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To examine the efects of the nonlocal thermoelastic parameters in a nanoscale semiconductor material, a novel nonlocal model
with variable thermal conductivity is provided in this study. Te photothermal difusion (PTD) processes in a chemical action are
utilized in the framework of the governing equations. When elastic, thermal, and plasma waves interact, the nonlocal continuum
theory is used to create this model. For the main formulations to get the analytical solutions of the thermal stress, displacement,
carrier density, and temperature during the nanoscale thermo-photo-electric medium, the Laplace transformation approach in
one dimension (1D) of a thin circular plate is utilized. To create the physical felds, mechanical forces and thermal loads are applied
to the semiconductor’s free surface. To acquire the full solutions of the research areas in the time-space domains, the inverse of the
Laplace transform is applied with several numerical approximation techniques. Under the impact of nonlocal factors, the principal
physical felds are visually depicted and theoretically explained.

1. Introduction

Nanotechnology is currently and in the future will be one of
the most crucial cornerstones of human existence. Tis
signifcant technology is expanding quickly, and several
scientists are engaged in this fascinating sector. Several of the
physical characteristics of elastic materials may vary
depending on the temperature. Many difculties arise in
researching elastic materials without taking varying heat
conductivity into account. When thermal conductivity
varies, particularly in response to temperature, it becomes
essential. Termo-difusion is the relationship between mass
difusion and changing thermal conductivity. Termo-
difusion happens when particles move from an area of
greater concentration to an area of lower concentration as
a result of a temperature change. Modern engineering has
several uses for the study of thermal conductivity in the

presence of mass difusion, particularly in the aerospace,
electronics, and integrated circuit industries. High-
performance nanostructures, such as nanotubes, nano-
flms, and nanowires, have been extensively used as reso-
nators, probes, sensors, transistors, actuators, etc. with the
fast development of nanomechanical electromechanical
systems (NEMS) technologies. It is crucial to comprehend
the precise characterizations of these nanostructures’ ther-
mal and mechanical characteristics.

Semiconductor materials (such as silicon) are an ex-
cellent research subjects for this phenomenon, particularly
when subjected to laser or falling light beams. On the
surface, the excited electrons will produce a charge known as
free carriers (plasma waves). According to the quantity of
light descending, the plasma density is employed to regulate
the difusion [1–3]. Numerous publications [4–6] failed to
take into account the coupling between thermal-elastic
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waves and plasma waves during the deformation process in
semiconductor materials. Recently, several authors
employed photoacoustic spectroscopy to detect photo-
thermal events when a laser beam struck a semiconductor
[7, 8]. Semiconductors’ temperature, carrier intensity, and
thermal difusion are measured using the photothermal
phenomena [9–13]. When thermal waves propagate, gen-
erating elastic oscillation, and plasma waves are formed by
photo-excited free carriers, directly creating a periodic
elastic deformation as well [14–16], the interaction between
the elastic-thermal-plasma waves occurs. Without consid-
ering the impact of changing thermal conductivity, several
issues in generalized thermoelasticity have been explored
[17–25]. Later, a lot of writers studied generalized ther-
moelasticity in many areas using variable thermal con-
ductivity. Te thermal-mechanical behavior of the medium
may be afected by the deformation of elastic media
depending on temperature [26–28]. Abbas [29–33] studied
many problems of the fber-reinforced anisotropic ther-
moelastic medium in two dimensions with fractional
transient heating according to many mathematical methods.

Te nonlocal thermoelastic model with variable thermal
conductivity (which may be considered as a linear function
of temperature) is utilized in the current study using
a theoretical method. Te process of photo-thermal-
difusion interactions in semiconductor nanoscale media is
investigated. Te variation in temperature caused by the
light beam impacting the nonlocal semiconductor medium
is the basis for the variable thermal conductivity. Te
chemical difusion method enables photothermal transfer
(mass difusion). When the Laplace transform domain in
cylindrical coordinates is utilized, the analytical solutions of
the basic felds are found. Te numerical techniques provide
analytical solutions in the Laplace domain without any
presumptive limitations on the real physical values. Finally,
with changes in nonlocal parameters and changing thermal
conductivity, the numerical calculations of the important
physical quantities distribution are graphically shown and
discussed. Te numerical fndings presented in the current
study have applications in solid mechanics, acoustics, ma-
terial science, and engineering for earthquakes.

2. Formulation of the Problem and
Basic Equations

Te four important variables in this problem, respectively,
are u(r, t), T(r, t), N(r, t), and C(r, t) which stand in for the
displacement (elastic waves), temperature (thermal or heat

waves), carrier density (plasma waves), and difusive ma-
terial concentration (mass difusion). When the thermal
activation coupling value κ for the nonlocal medium is
nonzero, the photothermal difusion transport process takes
place. It makes use of cylindrical coordinates (r,ψ, z). When
a very thin circular plate is taken into account, all quantities
are independent of ψ and z because of the symmetry of the
axis z. Elastic-plasma-thermal-difusion wave overlapping
processes’ governing equations are presented as [34, 35], the
photo-electronic equation is as follows:

zN(r, t)

zt
� DEN,ii(r, t) −

N(r, t)

τ
+ κT(r, t). (1)

Equations for thermal difusion in the photothermal
difusion process transport are as follows:

KT,i(r, t)􏼐 􏼑
,i

�
z

zt

K

k
T(r, t) + β1T0u,i(r, t) + cT0C􏼒 􏼓

−
Eg

τ
N(r, t).

(2)

If there is no body force, the equations of motion for
nonlocal medium may be expressed as follows[34]:

ρ 1 − ξ2∇2􏼐 􏼑
z
2
ui

zt
2 � μui,jj(r, t) +(μ + λ) ui,jj(r, t)

− β1T,i(r, t) − β2C,i(r, t) − δnN,i(r, t).

(3)

Te length-related elastic nonlocal parameter is repre-
sented by ξ � ae0/l (l is the external characteristic length
scale, a is the internal characteristic length, and e0 is non-
dimensional material property).

Te mass difusion equation is expressed as follows [35]:

Dcβ2enn,ii + DccT,ii(r, t) +
z

zt
+ τd

z
2

zt
2􏼠 􏼡C(r, t)

� DcbC,ii(r, t).

(4)

Te change in thermal conductivity is K of the nonlocal
semiconductor medium and β2 � (3λ + 2μ)αc where αc is
the coefcient of linear difusion. On the other hand, the
transport heat coefcients for the nonlocal medium are
independent of N, C and T [36–38].

Te strain-stress combinations are as follows:

1 − ξ2∇2􏼐 􏼑σrr � 2μ
zu

zr
+ λ e − β1 T − T0( 􏼁 − β2C +(3λ + 2μ)dnN,

1 − ξ2∇2􏼐 􏼑σψψ � 2μ
u

r
+ λ e − β1 T − T0( 􏼁 − β2C +(3λ + 2μ)dnN,

1 − ξ2∇2􏼐 􏼑σzz � λ e − β1 T − T0( 􏼁 − β2C +(3λ + 2μ)dnN, σrψ � σzψ � σrz � 0.

(5)
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Te nonlocal semiconductor medium’s chemical po-
tential equation is

P � −β2enn + bC − c T − T0( 􏼁. (6)

where P is the chemical potential per unit mass.
It is possible to choose a material’s variable thermal

conductivity K, which may be estimated as a linear function
of temperature [26]:

K(T) � K0(1 + qT), (7)

where q is a negative parameter and K0 is a thermal con-
ductivity when q � 0 (the nonlocal medium is independent
of temperature).

Te map of temperature can be taken in the following
form [27]:

Θ �
1

K0
􏽚

T

0
K(R)dR. (8)

Diferentiating both sides of equation (7) relative to xi,
we get

K0Θ,i � K(T)T,i,

K0Θ,ii � K(T)T,i􏼐 􏼑
,i
.

⎫⎬

⎭ (9)

Another form of equation (9) when the nonlinear terms
are neglected can be obtained as follows:

K0Θ,ii � K,iT,i + KT,ii � K0 1 + K1T( 􏼁,iT,i + KT,ii

� K0K1 T,i􏼐 􏼑
2

+ KT,ii � KT,ii.
(10)

Te time-diferentiation is done in the same manner to
both sides of equation (7), resulting in:

K0
zΘ
zt

� K(T)
zT

zt
. (11)

Using equation (8) and diferentiating equation (1) by
z/zxi, yields:

z

zt
N,i � DE N,mm􏼐 􏼑

,i
−
1
τ
N,i +

κK0

K
Θ,i. (12)

Te other form of the quantity κK0/KΘ,i with neglected
the nonlinear term can be represented as follows:

κK0

K0 1 + K1T( 􏼁
Θ,i � κ 1 + K1T( 􏼁

− 1Θ,i � κ 1 − K1T + K1T( 􏼁
2

− . . .􏼐 􏼑Θ,i �

κΘ,i − κK1TΘ,i + K1T( 􏼁
2Θ,i − . . . � κΘ,i.

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(13)

Equation (1) results when equation (13) is applied:

z

zt
N,i � DE N,mm􏼐 􏼑

,i
−
1
τ
N,i + κΘ,i. (14)

Integrating equation (14), yields:

zN

zt
� DEN,ii −

1
τ

N + κΘ. (15)

Under the infuence of mapping, the heat (thermal)
difusion equation (2) have the following form:

Θ,ii �
1
k

zΘi

zt
+
β1T0

K0

zu,i

zt
+

cT0

K0

zCi

zt
−

Eg

K0τ
Ni. (16)

Tenonlocal motion equation (3) under the temperature
map may be simplifed as follows:

ρ 1 − ξ2∇2􏼐 􏼑
z
2
ui

zt
2 � μui,jj +(μ + λ) ui,jj

− β1Θ,i − β2C,i − δnN,i.

(17)

Te equation for mass difusion equation (4) may be
expressed as follows:

Dcβ2enn,ii +
DccK0

K
Θ,ii(r, t) +

z

zt
+ τd

z
2

zt
2􏼠 􏼡C(r, t)

� DcbC,ii(r, t).

(18)

Te term DccK0/KΘ,ii(r, t) can be represented with
neglected nonlinear terms in the following form:

DccK0

K
Θ,ii �

DccK0

K0 1 + K1T( 􏼁
Θ,ii � Dcc 1 + K1T( 􏼁

− 1Θ,ii � Dcc 1 − K1T + K1T( 􏼁
2

− .......􏼐 􏼑Θ,ii �

Dcc 1 − K1T + K1T( 􏼁
2

− .......􏼐 􏼑Θ,ii � DccΘ,ii − DccK1TΘ,ii + Dcc K1T( 􏼁
2Θ,ii − ....... � DccΘ,ii,

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(19)

In this case, equation (18) can be rewritten as follows:

Advances in Condensed Matter Physics 3



Dcβ2enn,ii + DccΘ,ii(r, t) +
z

zt
+ τd

z
2

zt
2􏼠 􏼡C(r, t)

� DcbC,ii(r, t).

(20)

Te strain in cylindrical 1D form can be represented as
follows:

err �
zu

zr
, eψψ �

u

r
, erψ � eψz � ezz � erz

� 0, e �
1
r

z(ru)

zr
∇2 �

z
2

zr
2 +

1
r

z

zr
.

(21)

By doing the analysis in the radial direction (r), the
problem will be solved in 1D, with the displacement vector
having the form u

→
� (u, 0, 0), u(r, t).

Temain governing equations in 1D (radial) are reduced
as follows:

zN

zt
� DE

z
2
N

zr
2 +

1
r

zN

zr
􏼠 􏼡 −

N

τ
+ κΘ, (22)

z
2

zr
2 +

1
r

z

zr
􏼠 􏼡Θ �

1
k

zΘ
zt

+
β1T0

K0

ze

zt
+

cT0

K0

zC

zt
−

Eg

K0τ
N.

(23)

Taking the divergence on both sides of equation (17),
yields:

ρ 1 − ξ2∇2􏼐 􏼑
z
2
e

zt
2 � (2μ + λ)∇2e − β1∇

2Θ − β2∇
2
C − δn∇

2
N.

(24)

Te equation for mass difusion may be shortened to

Dcβ2∇
2
e + Dcc∇

2Θ +
z

zt
+ τd

z
2

zt
2􏼠 􏼡C − Dcb∇

2
C � 0.

(25)

For simplicity, the dimensionless variables will be rep-
resented as follows: (r′, u′, ξ′) � (r, u, ξ)/CTt∗, (t′, τ0′, τd

′) �

(t, τ0, τd)/t∗, Θ′ � β1Θ/2μ + λ, σij′ � δijσij/2μ + λ, C′ � β2C/
2μ + λ, N′ � δnN/2μ + λ, P′ � P/β2, and T′ � β1
(T − T0)/2μ + λ.

According to dimensionless variables, the governing
equations (22)–(25) and the chemical potential equation
have the following form (drop the dash):

z
2

zr
2 +

1
r

z

zr
− q1 − q2

z

zt
􏼠 􏼡N + ε3Θ � 0,

∇2Θ −
z

zt
Θ + ε1e + ε4C( 􏼁 + ε2N � 0,

∇2(e − Θ − C − N) − 1 − ξ2∇2􏼐 􏼑
z
2
e

zt
2 � 0,

∇2 e + q4Θ − q3C( 􏼁 + q5
z

zt
+ τd

z
2

zt
2􏼠 􏼡C � 0,

P � −e + q3C − q4T.

(26)

Using the linear form of variable thermal conductivity
equation (6) and themapping equation (7), one arrives at the
following result [26]:

Θ �
1

K0
􏽚

T

0

K0(1 + qT)dT � T +
q

2
T
2

�
q

2
T +

1
q

􏼠 􏼡

2

−
1
2q

,

T �
1
q

[
�������
1 + 2qΘ

􏽰
− 1],

qT + 1 �
�������
1 + 2qΘ

􏽰
.

(27)

Te dimensionless equations for stress forces may be
simplifed as follows:

1 − ξ2∇2􏼐 􏼑σrr � e +(β − 1)
u

r
−

−1 +
�������
1 + 2qΘ

􏽰

q
􏼠 􏼡 − N − C,

1 − ξ2∇2􏼐 􏼑σψψ � βe +(1 − β)
u

r
−

−1 +
�������
1 + 2qΘ

􏽰

q
􏼠 􏼡 − N − C,

1 − ξ2∇2􏼐 􏼑σzz � β e −
−1 +

�������
1 + 2qΘ

􏽰

q
􏼠 􏼡 − C − N,

(28)

where q1 � K0t
∗/DEρτCe, q2 � K0/DEρCe, ε1 � β21T0

t∗2/K0ρ, ε2 � αTEgt∗/dnρτK0Ce, ε3 � dnκt∗/αTρCeDE, ε4 �

ε3c C2
T/β1K0β2, C2

T � 2μ + λ/ρ, δn � (2μ + 3λ)dn,
t∗ � K0/ρCeC

2
T, β � λ/2μ + λ, q3 � bρC2

T/β
2
2, q4 � cρC2

T/β1β2,
and q5 � (2μ + λ)t∗

2
C2

T/Dβ22.
To solve this problem in Laplace transform domain, the

initial conditions should be taken mathematically as follows:

σrr(r, t)
􏼌􏼌􏼌􏼌t�0 �

zσrr(r, t)

zt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0
� 0P(r, t)|t�0 �

zP(r, t)

zt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0
� 0,Θ(r, t)|t�0 �

zΘ(r, t)

zt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0
� 0,

C(r, t)|t�0 �
zC(r, t)

zt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0
� 0, e(r, t)|t�0 �

ze(r, t)

zt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0
� 0, N(r, t)|t�0 �

zN(r, t)

zt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0
� 0.

(29)
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3. The Solution in the Laplace Domain

It is possible to express the Laplace transform with pa-
rameter s as follows:

L(Ψ(r, t)) � Ψ(r, s) � 􏽚
∞

0
Ψ(r, t)e

−st
dt. (30)

Using the initial conditions equation (29) and per-
forming the Laplace transform including both sides of all
mathematical models after a small amount of modifcation,
we get

∇2 − α1􏼐 􏼑N + ε3Θ � 0, (31)

∇2 − s􏼐 􏼑Θ + ε2N − ε1se − ε4q6C � 0, (32)

∇2 −Ω􏼐 􏼑e − ϖ∇2(Θ + N + C) � 0, (33)

∇2 − q6􏼐 􏼑C − q7∇
2
e − q8∇

2Θ � 0. (34)

Te stress components relations equations (28)–(30) can
be represented as follows:

1 − ξ2∇2􏼐 􏼑σrr � e +(β − 1)
u

r
−

−1 +

�������

1 + 2qΘ
􏽱

q
⎛⎜⎜⎝ ⎞⎟⎟⎠ − N − C,

1 − ξ2∇2􏼐 􏼑σψψ � βe +(1 − β)
u

r
−

−1 +

�������

1 + 2qΘ
􏽱

q
⎛⎜⎜⎝ ⎞⎟⎟⎠ − N − C,

1 − ξ2∇2􏼐 􏼑σzz � β e −
−1 +

�������

1 + 2qΘ
􏽱

q
⎛⎜⎜⎝ ⎞⎟⎟⎠ − C − N,

(35)

where α1 � q1 + sq2, q6 � q5(s + τd s2)/q3, q7 � 1/q3,
q8 � q4/q3, Ω � s2ϖ, and ϖ � 1/1 + s2ξ2.

Eliminating the set of equations (30)–(33) yields the
following expressions for the physical felds e(r, s), N(r, s),
C(r, s), and Θ(r, s) as follows:

∇8 − Ε1∇
6

+ Ε2∇
4

− Ε3∇
2

+ Ε4􏼐 􏼑 e,Θ, N, C􏼈 􏼉(r, s) � 0.

(36)

However, the main coefcients of equation (36) are [28]
as follows:

Ε1 � Ω + q6 + s 1 − q7 + ε1 1 + q8( 􏼁( 􏼁 + ε4q8 q7 + q8( 􏼁 + ϖα1 1 − q7( 􏼁􏼈 􏼉 1 − q7( 􏼁
− 1

,

Ε2 � Ω q6 + ε4q
2
8􏼐 􏼑 + s Ω + q7 1 + ε1( 􏼁( 􏼁 + ϖα1g1 + g2􏽮 􏽯 1 − q7( 􏼁

− 1
,

Ε3 � ε1sq6 1 + ε3( 􏼁 − ε2ε3 Ω + q6( 􏼁 + ϖg3􏼈 􏼉 1 − q7( 􏼁
− 1

Ε4 � Ωq6 α1s − ϖε2ε3( 􏼁􏼈 􏼉 1 − q7( 􏼁
− 1

,

(37)

where g1 � s2 + q6 + s(1 − q7) + ε1s(1 + q8) + ε4q8(q7+􏼈

q8)}, g2 � ε2ε3(q7 − 1) + ε3s(ε1 + ε4q7)􏼈 􏼉, g3 � s2(sq6+ ε4
q28) + α1(s2q6 + q8(s2 + q6))

In factorized form, equation (36) takes the following
form:

∇2 − k
2
1􏼐 􏼑 ∇2 − k

2
2􏼐 􏼑 ∇2 − k

2
3􏼐 􏼑 ∇2 − k

2
4􏼐 􏼑 e,Θ, N, C􏼈 􏼉(r, s) � 0,

(38)

where k2
n (n � 1, 2, 3, 4) represent the roots of the following

characteristic equation:

k
8

− Ε1k
6

+ Ε2k
4

− Ε3k
2

+ Ε4 � 0. (39)

For linearity, the solution to equation (36) when r⟶ 0
may be expressed as follows:

Θ(r, s) � 􏽘
4

i�1
λi(s)I0 kir( 􏼁

e(r, s) � 􏽘
4

i�1
λi
′(s)I0 kir( 􏼁

N(r, s) � 􏽘
4

i�1
λi
″(s)I0 kir( 􏼁

C(r, s) � 􏽘
4

i�1
λ‴i (s)I0 kir( 􏼁

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (i � 1, 2, 3, 4), (40)

where I0 is the zero-order, frst-kind modifed Bessel
function. Te unknown parameters are λi, λi

′, λi
″ and

λ‴i (i � 1, 2, 3, 4), which are derived from the prepared cir-
cular plate and parameter s. From equations (30)–(33) and
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using equation (40), the relationship between these un-
known parameters may be determined as follows:

λi
′(s) �

k
6
i − g8k

4
i + g9k

2
i − g5q7

k
2
i − α1􏼐 􏼑 g6k

2
i − g7􏼐 􏼑

λi(s),

λi
″(s) � −

ε3
k
2
i − α1􏼐 􏼑

λi(s),

λ‴i (s) �
g6 − 1( 􏼁k

8
i − g10k

6
i + g11k

4
i − g12k

2
i +Ωg5q7

k
2
i k

2
i − α1􏼐 􏼑

2
g6k

2
i − g7􏼐 􏼑

λi(s),

(41)

where, g4 � α1 + q6, g5 � α1q6 − ε2ε3, g6 � ε1q6 + q4q6q8,
g7 � ε1q6q7, g8 � g4 + q7 + ε4q6q9, g9 � g5 + g4q7ϖ+
ε4q6q9α1, g10 � g7 + (2α1+ ε3)g6 + ϖg8 +Ω, g11 � (2α1g7+

α21g6) + ε3ϖ(α1g6 + g7) + g9 +Ωg8 g12 � (α21 + ε3α1)g7+

g5q7 +Ωg9.
Complete analytical solutions for the other main vari-

ables are as follows:

e(r, s) � 􏽘
4

i�1

k
6
i − g8k

4
i + g9k

2
i − g5q7

k
2
i − α1􏼐 􏼑 g6k

2
i − g7􏼐 􏼑

λi(s)I0 kir( 􏼁,

N(r, s) � − 􏽘
4

i�1

ε3
k
2
i − α1􏼐 􏼑

λi(s)I0 kir( 􏼁,

C(r, s) � 􏽘
4

i�1

g6 − 1( 􏼁k
8
i − g10k

6
i + g11k

4
i − g12k

2
i +Ωg5q7

k
2
i k

2
i − α1􏼐 􏼑

2
g6k

2
i − g7􏼐 􏼑

λi(s)I0 kir( 􏼁.

(42)

Using Laplace transform, the displacement component
may be derived from equations (21) and (42) as follows:

u(r, s) � 􏽘
4

i�1

k
6
i − g8k

4
i + g9k

2
i − g5q7

k
2
i − α1􏼐 􏼑 g6k

2
i − g7􏼐 􏼑

λi(s)I1 kir( 􏼁. (43)

From equations (27) and (29), which may be written as
follows, one can see the components of the radial stress and
the chemical potential:

σrr(r, s) � 􏽘
4

i�1

α2k
8
i − α3k

6
i + α4k

4
i − α5k

2
i + α6􏼐 􏼑λi(s)I0 kir( 􏼁􏽨 􏽩

k
2
i 1 − ξ2k2

i􏼐 􏼑 k
2
i − α1􏼐 􏼑

2
g6k

2
i − g7􏼐 􏼑

⎧⎪⎨

⎪⎩
−

−1 +
���������������
1 + 2qλi(s)I0 kir( 􏼁

􏽱

q 1 − ξ2k2
i􏼐 􏼑

⎛⎜⎜⎝ ⎞⎟⎟⎠

+
(β − 1) k

6
i − g8k

4
i + g9k

2
i − g5q7􏽮 􏽯

r 1 − ξ2k2
i􏼐 􏼑 g6k

2
i − g7􏼐 􏼑 k

2
i − α1􏼐 􏼑

λi(s)I1 kir( 􏼁⎤⎥⎦
⎫⎬

⎭

⎫⎬

⎭,

P(r, s) � 􏽘
4

i�1

α7k
8
i − α8k

6
i + α9k

4
i − α10k

2
i + α11􏼐 􏼑

k
2
i k

2
i − α1􏼐 􏼑

2
g6k

2
i − g7􏼐 􏼑

λi(s)I0 kir( 􏼁

⎧⎪⎨

⎪⎩
−

q4

−1 +
���������������
1 + 2qλi(s)I0 kir( 􏼁

􏽱

q
⎛⎜⎜⎝ ⎞⎟⎟⎠

⎫⎪⎬

⎪⎭
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(44)

where, α2 � 2 − g6, α3 � g9 + ϖg10, α4 � g9 + ε3g6 + g11,
α5 � g5g7 + ε3g7 + ϖg12, α6 � Ωg6q7, α7 � q3(g6 − 2),
α8 � q3g10 + g8, α9 � g11q3 + ϖg9, α10 � g12q3 + g5q7,
α11 � Ωg5q3q7.

Based on equation (28), the temperature in the Laplace
transform domain may be expressed as follows:

T �
1
q

[

�������

1 + 2qΘ
􏽱

− 1]. (45)
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4. Boundary Conditions

To establish the unknown parameters λi, mechanical forces
and thermal loads will be applied to the nonlocal semi-
conductor medium’s free surface (where a is the radius of
the circular plate), which is initially at rest. Te non-
mechanical loads are thus assumed to be traction-free at the
cylinder’s surface. Using Laplace transform on both sides

and assuming thermal shock as the thermal load, we obtain
[39, 40]:

(i) Nonmechanical loads are traction-free loads, which
can be written as follows:

σrr(a, s) � 0. (46)

Hence,

􏽘

4

i�1

α2k
8
i − α3k

6
i + α4k

4
i − α5k

2
i + α6􏼐 􏼑λi(s)I0 kia( 􏼁􏽨 􏽩

k
2
i 1 − ξ2k2

i􏼐 􏼑 k
2
i − α1􏼐 􏼑

2
g6k

2
i − g7􏼐 􏼑

⎧⎪⎨

⎪⎩
−

−1 +
���������������
1 + 2qλi(s)I0 kia( 􏼁

􏽱

q 1 − ξ2k2
i􏼐 􏼑

⎛⎜⎜⎝ ⎞⎟⎟⎠

+
(β − 1) k

6
i − g8k

4
i + g9k

2
i − g5q7􏽮 􏽯

r 1 − ξ2k2
i􏼐 􏼑 g6k

2
i − g7􏼐 􏼑 k

2
i − α1􏼐 􏼑

λi(s)I1 kia( 􏼁⎤⎥⎦
⎫⎬

⎭ � 0
⎫⎬

⎭

(47)

(ii) Te thermal state is considered a thermal shock
when:

Θ(a, s) � T0L(s). (48)

Terefore,

􏽘

4

i�1
λi(s)I0 kia( 􏼁 �

T0

s
. (49)

When the chemical potential is provided as a known
function of time and the carriers’ intensities can be
obtained using a recombination process, the surface
boundary conditions are determined.

(iii) Tis is how the chemical potential is written as
follows:

P(a, s) � P0χ(s), (50)

which yields:

􏽘
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α7k
8
i − α8k

6
i + α9k

4
i − α10k

2
i + α11􏼐 􏼑

k
2
i k

2
i − α1􏼐 􏼑

2
g6k

2
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λi(s)I0 kia( 􏼁

⎧⎪⎨

⎪⎩
−q4

−1 +
���������������
1 + 2qλi(s)I0 kia( 􏼁

􏽱

q
⎛⎜⎜⎝ ⎞⎟⎟⎠

⎫⎪⎬

⎪⎭
�

P0

s
. (51)

(iv) Te recombination-restricted possibility of carrier-
free charge density at the cylinder surface is
expressed as follows:

N(a, s) �
ƛ

De

ζ(s), (52)

which leads to

􏽘

4

i�1

λi(s)I0 kia( 􏼁

k
2
i − α1􏼐 􏼑

� −
ƛ

sε3De

, (53)

where ƛ is a constant. On the other hand, the
quantities L(t), ζ(s), and χ(t) represent the
Heaviside unit step function [34, 35].

5. The Numerical Inversion of the
Laplace Transforms

Using the inversion of the Laplace transform, a full solution
in the time domain was found. Using the numerical

inversion approach [39], the inverse of any function ϑ(t) in
the Laplace domain may be expressed as follows:

ϑ(r, t) � L
− 1 ϑ(r, s)􏽮 􏽯 �

1
2πi

􏽚
n+i∞

n−i∞
exp(st)ϑ(r, s)ds,

(54)

where s � n + im (n, m ∈ R), in this case, equation (55) can
be represented as follows:

ϑ(r, t) �
exp(nt)

2π
􏽚
∞

−∞
exp(imt)ϑ(r, n + im)dm. (55)

Fourier series can be utilized to expand the function
e− ntϑ(r, t) during the closed interval [0, 2t′], yields

ϑ(r, t) �
e
nt

t
−
1
2
Re ϑ(r, n) + Re 􏽘

N

k�1
(− 1)

nϑ r, n +
ikπ
t

􏼠 􏼡⎡⎣ ⎤⎦,

(56)

where i �
���
−1

√
and Re is the real part. N is a large fnite

integer that can be chosen for free.
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6. Numerical Results and Discussions

To show the impact of linearly varying thermal conductivity
(which is dependent on the heat), simulations and theo-
retical discussions are conducted using silicon (n-type) as an
elastic nonlocal semiconductor medium. Using the physical

characteristics of isotropic nonlocal siliconmedium, the variable
thermal conductivity and difusion relaxation time were in-
vestigated as a function of temperature [41–44]: λ �

3.64x 1010 N/m2, μ � 5.46 × 1010 N/m2, ρ � 2330 kg/m3, T0 �

800K, a � 1, τd � 5x 10− 5 s, dn � −9 x 10− 31 m3, DE �

2.5 × 10− 3 m2/s, Eg � 1.11 eV, ƛ � 2m/s,
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Figure 1: Te variations of the main physical felds against the redial distance at diferent values variable thermal conductivity according to
nonlocal semiconductor medium.

8 Advances in Condensed Matter Physics



Radial distance (r)

1

0.8

0.6

0.4

0.2

0

0.4

0.3

0.2

0.1

0

30

20

10

0

-10

-20

0.5

0.4

0.3

0.2

0.1

0

-0.1

2.5

2

1.5

1

0.5

0

-0.5

Te
m

pe
ra

tu
re

 (T
)

Ca
rr

ie
r d

en
sit

y 
(N

)

St
ra

in
 (e

)

Ch
em

ic
al

 p
ot

en
tia

l (
P)

St
re

ss 
(σ

rr
)

C
on

ce
nt

ra
tio

n 
(C

)

1 3 6 9 12 15
Radial distance (r)

1 5 10 15

Radial distance (r)
1 5 10 15

Local medium (ξ=0.0)
Non-Local medium (ξ=0.2)

Local medium (ξ=0.0)
Non-Local medium (ξ=0.2)

Local medium (ξ=0.0)
Non-Local medium (ξ=0.2)

Radial distance (r)
1 5 10 15

Local medium (ξ=0.0)
Non-Local medium (ξ=0.2)

Radial distance (r)
1 5 10 15

Local medium (ξ=0.0)
Non-Local medium (ξ=0.2)

Radial distance (r)
1 5 10 15

Local medium (ξ=0.0)
Non-Local medium (ξ=0.2)

4

3

2

1

0

-1

-2
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αt � 4.14x 10− 6 K− 1, αc � 1.98x 10− 4 m3/kg, c � 1.2x 104
m/Ks2, t � 7 × 10− 4 s b � 0.9, Ce � 695 J/(kg K), Dc �

0.85 × 10− 8kg s/m3.
Te real part of the fundamental physical felds is taken

into consideration when the wave propagation distributions
are represented graphically.

Figure 1 (consisting of six subfgures) illustrates the
change of physical quantities in this phenomenon versus
radial distance for two cases of thermal conductivity that
vary with distinct values. Te frst case represented by soiled
lines refers to the issue of (heat) temperature independence
q � 0.0. Te second instance is depicted by dashed lines and
represents the condition of temperature dependency
q � −0.5. In response to the boundary conditions, the dis-
tributions of carrier density (plasma), strain (elastic),
chemical potential, concentration (mass difusion), and
temperature (thermal) began with a positive value at the
surface. But the distribution of redial stress begins at zero,
indicating that traction is free at this surface r � a � 1. Te
frst subfgure depicts the variation in temperature versus
radius r for various nonlocal parameter values (two cases). It
is evident from this subfgure that the temperature increases
as the radius increases in the frst range due to the thermal
efect of light beams to reach the maximum value, and the
exponential decreases until it agrees with the zero line. Tis
subfgure indicates that the variable thermal conductivity
infuences the temperature change. Te second subfgure
shows the propagation of plasma waves with increasing
radial distance for two diferent values of the variable
thermal conductivity. It is clear that the carrier density
distribution starts with a positive value increases slightly to
reach the maximum value, and then decreases exponentially
until it reaches equilibrium by difusion within the nonlocal
semiconductor material, following the zero line. From the
frst and second subfgures, it is clear that the theoretical
numerical results obtained in this work are consistent with
the experimental results [45]. Te third and fourth sub-
fgures were produced to study the nonlocal strain and
chemical potential variation against the radius r for varying
thermal conductivity. As shown in the fourth subfgure, the
nonlocal chemical potential begins at a positive value at the
boundary plane for all boundary-satisfying situations.
However, the distribution of radial nonlocal stress (ffth
subfgure) begins at zero, indicating that traction is free near
the surface, and then begins to rise to its maximum value
before decreasing quickly and convergently to zero as the
distance increases to reach the equilibrium state. Te con-
centration distribution begins with a positive value at the
beginning and then drops gradually with exponential be-
havior to reach the zero-state line. A slight variation in
linearly variable thermal conductivity has a signifcant efect
on the wave propagation behavior, as shown by these
subfgures.

Figure 2 depicts the variation of the principal variables
(distributions of the carrier density (plasma waves), the
concentration (difusion), the strain (elastic waves), the
temperature (thermal waves), and the radial stress (me-
chanical waves)) as a function of radial distance r for varying
nonlocal parameter values.We observe that the distributions

of the main physical quantities seem to exhibit the same
pattern for various nonlocal parameters. With increasing
values, the movements of elastic-thermal-plasma-
mechanical waves are dampened to achieve chemical
equilibrium. Tese subfgures illustrate that the nonlocal
parameter has a signifcant efect on each of the investigated
distributions.

7. Conclusion

Te efects of changing thermal conductivity and nonlocal
parameters on the photothermal excitation process and the
chemical activity of elastic semiconductor materials have
been investigated. Te model was constructed in one di-
mension using the Laplace transform according to cylin-
drical coordinates. Graphs show the infuence of variable
thermal conductivity and nonlocal parameters. Te nu-
merical fndings indicate that the change in thermal con-
ductivity has a signifcant impact on the thermal-elastic-
mechanical-plasma behavior of nonlocal semiconductor
medium during photo-electronic deformations. A small
change in the nonlocal parameter has a great infuence and
leads to diferences in thermal-elastic-mechanical-plasma
wave propagation in the elastic medium. Tus, the non-
local parameter’s ability to conduct and transfer thermal
energy may serve as an additional identifer. Various uses of
the variable thermal conductivity of nonlocal semiconductor
elastic media in current physics via photo-elastic-thermal-
difusion excitation processes are applied inmany industries.
In particular, mass and heat transfer mechanisms are im-
portant in photovoltaic cells, display technologies, opto-
electronic applications, and photoconductor devices.

Nomenclature

λ, μ: Lame’s parameters
N0: Equilibrium carrier concentration
δn: Te diference in deformation potential
θ � T − T0: Termodynamical temperature
T: Absolute temperature
T0: Reference temperature and

|(T − T0)/T0|< 1
β1 � (3λ + 2μ)αT: Te volume thermal expansion
σij: Components of the stress tensor
ρ: Te density of the medium
αT: Te coefcient of linear thermal

expansion
e: Cubical dilatation
τd: Te difusion relaxation time
Ce: Specifc heat at a constant strain of the

solid plate
ρCe/K0 � 1/k: Te thermal viscosity
DE: Te carrier difusion coefcient
τ: Te photogenerated carrier lifetime
Eg: Te energy gap of the semiconductor
κ � zN0/zTT/τ: Te thermal activation coupling

parameter
c: Measure the efect of thermoelastic

difusion
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Dc: Te difusion coefcient
dn: Te coefcient of electronic deformation.
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