0.1 g/L, C0 �10mg/L); (b) FT-IR of TGOM after adsorption
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magnetism. -e adsorption experiments showed that the
optimum pH value for Cr (VI) removal by TGOMwas 2, and
the adsorption process conformed to the pseudo-second-
order kinetic model and the Langmuir isotherm model. -e
adsorption process of Cr (VI) by TGOM was an exothermic
and spontaneous process. -e XPS characterization analysis
of TGOM indicated that the removal of Cr (VI) was achieved
through electrostatic action, complexation reaction, and
reduction during adsorption. Cycling experiments dem-
onstrate that TGOM had high removal efficiency and good
cycle performance for Cr (VI). In summary, TGOM has the
advantages of a simple preparation method, environmental
friendliness, high removal efficiency, and good cycle per-
formance. -erefore, it is feasible to use TGOM to remove
Cr (VI) in wastewater.
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