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Using the Green’s function method, we study the modulation of the conductance in zigzag graphene nanoribbon (ZGNR)
junctions by the gate voltages. As long as the difference between the gate voltages applied on the left and right ZGNRs (ΔV)
remains unchanged, the conductance profiles for different cases are exactly the same, except to a displacement along EF-axis. It is
found that the transmission of electrons from the upper/lower edge state of the left ZGNR to the lower/upper edge state of the right
ZGNR is forbidden, therefore, the width of the conductance gap increases first and then decreases as |ΔV| increases. The upper/
lower edge states and conduction/valence subbands of ZGNR under higher/lower gate voltage (VH/VL) determine step positions of
the conductance when EF>VH/EF<VL. But when VL≤EF≤VH, the conductance profile is mainly determined by the upper and
lower edge states, a few lowest conduction subbands/topmost valence subbands of ZGNR under lower/higher gate voltage. These
results are helpful to the exploration and application of a new kind of field effect transistor based on ZGNR junctions.

1. Introduction

Graphene has excellent electrical, optical, and thermal prop-
erties, and has been considered as a perspective base for the
postsilicon electronics since the successful fabrication in
experiment [1–4]. Around the Dirac points, the band struc-
ture of graphene presents a linear dispersion, and the quasi-
particles obey the massless Dirac equation and relativistic-
like behaviors appear [3–7]. If graphene is patterned into
graphene nanoribbon (GNR), interesting properties emerge
[8]. For example, the edge states are found in graphene
nanostructures with zigzag edge [4, 9–15]. In fact, many
interesting phenomena in graphene and other novel two
dimensional honeycomb lattice materials are in nature asso-
ciated with the edge states [4, 9, 15–20], e.g., the valley-
filtered transport [10, 21–23] and magnetism [11–13].

Furthermore, by interconnecting two semi-infinite GNRs
with different widths, a GNR junction can be obtained [17, 23].
The conductance of metal–semiconductor GNR junctions,
which is the key elements in all-graphene circuits, has attracted
extensive research recently [24–26]. Due to the mismatch
between conducting channels in the left and right GNRs, a
traveling carrier is strongly scattered at the junction interface

and a finite junction conductance is induced [17, 23, 27, 28].
Therefore, the junction conductance strongly depends on the
geometry of the junction interface [24].

Experimentally, the Fermi level (EF) in the GNR can be
above or below the Dirac points by tuning the gate voltage,
then the global or local charge carriers can be easily tuned
from electron like to hole like and vice versa [1, 4, 5, 29, 30].
Moreover, the transport of topological edge states can be
manipulated by adjusting the gate voltage embedding on
the surface of two-dimensional topological insulator systems
[31], and the spin polarization [32], spin inversion [33], and
valley polarization [34] in silicene nanoribbons can also be
manipulated by the gate voltage.

However, to the best of our knowledge, modulation of the
electronic and transport properties of zigzag graphene nanor-
ibbon (ZGNR) junctions by the gate voltages applied on the
left and right ZGNRs (VgL and VgR, with ΔV=VgL−VgR) has
not been studied, which is crucial for designing all-graphene
junctions and circuits [35]. Thus in this paper, to explore how
the gate voltage affects the conductance channels (the edge
states, the conduction, and valence subbands) and the mode
matching between the left and right ZGNRs, we study how the
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conductance of the ZGNR junction depends on the gate volt-
age applied on the left and right ZGNRs. The G–EF curves in
all cases can be clarified from the energy band structures of the
left and right ZGNRs. For VgL= 0 (VgR= 0), the G profiles for
oppositeVgR (VgL) are symmetric to each other with respect to
EF= 0, and they move further away from each other with
increasing |ΔV|. For a given ΔV, the G profiles for different
VgL or VgR are identical, except to a displacement along
EF-axis. The transmission probability of electrons from the
upper/lower edge state of the left ZGNR to the lower/upper
edge state of the right ZGNR is found to be 0. As a result,
the width of the conductance gap increases first and then
decreases with increasing |ΔV|.

The rest of the paper is organized as follows. In Section 2,
the Green’s function method, the tight-binding model, and
the geometrical structure of the ZGNR junction are intro-
duced in brief. In Section 3, the dependance of the conduc-
tance of the ZGNR junction on the gate voltages applied on
the left and right ZGNRs is studied and analyzed in detail.
Finally, conclusions are given in Section 4.

2. Theory and Model

Figure 1 shows the geometry of the zigzag ZGNR junction
connecting the left and right leads (semi-infinite ZGNR).
From the top to down, atoms in a unit cell are labeled as 1,
2, …, NL/NR. Here NL/NR denotes the width of the left/
right ZGNR.

The Hamiltonian for the ZGNR junction reads [5, 36–39]

H ¼ −t ∑
< ij>α

cþiαcjα þ Vg ∑
iα
cþiαciα: ð1Þ

Here t= 2.75 eV is the transfer energy of the nearest
neighbor hopping, <ij> represents the nearest neighbors, α

denotes the spin index, and EF is the gate voltage applied on
the ZGNR.

The conductance of the ZGNR junction can be calculated
from the Landauer–Büttiker formula [40, 41],

G Eð Þ ¼ G0Tr ΓLGrΓRGa½ �: ð2Þ

HereG0 ¼ 2e2=h is the unit quanta of conductance consid-
ering the spin degeneracy [26]. Gr ¼ Ga½ �þ ¼ E − Hcen−½
∑r

L − ∑r
R�−1 is the retarded Green function [42, 43]. ∑r

L;R ¼
Hþ

01gL;RH01 is the self-energy, Γr
L;R ¼ i ∑r

L;R −
�

∑r
L;R

� �þ� is the
line width function, andgL=R is the surface Green function of the
left/right semi-infinite ZGNR [44–47].

3. Results and Discussion

In this section, assuming NL= 40 and NR= 20, the depen-
dance of the conductance of the ZGNR junction on the gate
voltages applied on the left and right ZGNRs is studied and
analyzed in detail. The G–EF curves are clearly clarified by
analyzing the energy band structures of the left and right
ZGNRs. First, the conductance of the ZGNR junction for
VgR= 0 and different VgL are explored. Second, for VgL= 0,
how G depends on VgR is analyzed. Next, assuming VgL=
−VgR=Vg, the variation of G as a function of Vg is consid-
ered. Finally, for a given ΔV, the G profiles of the ZGNR
junction under different VgL or VgR are compared.

3.1. Conductance of the ZGNR Junction for VgR = 0 and
Different VgL. In Figures 2(a)–2(d) and 3(a)–3(d), we show
G versus EF in the ZGNR junction for VgR= 0 and VgL= 0,
0.018, Æ0.4, Æ0.8, 0.8964, and 1.2 eV, and the corresponding
energy band structures of ZGNRs.

WhenVgR=0, theG profile forVgL=Vg is symmetric to that
for VgL=−Vg with respect to EF=0, i.e., G EFð ÞjVgL¼Vg

¼
G −EFð ÞjVgL¼−Vg

, because the conduction and valecne subbands
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FIGURE 1: Geometry of the ZGNR junction. The blue (red) region denotes the left (right) ZGNR on which the gate voltage VgL (VgR) is applied.
The interface between the two semi-infinite GNRs that form the junction is marked with a black box, which is chosen as the central
conduction region.
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are just reversed when the sign of the gate voltage applied on the
left ZGNR is reversed. With the increase of |VgL|, the profile of
G EFð ÞjVgL¼Vg

moves further away from that of G EFð ÞjVgL¼−Vg
,

and G decreases as a whole, because the energy mismatch of the
conducting channels increases.

For VgL> 0 (VgL< 0) and EF>VgL (EF<VgL), G decreases
with the increase of |VgL| as a whole, and step positions of G
are determined by the upper (lower) edge state and conduc-
tion (valence) subbands of ZGNR under higher (lower) gate
voltage. For VgL> 0 (VgL< 0) and EF< 0 (EF> 0), G for dif-
ferent VgL are in proximity to that of VgL= 0, especially for a
lower |EF|, since step positions of G are mainly determined by
the lower (upper) edge states and the valence (conduction)
subbands of ZGNR under lower (higher) gate voltage. When

VgL=VgR, step positions ofG are just decided by the subbands
of the right narrower ZGNR.

When 0.018≤ |VgL|≤0.8964 eV and VgL> 0 (VgL< 0),
there is a conductance gap at the positive (negative) direction
of EF-axis. By increasing |VgL|, the width of the conductance
gap increases first and then decreases. These originate from
that the transmission of electrons from the upper/lower edge
state of the left ZGNR to the lower/upper edge state of the
right ZGNR is forbidden. In fact, when the zigzag-chain
number N is even (here NL= 40 and NR= 20), the electron
transport in the ZGNR should satisfy the pseudoparity con-
servation and the valley valve effect appears [10, 46, 48], so
electrons of the lower/upper edge state in the left ZGNR can-
not transmit to the upper/lower edge sate in the right ZGNR.
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FIGURE 2: G versus EF in the ZGNR junction for VgR= 0 and VgL= 0, Æ0.4, and Æ0.8 eV, and the corresponding energy band structures of
ZGNRs (a, b, c, d).
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WhenVgL= 0.018 eV, the profile ofG is almost the same as
that of VgL= 0, but G decreases abruptly to 0 at EF= 0.018 eV,
then increases rapidly to a 1·G0 plateau at EF= 0 eV. With
further increasing VgL, the conduction gap begins to form
and the width of conduction gap increases. This is determined
by the lower edge state of ZGNR under higher gate voltage and
lower edge state of ZGNR under lower gate voltage.

When VgL= 0.4 eV, with the decrease of EF, G decreases
to a 1·G0 plateau at EF= 0.7 eV, and decreases to a 0 plateau
at EF= 0.4 eV, which is determined by the conduction sub-
bands and the upper and lower edge states of ZGNR under
higher gate voltage. Then G increases to a 0.5·G0 plateau at
EF= 0.1 eV, which is determined by the topmost valence
subband of ZGNR under higher gate voltage. So the conduc-
tance gap is in the EF interval [0.1, 0.4 eV], rather than [0,
0.4 eV], which is determined by the topmost valence subband

and lower edge state of ZGNR under higher gate voltage.
Finally, G shows a dip at EF= 0 and increases step by step
as EF decreases, which is determined by the lower edge state
and valence subbands of ZGNR under lower gate voltage.

When VgL= 0.8 eV, with the decrease of EF, G decreases
to a 0.5·G0 plateau at EF= 0.8 eV. Then G decreases to a 0
plateau at EF= 0.59 eV, and increases to a 0.8·G0 plateau at
EF= 0.5 eV, which is determined by the lowest conduction
subband of ZGNR under lower gate voltage and topmost
valence subband of ZGNR under higher gate voltage. So
the conductance gap is in the EF interval [0.5, 0.59 eV], rather
than [0, 0.8 eV].

When VgL= 0.8964 eV, the edge position of the lowest
conduction subband of ZGNR under lower gate voltage just
coincides with that of the topmost valence subband of ZGNR
under higher gate voltage, so G decreases to 0 and increases
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FIGURE 3: G versus EF in the ZGNR junction for VgR= 0 and VgL= 0, 0.018, 0.8964, and 1.2 eV, and the corresponding energy band structures
of ZGNRs (a, b, c, and d).
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rapidly to a 0.8·G0 plateau at EF= 0.59 eV with the decrease
of EF. Therefore, the conduction gap begins to disappear,
rather than lies in the EF interval [0, 0.8964 eV]. With further
increasing VgL, there is no conduction gap.

When VgL= 1.2 eV, with the decrease of EF, G increases
to a 1.4·G0 plateau at EF= 0.91 eV, and decreases to a 0.9·G0

plateau at EF= 0.59 eV. This is also determined by the top-
most valence subband of ZGNR under higher gate voltage
and the lowest conduction subband of ZGNR under lower
gate voltage.

3.2. Conductance of the ZGNR Junction for VgL= 0 and
Different VgR. In Figures 4(a)–4(d) and 5(a)–5(d), we show
G versus EF in the ZGNR junction for VgL= 0 and VgR= 0,
0.018, Æ0.4, Æ0.8, 0.8964, and 1.2 eV, and the corresponding
energy band structures of ZGNRs.

Here the G profiles for VgL= 0 and different VgR can be
discussed similarly as that in Section 3.1 for VgR= 0 and dif-
ferent VgL, and the G profiles are found to be the same. For
example, the G profiles for VgR= 0 and VgL=−0.8, −0.4, 0.4,
and 0.8 shown in Figure 2(a) are the same to that for VgL= 0
and VgR= 0.8, 0.4, −0.4, and −0.8 shown in Figure 4(a),
respectively. By comparing the G profiles for the above cases,
it is found that as long as the difference between the gate
voltages applied on the left and right ZGNRs (ΔV) remains
unchanged, the conductance profiles for different cases are
exactly the same, except to a displacement along EF-axis.
This general rule and detailed reasons will be further dis-
cussed in Section 3.4.

3.3. Conductance of the ZGNR Junction forVgL=−VgR.Figure 6
shows G versus EF in the ZGNR junction for VgL=
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FIGURE 4: G versus EF in the ZGNR junction for VgL= 0 and VgR= 0, Æ0.4, and Æ0.8 eV, and the corresponding energy band structures of
ZGNRs (a, b, c, and d).
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−VgR=Vg= 0.009, Æ0.4, 0.4482, and 0.8 eV and Figures 7
(a1–a4) and 7(b1–b4) show the corresponding energy band
structures of ZGNRs.

The G profile for VgL=−VgR=Vg is symmetric to that
for VgL=−VgR=−Vg with respect to EF=0, i.e.,
G EFð ÞjVgL¼−VgR¼Vg

¼G −EFð ÞjVgL¼−VgR¼−Vg
, because the con-

duction and valence subbands are just reversed when the sign of
the gate voltage applied on the left/right ZGNR is reversed. With
the increase of |Vg|, the profile of G EFð ÞjVgL¼−VgR¼Vg

moves fur-
ther away from that ofG EFð ÞjVgL¼−VgR¼−Vg

, andG decreases as a
whole, because the energy mismatch of the conducting channels
increases.

For Vg> 0 (Vg< 0) and EF>Vg (EF<Vg), step positions
of G are determined by the upper (lower) edge states and
conduction (valence) subbands of ZGNR under higher
(lower) gate voltage. For Vg> 0 (Vg< 0) and EF<−Vg (EF>
−Vg), step positions of G are mainly determined by the lower

(upper) edge states and the valence (conduction) subbands of
ZGNR under lower (higher) gate voltage.

When 0.009≤ |Vg|≤ 0.4482 eV and Vg> 0 (Vg< 0), there
is a conductance gap at the positive (negative) direction of
EF-axis. With the increase of |Vg|, the width of the conduc-
tance gap first increases and then decreases. As discussed
above, these originate from that the transmission of electrons
from the upper/lower edge state of the left ZGNR to the
lower/upper edge state of the right ZGNR is forbidden as a
result of the pseudoparity conservation and the valley valve
effect [10, 46, 48]. Here the G profiles are the same to that for
0.018≤ |VgL|≤ 0.8964 eV and VgR= 0, because ΔV in the
above two cases is the same.

When Vg=0.009 eV, the profile of G is almost the same as
that of Vg=0, but G decreases abruptly to 0 around
EF=0.009 eV, then increases rapidly to a 1·G0 plateau at EF=
−0.009 eV, namely, the 1·G0 plateau shows a conductance dip to
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FIGURE 5: G versus EF in the ZGNR junction for VgL= 0 and VgR= 0, 0.018, 0.8964, and 1.2 eV, and the corresponding energy band structures
of ZGNRs (a, b, c, and d).
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0 atEF=0.With further increasingVg, the conduction gap begins
to form and the width of conduction gap increases. This is deter-
mined by the lower edge state of ZGNRunder higher gate voltage
and upper edge state of ZGNRunder lower gate voltage. Here the
G profiles are the same to that for VgL=0.18 eV and VgR=0,
because ΔV in the above two cases is the same.

When Vg= 0.4 eV, with the decrease of EF, G decreases to
a 1·G0 plateau at EF= 0.7 eV, and decreases to a 0.5·G0 plateau
at EF= 0.4 eV, which is determined by the conduction sub-
bands and the upper and lower edge states of ZGNR under
higher gate voltage. Then G decreases slowly to a 0 plateau at
EF= 0.2 eV, and increases to a 0.8·G0 plateau at EF= 0.1 eV,
which is determined by the lowest conduction subband of
ZGNR under lower gate voltage and the topmost valence
subband of ZGNR under higher gate voltage. So the conduc-
tance gap is in the EF interval [0.1, 0.2 eV], rather than
[0, 0.4 eV]. Finally, G shows a dip and increases to a 1·G0

plateau at EF=−0.4 eV, then increases step by step with the
decrease of EF. This is determined by the upper and lower edge
states and valence subbands of ZGNR under lower gate volt-
age. Here the G profiles are the same to that for VgL= 0.8 eV
and VgR= 0, because ΔV in the above two cases is the same.

When Vg= 0.4482 eV, the edge position of the lowest
conduction subband of ZGNR under lower gate voltage
just coincides with that of the topmost valence subband of
ZGNR under higher gate voltage, so G decreases to 0 and
increases rapidly to a 0.9·G0 plateau at EF= 0.15 eV with the
decrease of EF. Therefore, the conduction gap begins to dis-
appear, rather than lies in the EF interval [0, 0.4482 eV]. As
|Vg| increases, there is no conduction gap. Here the G profiles
are the same to that for VgL= 0.8964 eV and VgR= 0, because
ΔV in the above two cases is the same.

When Vg= 0.8 eV, with the decrease of EF, G increases to
a 1.5·G0 plateau at EF= 0.48 eV, and increases to a 2.25·G0

plateau at EF= 0.27 eV. This is determined by the topmost
two valence subbands of ZGNR under higher gate voltage.

When −0.233≤EF≤ 0.27 eV, G is determined by the upper
edge state, a few lowest conduction subbands of ZGNR under
lower gate voltage and a few topmost valence subbands of
ZGNR under higher gate voltage. Finally, G decreases to a
0.9·G0 plateau at EF=−0.233 eV, which is determined by the
lowest conduction subband of ZGNR under lower gate
voltage.

3.4. Conductance of the ZGNR Junction for VgL−VgR = ΔV
(G EFð ÞjVgL−VgR ¼ ΔV). In this Section 3.4, the G profiles of the
ZGNR junction for the same ΔV but different VgL or VgR are
compared. Taking ΔV= 0.8 eV as an example, theG profiles of
the ZGNR junction for different VgL or VgR are demonstrated
in Figure 8. The G profiles for the same ΔV are exactly

the same, i.e., G EFð Þ VgL ¼
�� G EF − Vg

� �
jVgL−Vg

for any

Vg. If Vg> 0 (Vg< 0), the G profile for VgL can be obtained
by translating that for VgL−Vg by |Vg| along the positive (neg-
ative) direction of EF-axis. In fact, the gate voltage applied on
the ZGNR will shift the position of the energy subbands (con-
ducting channels), the transmission coefficient of electrons or
holes from one channel in the left ZGNR to that of the right
one is just determined by the relative positions of the above
conducting channels.

Therefore, as long as the difference between the gate
voltages applied on the left and right ZGNRs (ΔV) remains
unchanged, the conductance profiles for different cases are
exactly the same, except to a displacement along EF-axis.
Moreover, as discussed above, the width of the conductance
gap increases first and then decreases as |ΔV| increases.

These results are helpful to the exploration and applica-
tion of a new kind of field effect transistor (FET) based on
ZGNR junctions, in which the conducting channels involved
in the transmission of electrons or holes are controlled by the
gate voltage, and their functions are similar to those of semi-
conductor FETs.
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4. Conclusion

In summary, by adjusting the gate voltages applied on the left
and right ZGNRs, the conductance of the ZGNR junction is
studied. The G–EF curves for all cases can be clarified from
the energy band structures of the left and right ZGNRs.
When VgL= 0 (VgR= 0), the G profiles for opposite VgR

(VgL) are symmetric to each other with respect to EF= 0,
and they move further away from each other with the
increase of |ΔV|. For a given ΔV, the G profiles for different
VgL or VgR are exactly the same, except to a displacement
along the positive or negative direction of EF-axis. Because
the transmission of electrons from the upper/lower edge state
of the left ZGNR to the lower/upper edge state of the right
ZGNR is not allowed, the width of the conductance gap
increases first and then decreases as |ΔV| increases. The
width of the conduction gap is mainly determined by the
upper and lower edge states, a few lowest conduction sub-
bands of ZGNR under lower gate voltage and a few topmost
valence subbands of ZGNR under higher gate voltage. Step
positions of G are determined by the upper edge state and
conduction subbands of ZGNR under higher gate voltage
(EF) when EF>VH, and by the lower edge state and the
valence subbands of ZGNR under lower gate voltage (VL)
when EF<VL. These results are helpful to the exploration
and application of graphene-based FETs.
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