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We report a hybrid quantum-classical simulation approach for simulating the optical phase transition observed experimentally in
the ultrahigh-density type-II InAs quantum dot array. A hybrid simulation scheme, which contains stochastic gradient Langevin
dynamics (a well-known Bayesian machine learning algorithm for big data) along with adiabatic quantum annealing, is developed
to reproduce the experimentally observed phase transition. By implementing the simulation scheme into a quantum circuit, we
successfully verified the phase transition observed in the experiment. Our work demonstrates for the first time the feasibility of
hybridizing quantum computation with classical Langevin dynamics for the analysis of carrier dynamics and quantum phase
transition of the quantum dot.

1. Introduction

Semiconductor nanostructures have drawn significant re-
search attention for decades due to their extraordinary low-
dimensional physical properties. Among them, quantum
dots (QD) are among the most noticed and researched
materials and are proposed in various applications ranging
from QD laser, QD memory device and QD single-photon
source, and QD quantum bits for quantum computation and
coherent quantum information processing [1–3]. (e spatial
confinement in QD causes the reduction of the average
dielectric constant, resulting in a weak dielectric screening.
(e diluted screening effect in QD enables strong Coulomb
interactions between the electron and hole and thus facili-
tates the formation of strongly paired electron-hole exciton
upon optical excitation [4]. (e excitonic property of QD
dominates its optical and optoelectronic response and plays
a significant role in quantum computation and coherent
information processing [5]. Exciton Rabi oscillation in a
single QD has been reported and opens excellent oppor-
tunities for coherent manipulation of the two-states

quantum system [2, 3]. However, a successful quantum
system requires a great deal of scalability and controllability
for massive quantum computation. It is technically chal-
lenging for the bottom-up strategy to fabricate a large-scale
quantum system by fine-tuning and manipulating a single
QD within a coherent time. On the other hand, a quantum
system utilizing an ensemble of QD macroatoms (or
quantum well) has been proposed in theory, which possesses
the advantage to overcome these issues while enabling
massive quantum computation [1]. Manipulating the
quantum information process in such a large quantum
structure requires deep insights into the dynamics regarding
the evolution of quantum states. However, the carrier dy-
namics involved in the ensemble of macroatoms are much
harder to clarify by a purely classical approach due to the
increased quantum structure size. Recently, it has also been
shown that vice-versa of the realization of the quantum
computational device will enable more efficient quantum
mechanics simulation over the classical computer for cal-
culations such as electronic energy [6], reaction rate [7] as
well as phase transition [8]. Meanwhile, due to the
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incompetence of the current quantum-computing hardware,
the so-called hybrid quantum-classical algorithm specially
designed for NISQ (Noisy Intermediate-Scale Quantum
device) is gaining a lot of attentions. Various famous NISQ
type hybrid quantum-classical algorithm such as QAOA
(Quantum approximate optimization algorithm) and VQE
(Variational Quantum Eigensolver) have been proposed [9].

(is work proposes a hybrid quantum-classical simu-
lation approach for simulating the phase transition in type-II
InAs/GaAs QD, a typical quantum structure in III-V ma-
terials. Carrier dynamics analysis has been a hot topic from
both experimental and theoretical points of view for various
types of III-V nanostructure such as a nanowire [10–12] and
quantum well tube [13–15]. Carrier dynamics of conven-
tional InAs/GaAs QD have also been extensively studied
experimentally and theoretically [16–20]. However, the
excitation energy-dependent carrier dynamics and the ac-
companied phase transition in ultrahigh-density up to
∼1012cm− 2 type-II InAs/GaAs QD are poorly understood
due to simulation complexity and fabrication difficulties. In
this work, first, we show the experimental observation of
phase transition between two well-defined excitonic states in
ultrahigh-density type-II QD arrays. (e temperature-
driven phase transition was further formulated using many-
body electron-hole Hamiltonian schematically written as
H � (Hlp + Hcp) + (Hes + Henv). Here, the Hlp denotes the
local potential within each QD, Hcp defines the three
Coulomb potentials through the interactions among
electron-electron, hole-hole, and electron-hole), Hcp

defines the transition between the quantum states under
external potential excitation, and Henv defines the energy
dissipation between the quantum system and the envi-
ronments and is the main cause of quantum decoherence.
At last, a hybrid quantum-classical simulation involving a
time-dependent Hamiltonian was constructed to perform
the adiabatic quantum annealing using a quantum gate-
based quantum circuit along with the stochastic gradient
Langevin dynamics.

2. Quantum Dot Growth and Phase Transition

(e in-plane ultrahigh-density ((0.5 ∼ 1 × 1012cm− 2) InAs
QDs layer was grown on a GaAsSb buffer layer and an
InAsSb wetting layer (WL) on GaAs (001) substrates by
molecular beam epitaxy (MBE). Detailed information re-
garding the experimental conditions and growth procedure
can be found in literature [21]. Photoluminescence (PL)
properties of this type-II heterostructure of high-density
InAs QDs/GaAsSb were measured by using a time-resolved
micro-PL system including an InGaAs avalanche pho-
todiode (APD) and an InGaAs diode array. (e mono-
chromatic excitation light was selected from a white fiber-laser
beam (6W). (e diameter of an excitation laser beam was
about 50 μm. (e sample temperature was controlled
from 15 K to 300 K. Figure 1 shows the sketch of proposed
carrier excitation, transportation, and recombination
paths (Figure 1(a)) as well as the temperature-dependent
PL experimental results of the InAs QD layer on GaAsSb
under the excitation energy of 1.44 eV (Figure 1(b)). As

experimentally demonstrated in our previous report [10],
a critical excitation energy of 1.496 eV exists. Above or
below the critical energy results in different types of PL
results dominated by carrier recombination from either
the ground state (GS) or excitation state (ES) of InAs QD.
We have also confirmed that in the case of excitation
energy below 1.496 eV, the ES carrier is not due to the
state filling effect for the InAs QD under high excitation
power density but rather the carrier relaxation from the
InAs QD/WL/GaAsSb layer. Figure 1(a) sketches the
various paths for the carrier excitation, transportation,
and ES-dominating recombination under the excitation
energy of 1.44 eV. It should be noted that the recombi-
nation of the carrier from ES or GS shows a typical type-II
feature where there exists a spatial deviation between the
electron in the QD and the hole in the WL/GaAsSb layer.
Meanwhile, two ES states, ES1 and ES2, are involved in
the carrier recombination and give rise to the corre-
sponding PL features.

Figure 1(b) shows the temperature dependence of the PL
spectroscopy, where the three PL components: GS, ES1, and
ES2 evolve in a dramatically different manner with the
increase of the temperature.(e GS-featured PL peak energy
shifted to the longer wavelength region with the rise of
temperature based on the well-known Varshni relation. On
the other hand, a prominent feature was observed for ES1
and ES2 peak energy shift with temperature. It can be clearly
seen that there exists a phase transition between the ES1 and
ES2 PL energy peaks. (e ES1 peak emerges at the onset
temperature of 15K while vanishes at around 80K, followed
by the emergence of the ES2 peak. It is worth noting here
that the phase transition is not due to the multimodal
distribution in QD size. It is well understood that the PL
peak of large-sized QD will become dominant with the
increase of temperature due to the carrier escape from QDs
of smaller size families via tunneling to adjacent QDs. As a
result, the PL peak energy shifts to the lower energy region at
higher temperatures, opposite to the phase transition be-
tween ES1 and ES2 observed here [22]. Qualitatively, these
thermal phase transitions were interpreted as the result of
phonon perturbation involved relaxation, and the change of
the phonon relaxation provides the change of exciton
formation.

3. Theoretical Simulation Schemes

In the following work, we provide a rigorous theoretical
simulation of the thermal dynamic behavior of this phase
transition using the exciton-based quantum annealing cir-
cuit model.(e central idea of the proposed model is that we
introduce the excitonic distribution operators 􏽣ESn, where n

denotes the nth layer of high-density InAs QDs/GaAsSb
ensemble (Figure 2(a)). (e two types of PL peaks: ES1 and
ES2 energy states with the two eigenvalues ESn � 0 and
ESn � 1 correspond to the temperature-dependent excitonic
peak energies in the nth layer of QD ensemble, which forms
the single qubit basis as |0 and |1.(e whole Hilbert spaceH
is then spanned by the basis as |ES � nn|ESn, (ESn � 0, 1).
Restricted to this computational space, the full many-body
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Hamiltonian H � (Hlp + Hcp) + (Hes + Henv) reduces to
the following:

H � Hlp + Hes � 􏽘
n

εn
􏽣ESn +

1
2

􏽘

nn′

εnn′
􏽣ESn

􏽣ESn′ . (1)

Here, εn denotes the individual excitonic energy in the
nth layer of QD ensemble array and εnn′ specifies the
Coulomb coupling effect between the QD layer of n and n′.
(e effective Hamiltonian expressed in formula (1) shares
the same structure as the one proposed in the literature
[23] and the one used in most of the NMR-based

quantum-computing schemes [24]. In this work, to fit the
model (2) into the experimental results shown in
Figure 1(b), we focus only on one layer of QD ensemble,
i.e., single-qubit system, thus formula (1) is reduced to the
following simplest form: H � ε􏽣ES.

As mentioned before, two eigenvalues: ES � 0, 1 of the
excitonic distribution operators 􏽣ES correspond to the two PL
peaks: ES1 and ES2. In this work, instead of calculating the
eigenvalue directly, the excitonic distribution is represented
as the distribution of exciton radius, i.e., the distance be-
tween the electron and hole based on the following con-
sideration: (e ultrahigh density of QD array studied in this
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Figure 2: (a) Multilayer of high-density InAs QDs/GaAsSb ensemble; (b) Excitonic distribution model where electrons are localized in QD
while holes are itinerant within the WL layer; (c) Coupling distance distribution among e- and h+; (d) Schematic illustration of the effective
coupling radiusReff; and (e) Histogram of distance between e-and h+.

ES1

GS

GaAs InAsQD
(2.3 ML)

GaAsSb
(3 nm)

GaAs

GS

ES2

InAs
WL

ES2

ES1

(a)

N
or

m
al

iz
ed

 P
L 

In
te

ns
ity

 (a
rb

. u
ni

ts
)

GSES1

ES2

15K
Temp.

30K

50K

80K

100K

120K

150K

180K

200K

220K

985 1021 1059 1100952
Wavelength (nm)

(b)

Figure 1: (a) Carrier excitation, transportation, and recombination paths and (b) Temperature-dependent PL experimental results.
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work could be treated as a pseudo-two-dimensional quantum
well structure due to the strong coupling between neighboring
QDs. Moreover, meanwhile, the exciton binding energy of
quantum well can be approximated as Eexciton ≈ − (εrreh)− 1

based on formulas (28), (29), and (31) in reference [25], where
εr is the dielectric constant and reh is the mean electron-hole
distance. Experimentally, the exciton binding energy can be
estimated from the PL peak energy using the following
relation: Eexciton � EG(orEHOMO− LUMO) − EPL. (us, in the
condition where the bandgap EG or HOMO and LUMO
energy levels stay constant, the PL peak energy directly
reflects the exciton binding energy and vice versa. In ad-
dition, we treat the distinct evolution of PL peaks of ES1 and
ES2 with the change of temperature as a temperature-de-
pendent phase transition problem.(e dynamic evolution of
electron-hole pair distribution morphology governs the
phase separation. In order to map electron-hole pair dis-
tribution, we adopted a Ising model-based morphology
generation method widely used in the field of small molecule
blends in the organic photovoltaic field [26, 27].

A hybrid quantum-classical version of the Metropolis-
adjusted Langevin algorithm was employed in this work to
investigate the temperature-dependent dynamics and the
phase transition. At first, we will give a general picture of the
simulation scheme designed in this work. Figure 2(b) shows
the exciton model constructed based on the experimental
results. In this model, the electron is localized in each QD
while the hole can freely move in the in-plane band of the
InAs wetting layer, thus possessing a large Bohr radius. (e
proposed model is consistent with the experimentally ver-
ified carrier dynamics model shown in reference [28]. Due to
this irregular arrangement, the exciton in this work can only
be treated as a hybrid type of the Frenkel and Wannier
exciton [29]. Figure 2(c) shows the coupling distance dis-
tribution among electrons and holes. In order to facilitate
simulation efficiency and save simulation cost, we define an
effective coupling radius Reff and only the exciton within
Reff are used to create the Ising morphology. (e Ising
model is constructed as follows:

Uij �
1

4πε0ε
1

Rij

qiqj � ∅ijqiqj,

with∅ij �
1

4πε0ε
1

Rij

.

(2)

Here,
qi,

qj
are either fixed electrons or mobile holes; ε is the

dielectric constant; and Rij is the distance between particle
q,

qj
.

Moreover, in order to investigate the temperature-induced
quantum phase transition, we built a quantized version of the

Ising model by converting the particle
qi,

qj
to 􏽢σZ

i and 􏽢σZ
j as well

as introducing a transverse operator σx
i and time-varied ex-

citation temperature T(t) (the transverse operator can be
viewed as the phonon perturbation mentioned in section 2 to
trigger the phase transition between (ES1 and ES2)). (e total
quantum Ising Hamiltonian is then represented as the fol-
lowing quantum annealing model:

H(t) � ε􏽣ES � 􏽘
i,j

∅ij􏽢σZ
i 􏽢σZ

j + T(t) 􏽘
i

􏽢σx
i . (3)

In this work, we adopt amore special quantum annealing
model: so-called adiabatic quantum annealing model [30],
which takes the form as follows:

H(s) � s 􏽘
i,j

∅ij􏽢σZ
i 􏽢σZ

j +(1 − s) 􏽘
i

􏽢σx
i , (4)

where s is a normalized temperature parameter taking the
value within 0∼1, instead of varying the quantum state,
the Hamiltonian shape is changed overtime to reach the
ground state eigenenergy. (e adiabatic quantum
annealing model can be solved by a classical computer
using Suzuki–Trotter decomposition [20], the so-called
quantum Monte Carlo approach, or solved by quantum
annealer hardware such as the one developed by D-Wave
[31]. In this work, we adopted the quantum circuit-based
quantum annealing approach. However, since the
quantum annealer hardware is not available for us at this
moment, thus an in-house developed quantum annealer
simulator is used as an alternative. We also claim that
using quantum annealing to find the ground state energy
of formula (3) is not the only choice. For small size
problems, we could quickly obtain a rigorous and exact
solution for formula (3). (e aim of employing quantum
annealing in our work is purposed on the case where the
computation time of the problem under investigation
increases exponentially, thus suffering the so-called curse
of dimension.

A hybrid simulation scheme (Langevin dynam-
ics + quantum annealer) is developed to fulfill the purpose of
the simulation of the dynamic morphology evolution of the
excitons. Simply speaking, the kinetic update of the hole
positions is conducted by following the stochastic gradient
Langevin dynamics [32] over the Ising energy landscape.
Stochastic gradient Langevin dynamics is a well-known
Bayesian machine learning algorithm for learning big data.
Langevin dynamics is usually expressed in the following way
by introducing a stochastic process into Newton’s second
law:

ma � F − cv + ε. (5)

Here, m represents mass, a is the acceleration, F rep-
resents the force, v is velocity, and ε is stochastic variable
with the mean being zero and variance being some time-
dependent parameter. Since mass is usually small, the left
side of formula (4) can be assumed as zero. Under this
assumption, along with slight reformulation, formula (4) can
be further written as follows:

0 � F − c
dx

dt
+ ε,

dx

dt
≈

xt+nt − xt

nt
.

(6)

Formula (5) can be further simplified as the follows by
assuming the force F is the gradient of potential U:
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xt+nt � xt +
nt

c
∇U +

nt

c
ε. (7)

(e abovementioned is the core contents of the
Langevin dynamics. (e stochastic gradient Langevin
dynamics introduce the so-called minibatch-sized sto-
chastic gradient when calculating ∇U, which significantly
reduce the computation time by sampling over a mini-
batch with sample size |S| being far smaller than the whole
sample size N. Recently, to enhance further the converge
rate, Metropolis-adjusted Langevin algorithms have been
developed [33, 34]. In this work, we adopted the method
from reference [34] by adding a Metropolis–Hasting step
to stochastic gradient Langevin dynamics. (us, after the
update of the holes, ∅ij in formula (2) is calculated and
serve as the input of formula (10) for the adiabatic
quantum annealer. (e acceptance/rejection process is
finally implemented based on the Metropolis algorithm
using the output energy from quantum annealing. After
the Metropolis process is converged by monitoring the
update of hole position at each specified temperature, the
histogram over the sampled distance Rij between the
hole-electron pairs is used to identify the quantum state
of exciton ES1 and ES2, as shown in Figure 2(e). Since the
energy is inverse proportional to the distance Rij, high

energy state ES2 is supposed to be located at the right side
of low energy state ES1.

Next, we will give a brief discussion about the quantum
annealing circuit used to simulate the ground state energy of
Hamiltonian in formula (7) at each specified temperature.
From the time-dependent Schrödinger equation, the
wavefunction evolves based on the following unitary
operator:

U � e
− iHt

� e
− iH(s)

� e

− i s􏽘
i,j

∅ij􏽢σ
Z

i 􏽢σ
Z

j +(1− s)􏽘
i

􏽢σ
x

i

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
t

.

(8)

Following the Suzuki–Trotter decomposition, the uni-
tary operator can be approximated as follows:

U � e

− i s􏽘
i,j

∅ij􏽢σ
Z

i 􏽢σ
Z

j +(1− s)􏽘
i

􏽢σ
x

i

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
� Uzz(s)Ux(s),

(9)

where

Uzz(s) � e

− i s􏽘
i,j

∅ij􏽢σ
Z

i 􏽢σ
Z

j

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, Ux(s) � e

− i(1− s)􏽘
i

􏽢σ
x

i

.

(10)
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In principle, the number of qubits should equal the
number of particles under investigation. For instance, if 100
particles (40 electrons ⊕ 60 holes) are used in the simulation,
we thus need 100 qubits to prepare the quantum circuit,
which is not possible currently due to the hardware and
memory constraints for both classical and quantum com-
puters. We, therefore, constructed the following approxi-
mation for a simulation to be performed within the
reachability of available computation resources. (i) since we
adopted a stochastic gradient Langevin dynamics, an update
of the hole location is performed sequentially; in other
words, we have set the minibatch size of |S| � 1 for

performing the stochastic gradient Langevin dynamics
simulation. Under this condition, the required qubit will be
reduced to one hole plus the coupling electrons. In the 100
particle examples, the qubit will be reduced to 41 (40
electrons ⊕ one hole). (ii) We could further reduce the
number of qubits by treating the electrons localized in each
quantum dot as one single ensemble electron. (e same
assumption is also applied to the other holes because the
location change of holes is extremely small within each
update. Under this assumption, we further treat the one
ensemble electron and one ensemble hole as one ensemble
exciton. (erefore, the final qubit needed to implement the

Algorithm: Phase Transition Simulation by Hybrid Quantum Classical Algorithm

1
Randomly initialize the positions of hole {(xi

h, yi
h) |i = 1, ... , Nhole} and electron

2
Create an instance of QAA (Quantum Adiabatic Algorithm) using the Hamiltonian of the Ising 

model for each hole

3 Allocate a float array E[i], i ε {1, ... ,Nhole}

4 for k = 1, max_epoch do

5 for j = 1, Nhole do

6
Calculate the potential energy ϕe and potential gradient Δϕe from the distance

7
Calculate the potential energy ϕh and potential gradient Δϕh from the distance 

8 Calculate the new position of j-th hole with noise: 

9
Update the QAA step for the j-th hole using the total potential energy ϕh − ϕe

and temperature variables β

10
Calculate the energy EQAA of the Hamiltonian in the Ising model of QAA a�er

the update

11 if k = 1 or EQAA < E[j] or 0.5 < exp(−β × (EQAA − E[j])) then

12 (xi
h, yi

h) ← (xi
hnew, yi

hnew)

13 end if

14

15
Store the value of the exciton distance r that is within the effective range

between hole and electron

16 end for

17 if k < max_epoch/2 then

18

19 end if

20 end for

21 Plot a histogram of the values of exciton distances that are within the valid range

rhe between the j-th hole and all electrons

rhh between the j-th hole and all other holes

E[j] ← EQAA

β ← β × reduce rate

{(xi
e, yi

e) |i = 1, ... ,Nelectron}

(xi
hnew, yi

hnew) = (xi
h,yi

h) + (Δϕh − Δϕe) + N(0, ε)
2
ε

Figure 4: Pseudocode of the hybrid adiabatic quantum annealing simulator with Metropolis-adjusted stochastic gradient Langevin
dynamics.
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adiabatic quantum annealing circuit is reduced to two qubits
(one ensemble exciton ⊕ one hole). Based on the approxi-
mation mentioned above, we introduce the following ap-
proximation formula:

Hi � 􏽘
j≠ i

∅ij􏽢q
Z
i 􏽢q

Z
j + T(t)􏽢q

x
i

≈ ∅i􏽢σ
Z
i 􏽢υZ

+ T(t)􏽢σx
; ∅i � 􏽘

j≠ i

∅ij,
(11)
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stochastic gradient Langevin dynamics as well as metropolis acceptance probability at four typical temperatures: 15K, 80K, 120K, and 150K.
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where i stands for the ith hole; 􏽢υ stands for the single
ensemble exciton; ∅ij is the Coulomb coupling between
each particle; ∅i is the marginalized Coulomb coupling
over the jth particle inside the ensemble exciton. Figure 3
shows the quantum circuit based on the assumption used
in formula (10) to implement the unitary operator Uzz(s)

and Ux(s). (e coupling strength ∅ij can be calculated
using formula (2) and is converted to the phase angle θ as
the input parameter for unitary operator U3(θ) and U1(θ)

shown in the upper part of Figure 3. Iterating k times of
the single unit showing in the lower part of Figure 3
corresponds to the summation of the coupling energy
between ith and jth particle in the exponential function of
formula (7). In this work, the number of iterating times k

are optimized to by considering both the accuracy and
computation cost, and k � 300 is used for all the simu-
lations. (e pseudocode of the whole simulation algo-
rithm is given in Figure 4.

4. Results and Discussion

Figure 5 shows the simulation results based on the adiabatic
quantum annealing simulator described in Figure 3. Here,
we have fixed the total number of electrons and holes as 100
while tuning the ratio between electron and hole. Figure 5
shows the ratio of 4 : 6, i.e., 40 electrons at fixed positions and
60 holes updating the position based on the stochastic
gradient Langevin dynamics and Metropolis acceptance
probability. For better clarity, the final hole positions at each
temperature (left side in Figure 5) and the histogram of
electron-hole distance distribution (right side in Figure 4)

for four typical temperatures: 15 K, 80K, 120K, and 150K
were presented. Since the x-axis is defined as the distance
between the electron and hole, the peak located on the left
side represents higher exciton binding energy following the
equation: Eexciton ≈ (− εrreh)− 1. Meanwhile, in order to ex-
tract the ES1 and ES2 states, double peak Gaussian fitting
were conducted, shown as the bold solid lines for each
temperature. It can be seen that there exists a phase tran-
sition at the temperature between 80K and 120K, at which
the lower energy ES1 state vanishes while the ES2 state
emerges. (is tendency corresponds well with one of the
experimental results shown in Figure 1(b), indicating the
validity of our simulation results.

Figure 6 shows the convergence behavior of the potential
expectation value of the operator UZZ, which represents the
coupling energy between the one ensemble exciton and one
hole. Before we explain the simulation results, we first briefly
explain how the expectation value is calculated. (e fol-
lowing calculation is performed at each temperature to
monitor the potential energy convergence.

Ψ UZZ
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􏼌􏼌􏼌􏼌Ψ � c

∗
1 c
∗
2 c
∗
3 c
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4( 􏼁

1 0 0 0

0 − 1 0 0

0 0 − 1 0

0 0 0 1
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, c ∈ C.

(12)

Here, the coefficients c1 c2 c3 c4( 􏼁 of wavefunction, Ψ
is obtained analytically from the quantum annealing sim-
ulator. (erefore, formula (11) can be further simplified as
follows:
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Figure 6: Convergence behavior of hybrid of adiabatic quantum annealing simulator withMetropolis-adjusted stochastic gradient Langevin
dynamics; the expectation potential value for operator Uzz is simulated at four typical temperatures: 15K, 80K, 120K, and 150K.
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Ψ UZZ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌Ψ � c1

􏼌􏼌􏼌􏼌
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2

− c2
􏼌􏼌􏼌􏼌
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2

+ c4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
. (13)

We must point out that in a real quantum computer, the
coefficients of Ψ are usually not available and the expec-
tation value of UZZ can then be evaluated using formula (13)
by measuring the probability P of the two qubits (qb1, qb2)

being either “0” or “1”.

Ψ UZZ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌Ψ � P qb1 � 0, qb2 � 0( 􏼁

+ P qb1 � 1, qb2 � 1( 􏼁 − P qb1 � 0, qb2 � 1( 􏼁

− P qb1 � 1, qb2 � 0( 􏼁.

(14)

(e potential energy drops for the four temperatures
under investigation as the number of iterations increases.
Althoughmost convergence display a quite similar behavior,
the one studied under 80K indicates an insufficient number
of iterations. We have tried to increase the iteration steps,

but the resultant exciton distribution becomes dramatically
different from the one shown in Figure 5. As having been
mentioned before, a temperature of 80K corresponds ap-
proximately to the critical temperature for the phase transition
thus, we recon it is difficult for the system to reach an
equilibrium between the two phases. For the temperature of
15K and 120K, the convergence curve shows stair-like re-
duction, indicating the effectiveness of the hybrid quantum-
classical algorithm overcoming the saddle point (or local
minimum). For the temperature of 150K, the convergence
curve shows an early drop onset and a monotonic decrease
with the increase of iteration due to the additional thermal
driving force. We have also conducted simulations by varying
the electron/hole ratio parameters. Figure 7 shows the sim-
ulation results under three different electron/hole ratios. It can
be easily seen here that an optimal electron/hole ratio exists to
reproduce the experimental results. Compared to the ratio of
1 : 9 and 7 : 3, the ratio of 4 : 6 generates the closest results to the
experimental ones. Although many uncertain factors are
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Figure 7: Simulation results of hybrid of Adiabatic quantum annealing simulator with Metropolis-adjusted stochastic gradient Langevin
dynamics under different ratio of the number of electrons to the number of holes: (a) ratio of electron/hole is 1 : 9; (b) ratio of electron/hole is
4 : 6; and (c) ratio of electron/hole is 7 : 3. (e results performed at 15K and 150K are presented for better comparison.
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altering the simulation results, a roughly balanced number of
electrons and holes support the excitonmodel proposed in this
work. At last, we must point out that the current simulation
has a strong dependence on the random number generator
seed. Since this is the first trial of hybridizing quantum
annealing simulator with the Metropolis-adjusted stochastic
gradient Langevin dynamics, there are still many rooms to
improve the quality of the simulation results presented in the
current form in future. Parameters such as the iteration
number for the Suzuki–Trotter were not optimized but simply
determined based on our experience due to the constraints of
simulation times. Due to a similar reason, the temperature
interval is also adjusted based on experience. We have put
forward our code on GitHub with an open-access link so the
results could be easily verified and reproduced.

5. Conclusions

In conclusion, we reported a theoretical analysis of the optical
phase transition observed experimentally in the ultrahigh-
density quantum dot array investigated by the exciton-based
quantum annealing circuit. A hybrid simulation scheme,
which contains stochastic gradient Langevin dynamics along
with adiabatic quantum annealing, is developed to reproduce
the experimentally observed phase transition. By imple-
menting the simulation scheme into the quantum circuit, we
successfully verified the phase transition observed in the
experiment. Our work demonstrates for the first time the
feasibility of hybridizing the quantum computation with
classical Langevin dynamics for the analysis of carrier dy-
namics and quantum phase transition of the quantum dot. In
the current work, we focused only on the in-plane coupling of
single layers of QD array and built a single qubit model, and it
will be our next step to construct and investigate the mul-
tiqubit system and quantum dynamics by including the
vertical coupling effect in the QD array.

Data Availability

All the simulation code for reproducing the simulation
results can be accessed from the following link: https://
github.com/KShiba24/QDPL_simulator.
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