Using the Green’s function method, we study the modulation of the conductance in zigzag graphene nanoribbon (ZGNR) junctions by the gate voltages. As long as the difference between the gate voltages applied on the left and right ZGNRs (ΔV) remains unchanged, the conductance profiles for different cases are exactly the same, except to a displacement along E_F-axis. It is found that the transmission of electrons from the upper/lower edge state of the left ZGNR to the lower/upper edge state of the right ZGNR is forbidden, therefore, the width of the conductance gap increases first and then decreases as $|\Delta V|$ increases. The upper/lower edge states and conduction/valence subbands of ZGNR under higher/lower gate voltage (V_{H}/V_{L}) determine step positions of the conductance when $E_F>V_{H}/E_F<V_{L}$. But when $V_{L} \leq E_F \leq V_{H}$, the conductance profile is mainly determined by the upper and lower edge states, a few lowest conduction subbands/topmost valence subbands of ZGNR under lower/higher gate voltage. These results are helpful to the exploration and application of a new kind of field effect transistor based on ZGNR junctions.

1. Introduction

Graphene has excellent electrical, optical, and thermal properties, and has been considered as a perspective base for the postsilicon electronics since the successful fabrication in experiment [1–4]. Around the Dirac points, the band structure of graphene presents a linear dispersion, and the quasi-particles obey the massless Dirac equation and relativistic-like behaviors appear [3–7]. If graphene is patterned into graphene nanoribbon (GNR), interesting properties emerge [8]. For example, the edge states are found in graphene nanostructures with zigzag edge [4, 9–15]. In fact, many interesting phenomena in graphene and other novel two dimensional honeycomb lattice materials are in nature associated with the edge states [4, 9, 15–20], e.g., the valley-filtered transport [10, 21–23] and magnetism [11–13].

Furthermore, by interconnecting two semi-infinite GNRs with different widths, a GNR junction can be obtained [17, 23]. The conductance of metal–semiconductor GNR junctions, which is the key elements in all-graphene circuits, has attracted extensive research recently [24–26]. Due to the mismatch between conducting channels in the left and right GNRs, a traveling carrier is strongly scattered at the junction interface and a finite junction conductance is induced [17, 23, 27, 28]. Therefore, the junction conductance strongly depends on the geometry of the junction interface [24].

Experimentally, the Fermi level (E_F) in the GNR can be above or below the Dirac points by tuning the gate voltage, then the global or local charge carriers can be easily tuned from electron like to hole like and vice versa [1, 4, 5, 29, 30]. Moreover, the transport of topological edge states can be manipulated by adjusting the gate voltage embedding on the surface of two-dimensional topological insulator systems [31], and the spin polarization [32], spin inversion [33], and valley polarization [34] in silicene nanoribbons can also be manipulated by the gate voltage.

However, to the best of our knowledge, modulation of the electronic and transport properties of zigzag graphene nanoribbon (ZGNR) junctions by the gate voltages applied on the left and right ZGNRs (V_{gL} and V_{gR}, with $\Delta V = V_{gL} - V_{gR}$) has not been studied, which is crucial for designing all-graphene junctions and circuits [35]. Thus in this paper, to explore how the gate voltage affects the conductance channels (the edge states, the conduction, and valence subbands) and the mode matching between the left and right ZGNRs, we study how the
The conductance of the ZGNR junction depends on the gate voltage applied on the left and right ZGNRs. The $G-E_F$ curves in all cases can be clarified from the energy band structures of the left and right ZGNRs. For $V_{gl} = 0$ ($V_{gr} = 0$), the G profiles for opposite V_{gr} (V_{gl}) are symmetric to each other with respect to $E_F = 0$, and they move further away from each other with increasing $|\Delta V|$. For a given ΔV, the G profiles for different V_{gr} or V_{gl} are identical, except to a displacement along E_F-axis. The transmission probability of electrons from the upper/lower edge state of the left ZGNR to the lower/upper edge state of the right ZGNR is found to be 0. As a result, the width of the conductance gap increases first and then decreases with increasing $|\Delta V|$. The rest of the paper is organized as follows. In Section 2, the Green’s function method, the tight-binding model, and the geometrical structure of the ZGNR junction are introduced in brief. In Section 3, the dependence of the conductance of the ZGNR junction on the gate voltages applied on the left and right ZGNRs is studied and analyzed in detail. Finally, conclusions are given in Section 4.

2. Theory and Model

Figure 1 shows the geometry of the zigzag ZGNR junction connecting the left and right leads (semi-infinite ZGNR). From the top to down, atoms in a unit cell are labeled as 1, 2, ..., N_L/N_R. Here N_L/N_R denotes the width of the left/right ZGNR.

The Hamiltonian for the ZGNR junction reads [5, 36–39]

$$H = -t \sum_{<ij>} c_{ia}^\dagger c_{ja} + V_g \sum_{iac} c_{ia}^\dagger c_{ia}. \tag{1}$$

Here $t = 2.75$ eV is the transfer energy of the nearest neighbor hopping, $<ij>$ represents the nearest neighbors, a denotes the spin index, and E_F is the gate voltage applied on the ZGNR.

The conductance of the ZGNR junction can be calculated from the Landauer–Büttiker formula [40, 41],

$$G(E) = G_0 \text{Tr} [G_L^R G_R L]. \tag{2}$$

Here $G_0 = 2e^2/h$ is the unit quanta of conductance considering the spin degeneracy [26]. $G' = [G^\dagger]^+ = [E - H_{cen} - \Sigma_L - \Sigma_R]^{-1}$ is the retarded Green function [42, 43]. $\Sigma_{L,R} = \sum_{i \neq} (\Sigma_{i,L,R} - (\Sigma^a_{L,R})^\dagger)$ is the line width function, and $\Gamma_{L,R}$ is the surface Green function of the left/right semi-infinite ZGNR [44–47].

3. Results and Discussion

In this section, assuming $N_L = 40$ and $N_R = 20$, the dependence of the conductance of the ZGNR junction on the gate voltages applied on the left and right ZGNRs is studied and analyzed in detail. The $G-E_F$ curves are clearly clarified by analyzing the energy band structures of the left and right ZGNRs. First, the conductance of the ZGNR junction for $V_{gr} = 0$ and different V_{gl} are explored. Second, for $V_{gl} = 0$, how G depends on V_{gr} is analyzed. Next, assuming $V_{gl} = -V_{gr} = V_g$, the variation of G as a function of V_g is considered. Finally, for a given ΔV, the G profiles of the ZGNR junction under different V_{gl} or V_{gr} are compared.

3.1. Conductance of the ZGNR Junction for $V_{gr} = 0$ and Different V_{gl}. In Figures 2(a)–2(d) and 3(a)–3(d), we show G versus E_F in the ZGNR junction for $V_{gr} = 0$ and $V_{gl} = 0.018, \pm 0.4, \pm 0.8, 0.8964$, and 1.2 eV, and the corresponding energy band structures of ZGNRs.

When $V_{gr} = 0$, the G profile for $V_{gl} = V_g$ is symmetric to that for $V_{gl} = -V_g$ with respect to $E_F = 0$, i.e., $G(E_F)|_{V_{gl} = V_g} = G(-E_F)|_{V_{gl} = -V_g}$ because the conduction and valence subbands

\[\text{FIGURE 1: Geometry of the ZGNR junction. The blue (red) region denotes the left (right) ZGNR on which the gate voltage V_{gl} (V_{gr}) is applied. The interface between the two semi-infinite GNRs that form the junction is marked with a black box, which is chosen as the central conduction region.}\]
are just reversed when the sign of the gate voltage applied on the left ZGNR is reversed. With the increase of $|V_{gL}|$, the profile of $G(E_F)|_{V_{gL} = -V_g}$ moves further away from that of $G(E_F)|_{V_{gL} = V_g}$, and G decreases as a whole, because the energy mismatch of the conducting channels increases.

For $V_{gL} > 0$ ($V_{gL} < 0$) and $E_F > V_{gL}$ ($E_F < V_{gL}$), G decreases with the increase of $|V_{gL}|$ as a whole, and step positions of G are determined by the upper (lower) edge state and conduction (valence) subbands of ZGNR under higher (lower) gate voltage. For $V_{gL} > 0$ ($V_{gL} < 0$) and $E_F < 0$ ($E_F > 0$), G for different V_{gL} are in proximity to that of $V_{gL} = 0$, especially for a lower $|E_F|$, since step positions of G are mainly determined by the lower (upper) edge states and the valence (conduction) subbands of ZGNR under lower (higher) gate voltage. When $V_{gL} = V_{gR}$, step positions of G are just decided by the subbands of the right narrower ZGNR.

When $0.018 \leq |V_{gL}| \leq 0.8964$ eV and $V_{gL} > 0$ ($V_{gL} < 0$), there is a conductance gap at the positive (negative) direction of E_F-axis. By increasing $|V_{gL}|$, the width of the conductance gap increases first and then decreases. These originate from that the transmission of electrons from the upper/lower edge state of the left ZGNR to the lower/upper edge state of the right ZGNR is forbidden. In fact, when the zigzag-chain number N is even (here $N_L = 40$ and $N_R = 20$), the electron transport in the ZGNR should satisfy the pseudoparity conservation and the valley valve effect appears [10, 46, 48], so electrons of the lower/upper edge state in the left ZGNR cannot transmit to the upper/lower edge state in the right ZGNR.

Figure 2: G versus E_F in the ZGNR junction for $V_{gR} = 0$ and $V_{gL} = 0$, ±0.4, and ±0.8 eV, and the corresponding energy band structures of ZGNRs (a, b, c, d).
When \(V_{gL} = 0.018 \) eV, the profile of \(G \) is almost the same as that of \(V_{gL} = 0 \), but \(G \) decreases abruptly to 0 at \(E_F = 0.018 \) eV, then increases rapidly to a 1\(G_0 \) plateau at \(E_F = 0 \) eV. With further increasing \(V_{gL} \), the conduction gap begins to form and the width of conduction gap increases. This is determined by the lower edge state of ZGNR under higher gate voltage and lower edge state of ZGNR under lower gate voltage.

When \(V_{gL} = 0.4 \) eV, with the decrease of \(E_F \), \(G \) decreases to a 1\(G_0 \) plateau at \(E_F = 0.7 \) eV, and decreases to a 0 plateau at \(E_F = 0.4 \) eV, which is determined by the conduction subbands and the upper and lower edge states of ZGNR under higher gate voltage. Then \(G \) increases to a 0.5\(G_0 \) plateau at \(E_F = 0.1 \) eV, which is determined by the topmost valence subband of ZGNR under higher gate voltage. So the conductance gap is in the \(E_F \) interval [0.1, 0.4 eV], rather than [0, 0.4 eV], which is determined by the topmost valence subband and lower edge state of ZGNR under higher gate voltage. Finally, \(G \) shows a dip at \(E_F = 0 \) and increases step by step as \(E_F \) decreases, which is determined by the lower edge state and valence subbands of ZGNR under lower gate voltage.

When \(V_{gL} = 0.8 \) eV, with the decrease of \(E_F \), \(G \) decreases to a 0.5\(G_0 \) plateau at \(E_F = 0.8 \) eV. Then \(G \) decreases to a 0 plateau at \(E_F = 0.59 \) eV, and increases to a 0.8\(G_0 \) plateau at \(E_F = 0.5 \) eV, which is determined by the lowest conduction subband of ZGNR under lower gate voltage and topmost valence subband of ZGNR under higher gate voltage. So the conductance gap is in the \(E_F \) interval [0.5, 0.59 eV], rather than [0, 0.8 eV].

When \(V_{gL} = 0.8964 \) eV, the edge position of the lowest conduction subband of ZGNR under lower gate voltage just coincides with that of the topmost valence subband of ZGNR under higher gate voltage, so \(G \) decreases to 0 and increases...
rapidly to a $0.8 \cdot G_0$ plateau at $E_F = 0.59$ eV with the decrease of E_F. Therefore, the conduction gap begins to disappear, rather than lies in the E_F interval $[0, 0.8964$ eV]. With further increasing V_{gL}, there is no conduction gap. When $V_{gL} = 1.2$ eV, with the decrease of E_F, G increases to a $1.4 \cdot G_0$ plateau at $E_F = 0.91$ eV, and decreases to a $0.9 \cdot G_0$ plateau at $E_F = 0.59$ eV. This is also determined by the top-most valence subband of ZGNR under higher gate voltage and the lowest conduction subband of ZGNR under lower gate voltage.

3.2. Conductance of the ZGNR Junction for $V_{gL} = 0$ and Different V_{gR}

In Figures 4(a)–4(d) and 5(a)–5(d), we show G versus E_F in the ZGNR junction for $V_{gL} = 0$ and $V_{gR} = 0$, 0.018, 0.04, 0.08, 0.8964, and 1.2 eV, and the corresponding energy band structures of ZGNRs.

Here the G profiles for $V_{gL} = 0$ and different V_{gR} can be discussed similarly as that in Section 3.1 for $V_{gR} = 0$ and different V_{gL}, and the G profiles are found to be the same. For example, the G profiles for $V_{gR} = 0$ and $V_{gL} = -0.8$, -0.4, 0.4, and 0.8 shown in Figure 2(a) are the same to that for $V_{gL} = 0$ and $V_{gR} = 0.8$, 0.4, -0.4, and -0.8 shown in Figure 4(a), respectively. By comparing the G profiles for the above cases, it is found that as long as the difference between the gate voltages applied on the left and right ZGNRs (ΔV) remains unchanged, the conductance profiles for different cases are exactly the same, except to a displacement along E_F-axis. This general rule and detailed reasons will be further discussed in Section 3.4.

3.3. Conductance of the ZGNR Junction for $V_{gL} = -V_{gR}$

Figure 6 shows G versus E_F in the ZGNR junction for V_{gL}...
$V_{gR} = V_g = 0.009$, ±0.4, 0.4482, and 0.8 eV and Figures 7 (a1–a4) and 7(b1–b4) show the corresponding energy band structures of ZGNRs.

The G profile for $V_{gL} = -V_{gR} = V_g$ is symmetric to that for $V_{gL} = -V_{gR} = -V_g$ with respect to $E_F = 0$, i.e., $G(E_F)|_{V_{gL} = -V_{gR} = V_g} = G(-E_F)|_{V_{gL} = -V_{gR} = -V_g}$, because the conduction and valence subbands are just reversed when the sign of the gate voltage applied on the left/right ZGNR is reversed. With the increase of $|V_g|$, the profile of $G(E_F)|_{V_{gL} = -V_{gR} = V_g}$ moves further away from that of $G(E_F)|_{V_{gL} = -V_{gR} = -V_g}$, and G decreases as a whole, because the energy mismatch of the conducting channels increases.

For $V_g > 0$ ($V_g < 0$) and $E_F > V_g$ ($E_F < V_g$), step positions of G are determined by the upper (lower) edge states and conduction (valence) subbands of ZGNR under higher (lower) gate voltage. For $V_g > 0$ ($V_g < 0$) and $E_F < -V_g$ ($E_F > -V_g$), step positions of G are mainly determined by the lower (upper) edge states and the valence (conduction) subbands of ZGNR under lower (higher) gate voltage.

When $0.009 \leq |V_{gL}| \leq 0.4482$ eV and $V_g > 0$ ($V_g < 0$), there is a conductance gap at the positive (negative) direction of E_F-axis. With the increase of $|V_{gL}|$, the width of the conductance gap first increases and then decreases. As discussed above, these originate from that the transmission of electrons from the upper/lower edge state of the left ZGNR to the lower/upper edge state of the right ZGNR is forbidden as a result of the pseudoparity conservation and the valley valve effect [10, 46, 48]. Here the G profiles are the same to that for $0.018 \leq |V_{gL}| \leq 0.8964$ eV and V_{gR} = 0, because ΔV in the above two cases is the same.

When $V_g = 0.009$ eV, the profile of G is almost the same as that of $V_g = 0$, but G decreases abruptly to 0 around $E_F = 0.009$ eV, then increases rapidly to a 1-G_0 plateau at $E_F = -0.009$ eV, namely, the 1-G_0 plateau shows a conductance dip to
decrease of E_F states and valence subbands of ZGNR under lower gate voltage, and $a 1.5 \cdot V_{gL}$ increases rapidly to $a 0.9 \cdot ZGNR$ under higher gate voltage, so just coincides with that of the topmost valence subband of conduction subband of ZGNR under lower gate voltage. Therefore, the conduction gap begins to disappear, rather than lies in the decrease of E_F. This is determined by the upper and lower edge states of ZGNR under higher gate voltage. Finally, G decreases to a $0.9 - G_0$ plateau at $E_F = -0.233 \ eV$, which is determined by the lowest conduction subband of ZGNR under lower gate voltage.

When $V_g = 0.4 \ eV$, with the decrease of E_F, G decreases to a $1 - G_0$ plateau at $E_F = 0.7 \ eV$, and decreases to a $0.5 - G_0$ plateau at $E_F = 0.4 \ eV$, which is determined by the conduction subbands and the upper and lower edge states of ZGNR under higher gate voltage. Then G decreases slowly to a 0 plateau at $E_F = 0.2 \ eV$, and increases to a $0.8 - G_0$ plateau at $E_F = 0.1 \ eV$, which is determined by the lowest conduction subband of ZGNR under lower gate voltage and the topmost valence subband of ZGNR under higher gate voltage. So the conductance gap is in the E_F interval $[0.1, 0.2 \ eV]$, rather than $[0, 0.4 \ eV]$. Finally, G shows a dip and increases to a $1 - G_0$ plateau at $E_F = -0.4 \ eV$, then increases step by step with the decrease of E_F. This is determined by the upper and lower edge states and valence subbands of ZGNR under lower gate voltage. Here the G profiles are the same to that for $V_{gl} = 0.8 \ eV$ and $V_{gr} = 0$, because ΔV in the above two cases is the same.

When $V_g = 0.4482 \ eV$, the edge position of the lowest conduction subband of ZGNR under lower gate voltage just coincides with that of the topmost valence subband of ZGNR under higher gate voltage, so G decreases to 0 and increases rapidly to a $0.9 - G_0$ plateau at $E_F = 0.15 \ eV$ with the decrease of E_F. Therefore, the conduction gap begins to disappear, rather than lies in the E_F interval $[0, 0.4482 \ eV]$. As $|V_g|$ increases, there is no conduction gap. Here the G profiles are the same to that for $V_{gl} = 0.8964 \ eV$ and $V_{gr} = 0$, because ΔV in the above two cases is the same.

When $V_g = 0.8 \ eV$, with the decrease of E_F, G increases to a $1.5 - G_0$ plateau at $E_F = 0.48 \ eV$, and increases to a $2.25 - G_0$ plateau at $E_F = 0.27 \ eV$. This is determined by the topmost two valence subbands of ZGNR under higher gate voltage.

When $-0.233 \leq E_F \leq 0.27 \ eV$, G is determined by the upper edge state, a few lowest conduction subbands of ZGNR under lower gate voltage and a few topmost valence subbands of ZGNR under higher gate voltage. Finally, G decreases to a $0.9 - G_0$ plateau at $E_F = -0.233 \ eV$, which is determined by the lowest conduction subband of ZGNR under lower gate voltage.

3.4. Conductance of the ZGNR Junction for $V_{gl} - V_{gr} = \Delta V$

In this Section 3.4, the G profiles of the ZGNR junction for the same ΔV but different V_{gl} or V_{gr} are compared. Taking $\Delta V = 0.8 \ eV$ as an example, the G profiles for the ZGNR junction for different V_{gl} or V_{gr} are demonstrated in Figure 8. The G profiles for the same ΔV are exactly the same, i.e., $G(E_F)|_{V_{gl} = G(E_F - V_g)|_{V_{gr} = V_g}}$ for any V_g. If $V_g > 0$ ($V_g < 0$), the G profile for V_{gl} can be obtained by translating that for $V_{gl} - V_g$ by $|V_g|$ along the positive (negative) direction of E_F-axis. In fact, the gate voltage applied on the ZGNR will shift the position of the energy subbands (conducting channels), the transmission coefficient of electrons or holes from one channel in the left ZGNR to that of the right one is just determined by the relative positions of the above conducting channels.

Therefore, as long as the difference between the gate voltages applied on the left and right ZGNRs (ΔV) remains unchanged, the conductance profiles for different cases are exactly the same, except to a displacement along E_F-axis. Moreover, as discussed above, the width of the conductance gap increases first and then decreases as $|\Delta V|$ increases.

These results are helpful to the exploration and application of a new kind of field effect transistor (FET) based on ZGNR junctions, in which the conducting channels involved in the transmission of electrons or holes are controlled by the gate voltage, and their functions are similar to those of semiconductor FETs.
FIGURE 7: The energy band structures of the (a1, a2, a3, and a4) left and (b1, b2, b3, and b4) right ZGNRs under opposite gate voltages.
4. Conclusion

In summary, by adjusting the gate voltages applied on the left and right ZGNRs, the conductance of the ZGNR junction is studied. The G–E_F curves for all cases can be clarified from the energy band structures of the left and right ZGNRs. When $V_{gl}=0$ ($V_{gR}=0$), the G profiles for opposite V_{gR} (V_{gl}) are symmetric to each other with respect to $E_F=0$, and they move further away from each other with the increase of $|\Delta V|$. For a given ΔV, the G profiles for different V_{gl} or V_{gR} are exactly the same, except to a displacement along the positive or negative direction of E_F-axis. Because the transmission of electrons from the upper/lower edge state of the left ZGNR to the lower/upper edge state of the right ZGNR is not allowed, the width of the conductance gap increases first and then decreases as $|\Delta V|$ increases. The width of the conduction gap is mainly determined by the upper and lower edge states, a few lowest conduction subbands of ZGNR under lower gate voltage and a few topmost valence subbands of ZGNR under higher gate voltage. Step positions of G are determined by the upper edge state and conduction subbands of ZGNR under higher gate voltage (E_F) when $E_F>E_{1H}$, and by the lower edge state and the valence subbands of ZGNR under lower gate voltage (E_F) when $E_F<E_{1L}$. These results are helpful to the exploration and application of graphene-based FETs.

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Scientific Research Innovation Team of the Xuchang University (grant no. 2022CXTD0005) and the “316” Project Plan of the Xuchang University.

References

